blob: 24873b8798dc9096774193a57b8c9f5a24418930 [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <limits.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include "pico.h"
#include "pico/time.h"
#include "pico/util/pheap.h"
#include "pico/sync.h"
const absolute_time_t ABSOLUTE_TIME_INITIALIZED_VAR(nil_time, 0);
const absolute_time_t ABSOLUTE_TIME_INITIALIZED_VAR(at_the_end_of_time, INT64_MAX);
typedef struct alarm_pool_entry {
absolute_time_t target;
alarm_callback_t callback;
void *user_data;
} alarm_pool_entry_t;
struct alarm_pool {
pheap_t *heap;
spin_lock_t *lock;
alarm_pool_entry_t *entries;
// one byte per entry, used to provide more longevity to public IDs than heap node ids do
// (this is increment every time the heap node id is re-used)
uint8_t *entry_ids_high;
alarm_id_t alarm_in_progress; // this is set during a callback from the IRQ handler... it can be cleared by alarm_cancel to prevent repeats
uint8_t hardware_alarm_num;
uint8_t core_num;
};
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
// To avoid bringing in calloc, we statically allocate the arrays and the heap
PHEAP_DEFINE_STATIC(default_alarm_pool_heap, PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS);
static alarm_pool_entry_t default_alarm_pool_entries[PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS];
static uint8_t default_alarm_pool_entry_ids_high[PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS];
static lock_core_t sleep_notifier;
static alarm_pool_t default_alarm_pool = {
.heap = &default_alarm_pool_heap,
.entries = default_alarm_pool_entries,
.entry_ids_high = default_alarm_pool_entry_ids_high,
};
static inline bool default_alarm_pool_initialized(void) {
return default_alarm_pool.lock != NULL;
}
#endif
static alarm_pool_t *pools[NUM_TIMERS];
static void alarm_pool_post_alloc_init(alarm_pool_t *pool, uint hardware_alarm_num);
static inline alarm_pool_entry_t *get_entry(alarm_pool_t *pool, pheap_node_id_t id) {
assert(id && id <= pool->heap->max_nodes);
return pool->entries + id - 1;
}
static inline uint8_t *get_entry_id_high(alarm_pool_t *pool, pheap_node_id_t id) {
assert(id && id <= pool->heap->max_nodes);
return pool->entry_ids_high + id - 1;
}
bool timer_pool_entry_comparator(void *user_data, pheap_node_id_t a, pheap_node_id_t b) {
alarm_pool_t *pool = (alarm_pool_t *)user_data;
return to_us_since_boot(get_entry(pool, a)->target) < to_us_since_boot(get_entry(pool, b)->target);
}
static inline alarm_id_t make_public_id(uint8_t id_high, pheap_node_id_t id) {
return (alarm_id_t)(((uint)id_high << 8u * sizeof(id)) | id);
}
void alarm_pool_init_default() {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
// allow multiple calls for ease of use from host tests
if (!default_alarm_pool_initialized()) {
ph_post_alloc_init(default_alarm_pool.heap, PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS,
timer_pool_entry_comparator, &default_alarm_pool);
hardware_alarm_claim(PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM);
alarm_pool_post_alloc_init(&default_alarm_pool,
PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM);
}
lock_init(&sleep_notifier, PICO_SPINLOCK_ID_TIMER);
#endif
}
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
alarm_pool_t *alarm_pool_get_default() {
assert(default_alarm_pool_initialized());
return &default_alarm_pool;
}
#endif
static pheap_node_id_t add_alarm_under_lock(alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback,
void *user_data, pheap_node_id_t reuse_id, bool create_if_past, bool *missed) {
pheap_node_id_t id;
if (reuse_id) {
assert(!ph_contains_node(pool->heap, reuse_id));
id = reuse_id;
} else {
id = ph_new_node(pool->heap);
}
if (id) {
alarm_pool_entry_t *entry = get_entry(pool, id);
entry->target = time;
entry->callback = callback;
entry->user_data = user_data;
if (id == ph_insert_node(pool->heap, id)) {
bool is_missed = hardware_alarm_set_target(pool->hardware_alarm_num, time);
if (is_missed && !create_if_past) {
ph_remove_and_free_node(pool->heap, id);
}
if (missed) *missed = is_missed;
}
}
return id;
}
static void alarm_pool_alarm_callback(uint alarm_num) {
// note this is called from timer IRQ handler
alarm_pool_t *pool = pools[alarm_num];
bool again;
do {
absolute_time_t now = get_absolute_time();
alarm_callback_t callback = NULL;
absolute_time_t target = nil_time;
void *user_data = NULL;
uint8_t id_high;
again = false;
uint32_t save = spin_lock_blocking(pool->lock);
pheap_node_id_t next_id = ph_peek_head(pool->heap);
if (next_id) {
alarm_pool_entry_t *entry = get_entry(pool, next_id);
if (absolute_time_diff_us(now, entry->target) <= 0) {
// we don't free the id in case we need to re-add the timer
pheap_node_id_t __unused removed_id = ph_remove_head(pool->heap, false);
assert(removed_id == next_id); // will be true under lock
target = entry->target;
callback = entry->callback;
user_data = entry->user_data;
assert(callback);
id_high = *get_entry_id_high(pool, next_id);
pool->alarm_in_progress = make_public_id(id_high, removed_id);
} else {
if (hardware_alarm_set_target(alarm_num, entry->target)) {
again = true;
}
}
}
spin_unlock(pool->lock, save);
if (callback) {
int64_t repeat = callback(make_public_id(id_high, next_id), user_data);
save = spin_lock_blocking(pool->lock);
// todo think more about whether we want to keep calling
if (repeat < 0 && pool->alarm_in_progress) {
assert(pool->alarm_in_progress == make_public_id(id_high, next_id));
add_alarm_under_lock(pool, delayed_by_us(target, (uint64_t)-repeat), callback, user_data, next_id, true, NULL);
} else if (repeat > 0 && pool->alarm_in_progress) {
assert(pool->alarm_in_progress == make_public_id(id_high, next_id));
add_alarm_under_lock(pool, delayed_by_us(get_absolute_time(), (uint64_t)repeat), callback, user_data, next_id,
true, NULL);
} else {
// need to return the id to the heap
ph_free_node(pool->heap, next_id);
(*get_entry_id_high(pool, next_id))++; // we bump it for next use of id
}
pool->alarm_in_progress = 0;
spin_unlock(pool->lock, save);
again = true;
}
} while (again);
}
// note the timer is create with IRQs on this core
alarm_pool_t *alarm_pool_create(uint hardware_alarm_num, uint max_timers) {
alarm_pool_t *pool = (alarm_pool_t *) malloc(sizeof(alarm_pool_t));
pool->heap = ph_create(max_timers, timer_pool_entry_comparator, pool);
pool->entries = (alarm_pool_entry_t *)calloc(max_timers, sizeof(alarm_pool_entry_t));
pool->entry_ids_high = (uint8_t *)calloc(max_timers, sizeof(uint8_t));
hardware_alarm_claim(hardware_alarm_num);
alarm_pool_post_alloc_init(pool, hardware_alarm_num);
return pool;
}
alarm_pool_t *alarm_pool_create_with_unused_hardware_alarm(uint max_timers) {
alarm_pool_t *pool = (alarm_pool_t *) malloc(sizeof(alarm_pool_t));
pool->heap = ph_create(max_timers, timer_pool_entry_comparator, pool);
pool->entries = (alarm_pool_entry_t *)calloc(max_timers, sizeof(alarm_pool_entry_t));
pool->entry_ids_high = (uint8_t *)calloc(max_timers, sizeof(uint8_t));
alarm_pool_post_alloc_init(pool, (uint)hardware_alarm_claim_unused(true));
return pool;
}
void alarm_pool_post_alloc_init(alarm_pool_t *pool, uint hardware_alarm_num) {
hardware_alarm_cancel(hardware_alarm_num);
hardware_alarm_set_callback(hardware_alarm_num, alarm_pool_alarm_callback);
pool->lock = spin_lock_instance(next_striped_spin_lock_num());
pool->hardware_alarm_num = (uint8_t) hardware_alarm_num;
pool->core_num = (uint8_t) get_core_num();
pools[hardware_alarm_num] = pool;
}
void alarm_pool_destroy(alarm_pool_t *pool) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
if (pool == &default_alarm_pool) {
assert(false); // attempt to delete default alarm pool
return;
}
#endif
assert(pools[pool->hardware_alarm_num] == pool);
pools[pool->hardware_alarm_num] = NULL;
// todo clear out timers
ph_destroy(pool->heap);
hardware_alarm_set_callback(pool->hardware_alarm_num, NULL);
hardware_alarm_unclaim(pool->hardware_alarm_num);
free(pool->entry_ids_high);
free(pool->entries);
free(pool);
}
alarm_id_t alarm_pool_add_alarm_at(alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback,
void *user_data, bool fire_if_past) {
bool missed = false;
alarm_id_t public_id;
do {
uint8_t id_high = 0;
uint32_t save = spin_lock_blocking(pool->lock);
pheap_node_id_t id = add_alarm_under_lock(pool, time, callback, user_data, 0, false, &missed);
if (id) id_high = *get_entry_id_high(pool, id);
spin_unlock(pool->lock, save);
if (!id) {
// no space in pheap to allocate an alarm
return -1;
}
// note that if missed was true, then the id was never added to the pheap (because we
// passed false for create_if_past arg above)
public_id = missed ? 0 : make_public_id(id_high, id);
if (missed && fire_if_past) {
// ... so if fire_if_past == true we call the callback
int64_t repeat = callback(public_id, user_data);
// if not repeated we have no id to return so set public_id to 0,
// otherwise we need to repeat, but will assign a new id next time
// todo arguably this does mean that the id passed to the first callback may differ from subsequent calls
if (!repeat) {
public_id = 0;
break;
} else if (repeat < 0) {
time = delayed_by_us(time, (uint64_t)-repeat);
} else {
time = delayed_by_us(get_absolute_time(), (uint64_t)repeat);
}
} else {
// either:
// a) missed == false && public_id is > 0
// b) missed == true && fire_if_past == false && public_id = 0
// but we are done in either case
break;
}
} while (true);
return public_id;
}
alarm_id_t alarm_pool_add_alarm_at_force_in_context(alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback,
void *user_data) {
bool missed = false;
uint8_t id_high = 0;
uint32_t save = spin_lock_blocking(pool->lock);
pheap_node_id_t id = add_alarm_under_lock(pool, time, callback, user_data, 0, true, &missed);
if (id) id_high = *get_entry_id_high(pool, id);
spin_unlock(pool->lock, save);
if (!id) return -1;
if (missed) {
// we want to fire the timer forcibly because it is in the past. Note that we do
// not care about racing with other timers, as it is harmless to have the IRQ
// wake up one time too many, we just need to make sure it does wake up
hardware_alarm_force_irq(pool->hardware_alarm_num);
}
return make_public_id(id_high, id);
}
bool alarm_pool_cancel_alarm(alarm_pool_t *pool, alarm_id_t alarm_id) {
if (!alarm_id) return false;
bool rc = false;
uint32_t save = spin_lock_blocking(pool->lock);
pheap_node_id_t id = (pheap_node_id_t) alarm_id;
if (ph_contains_node(pool->heap, id)) {
assert(alarm_id != pool->alarm_in_progress); // it shouldn't be in the heap if it is in progress
// check we have the right high value
uint8_t id_high = (uint8_t)((uint)alarm_id >> 8u * sizeof(pheap_node_id_t));
if (id_high == *get_entry_id_high(pool, id)) {
rc = ph_remove_and_free_node(pool->heap, id);
// note we don't bother to remove the actual hardware alarm timeout...
// it will either do callbacks or not depending on other alarms, and reset the next timeout itself
assert(rc);
}
} else {
if (alarm_id == pool->alarm_in_progress) {
// make sure the alarm doesn't repeat
pool->alarm_in_progress = 0;
}
}
spin_unlock(pool->lock, save);
return rc;
}
uint alarm_pool_hardware_alarm_num(alarm_pool_t *pool) {
return pool->hardware_alarm_num;
}
uint alarm_pool_core_num(alarm_pool_t *pool) {
return pool->core_num;
}
static void alarm_pool_dump_key(pheap_node_id_t id, void *user_data) {
alarm_pool_t *pool = (alarm_pool_t *)user_data;
#if PICO_ON_DEVICE
printf("%lld (hi %02x)", to_us_since_boot(get_entry(pool, id)->target), *get_entry_id_high(pool, id));
#else
printf("%"PRIu64, to_us_since_boot(get_entry(pool, id)->target));
#endif
}
static int64_t repeating_timer_callback(__unused alarm_id_t id, void *user_data) {
repeating_timer_t *rt = (repeating_timer_t *)user_data;
assert(rt->alarm_id == id);
if (rt->callback(rt)) {
return rt->delay_us;
} else {
rt->alarm_id = 0;
return 0;
}
}
bool alarm_pool_add_repeating_timer_us(alarm_pool_t *pool, int64_t delay_us, repeating_timer_callback_t callback, void *user_data, repeating_timer_t *out) {
if (!delay_us) delay_us = 1;
out->pool = pool;
out->callback = callback;
out->delay_us = delay_us;
out->user_data = user_data;
out->alarm_id = alarm_pool_add_alarm_at(pool, make_timeout_time_us((uint64_t)(delay_us >= 0 ? delay_us : -delay_us)),
repeating_timer_callback, out, true);
// note that if out->alarm_id is 0, then the callback was called during the above call (fire_if_past == true)
// and then the callback removed itself.
return out->alarm_id >= 0;
}
bool cancel_repeating_timer(repeating_timer_t *timer) {
bool rc = false;
if (timer->alarm_id) {
rc = alarm_pool_cancel_alarm(timer->pool, timer->alarm_id);
timer->alarm_id = 0;
}
return rc;
}
void alarm_pool_dump(alarm_pool_t *pool) {
uint32_t save = spin_lock_blocking(pool->lock);
ph_dump(pool->heap, alarm_pool_dump_key, pool);
spin_unlock(pool->lock, save);
}
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
static int64_t sleep_until_callback(__unused alarm_id_t id, __unused void *user_data) {
uint32_t save = spin_lock_blocking(sleep_notifier.spin_lock);
lock_internal_spin_unlock_with_notify(&sleep_notifier, save);
return 0;
}
#endif
void sleep_until(absolute_time_t t) {
#if PICO_ON_DEVICE && !defined(NDEBUG)
if (__get_current_exception()) {
panic("Attempted to sleep inside of an exception handler; use busy_wait if you must");
}
#endif
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
uint64_t t_us = to_us_since_boot(t);
uint64_t t_before_us = t_us - PICO_TIME_SLEEP_OVERHEAD_ADJUST_US;
// needs to work in the first PICO_TIME_SLEEP_OVERHEAD_ADJUST_US of boot
if (t_before_us > t_us) t_before_us = 0;
absolute_time_t t_before;
update_us_since_boot(&t_before, t_before_us);
if (absolute_time_diff_us(get_absolute_time(), t_before) > 0) {
if (add_alarm_at(t_before, sleep_until_callback, NULL, false) >= 0) {
// able to add alarm for just before the time
while (!time_reached(t_before)) {
uint32_t save = spin_lock_blocking(sleep_notifier.spin_lock);
lock_internal_spin_unlock_with_wait(&sleep_notifier, save);
}
}
}
#else
// hook in case we're in RTOS; note we assume using the alarm pool is better always if available.
sync_internal_yield_until_before(t);
#endif
// now wait until the exact time
busy_wait_until(t);
}
void sleep_us(uint64_t us) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
sleep_until(make_timeout_time_us(us));
#else
if (us < PICO_TIME_SLEEP_OVERHEAD_ADJUST_US) {
busy_wait_us(us);
} else {
// hook in case we're in RTOS; note we assume using the alarm pool is better always if available.
absolute_time_t t = make_timeout_time_us(us - PICO_TIME_SLEEP_OVERHEAD_ADJUST_US);
sync_internal_yield_until_before(t);
// then wait the rest of thw way
busy_wait_until(t);
}
#endif
}
void sleep_ms(uint32_t ms) {
sleep_us(ms * 1000ull);
}
bool best_effort_wfe_or_timeout(absolute_time_t timeout_timestamp) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
if (__get_current_exception()) {
tight_loop_contents();
return time_reached(timeout_timestamp);
} else {
alarm_id_t id;
id = add_alarm_at(timeout_timestamp, sleep_until_callback, NULL, false);
if (id <= 0) {
tight_loop_contents();
return time_reached(timeout_timestamp);
} else {
__wfe();
// we need to clean up if it wasn't us that caused the wfe; if it was this will be a noop.
cancel_alarm(id);
return time_reached(timeout_timestamp);
}
}
#else
tight_loop_contents();
return time_reached(timeout_timestamp);
#endif
}