blob: 7fe20aa4bd4255afd15c6babce22f9006aae70f0 [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _PICO_PLATFORM_H
#define _PICO_PLATFORM_H
/** \file platform.h
* \defgroup pico_platform pico_platform
*
* \brief Macros and definitions (and functions when included by non assembly code) for the RP2 family device / architecture
* to provide a common abstraction over low level compiler / platform specifics.
*
* This header may be included by assembly code
*/
#include "hardware/platform_defs.h"
#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"
// Marker for builds targeting the RP2040
#define PICO_RP2040 1
// PICO_CONFIG: PICO_STACK_SIZE, Stack Size, min=0x100, default=0x800, advanced=true, group=pico_platform
#ifndef PICO_STACK_SIZE
#define PICO_STACK_SIZE _u(0x800)
#endif
// PICO_CONFIG: PICO_HEAP_SIZE, Heap size to reserve, min=0x100, default=0x800, advanced=true, group=pico_platform
#ifndef PICO_HEAP_SIZE
#define PICO_HEAP_SIZE _u(0x800)
#endif
// PICO_CONFIG: PICO_NO_RAM_VECTOR_TABLE, Enable/disable the RAM vector table, type=bool, default=0, advanced=true, group=pico_platform
#ifndef PICO_NO_RAM_VECTOR_TABLE
#define PICO_NO_RAM_VECTOR_TABLE 0
#endif
// PICO_CONFIG: PICO_RP2040_B0_SUPPORTED, Whether to include any specific software support for RP2040 B0 revision, type=bool, default=1, advanced=true, group=pico_platform
#ifndef PICO_RP2040_B0_SUPPORTED
#define PICO_RP2040_B0_SUPPORTED 1
#endif
// PICO_CONFIG: PICO_FLOAT_SUPPORT_ROM_V1, Include float support code for RP2040 B0 when that chip revision is supported , type=bool, default=1, advanced=true, group=pico_platform
#ifndef PICO_FLOAT_SUPPORT_ROM_V1
#define PICO_FLOAT_SUPPORT_ROM_V1 1
#endif
// PICO_CONFIG: PICO_DOUBLE_SUPPORT_ROM_V1, Include double support code for RP2040 B0 when that chip revision is supported , type=bool, default=1, advanced=true, group=pico_platform
#ifndef PICO_DOUBLE_SUPPORT_ROM_V1
#define PICO_DOUBLE_SUPPORT_ROM_V1 1
#endif
// PICO_CONFIG: PICO_RP2040_B1_SUPPORTED, Whether to include any specific software support for RP2040 B1 revision, type=bool, default=1, advanced=true, group=pico_platform
#ifndef PICO_RP2040_B1_SUPPORTED
#define PICO_RP2040_B1_SUPPORTED 1
#endif
// PICO_CONFIG: PICO_RP2040_B2_SUPPORTED, Whether to include any specific software support for RP2040 B2 revision, type=bool, default=1, advanced=true, group=pico_platform
#ifndef PICO_RP2040_B2_SUPPORTED
#define PICO_RP2040_B2_SUPPORTED 1
#endif
// --- remainder of file is not included by assembly code ---
#ifndef __ASSEMBLER__
#if defined __GNUC__
#include <sys/cdefs.h>
// note LLVM defines __GNUC__
#ifdef __clang__
#define PICO_C_COMPILER_IS_CLANG 1
#else
#define PICO_C_COMPILER_IS_GNU 1
#endif
#elif defined __ICCARM__
#ifndef __aligned
#define __aligned(x) __attribute__((__aligned__(x)))
#endif
#ifndef __always_inline
#define __always_inline __attribute__((__always_inline__))
#endif
#ifndef __noinline
#define __noinline __attribute__((__noinline__))
#endif
#ifndef __packed
#define __packed __attribute__((__packed__))
#endif
#ifndef __printflike
#define __printflike(a, b)
#endif
#ifndef __unused
#define __unused __attribute__((__unused__))
#endif
#ifndef __used
#define __used __attribute__((__used__))
#endif
#ifndef __CONCAT1
#define __CONCAT1(a, b) a ## b
#endif
#ifndef __CONCAT
#define __CONCAT(a, b) __CONCAT1(a, b)
#endif
#ifndef __STRING
#define __STRING(a) #a
#endif
/* Compatible definitions of GCC builtins */
static inline uint __builtin_ctz(uint x) {
extern uint32_t __ctzsi2(uint32_t);
return __ctzsi2(x);
}
#define __builtin_expect(x, y) (x)
#define __builtin_isnan(x) __iar_isnan(x)
#else
#error Unsupported toolchain
#endif
#include "pico/types.h"
// GCC_Like_Pragma(x) is a pragma on GNUC compatible compilers
#ifdef __GNUC__
#define GCC_Like_Pragma _Pragma
#else
#define GCC_Like_Pragma(x)
#endif
// Clang_Pragma(x) is a pragma on Clang only
#ifdef __clang__
#define Clang_Pragma _Pragma
#else
#define Clang_Pragma(x)
#endif
// GCC_Pragma(x) is a pragma on GCC only
#if PICO_C_COMPILER_IS_GNU
#define GCC_Pragma _Pragma
#else
#define GCC_Pragma(x)
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*! \brief Marker for an interrupt handler
* \ingroup pico_platform
*
* For example an IRQ handler function called my_interrupt_handler:
*
* void __isr my_interrupt_handler(void) {
*/
#define __isr
/*! \brief Section attribute macro for placement in RAM after the `.data` section
* \ingroup pico_platform
*
* For example a 400 element `uint32_t` array placed after the .data section
*
* uint32_t __after_data("my_group_name") a_big_array[400];
*
* The section attribute is `.after_data.<group>`
*
* \param group a string suffix to use in the section name to distinguish groups that can be linker
* garbage-collected independently
*/
#define __after_data(group) __attribute__((section(".after_data." group)))
/*! \brief Section attribute macro for placement not in flash (i.e in RAM)
* \ingroup pico_platform
*
* For example a 3 element `uint32_t` array placed in RAM (even though it is `static const`)
*
* static const uint32_t __not_in_flash("my_group_name") an_array[3];
*
* The section attribute is `.time_critical.<group>`
*
* \param group a string suffix to use in the section name to distinguish groups that can be linker
* garbage-collected independently
*/
#define __not_in_flash(group) __attribute__((section(".time_critical." group)))
/*! \brief Section attribute macro for placement in the SRAM bank 4 (known as "scratch X")
* \ingroup pico_platform
*
* Scratch X is commonly used for critical data and functions accessed only by one core (when only
* one core is accessing the RAM bank, there is no opportunity for stalls)
*
* For example a `uint32_t` variable placed in "scratch X"
*
* uint32_t __scratch_x("my_group_name") foo = 23;
*
* The section attribute is `.scratch_x.<group>`
*
* \param group a string suffix to use in the section name to distinguish groups that can be linker
* garbage-collected independently
*/
#define __scratch_x(group) __attribute__((section(".scratch_x." group)))
/*! \brief Section attribute macro for placement in the SRAM bank 5 (known as "scratch Y")
* \ingroup pico_platform
*
* Scratch Y is commonly used for critical data and functions accessed only by one core (when only
* one core is accessing the RAM bank, there is no opportunity for stalls)
*
* For example a `uint32_t` variable placed in "scratch Y"
*
* uint32_t __scratch_y("my_group_name") foo = 23;
*
* The section attribute is `.scratch_y.<group>`
*
* \param group a string suffix to use in the section name to distinguish groups that can be linker
* garbage-collected independently
*/
#define __scratch_y(group) __attribute__((section(".scratch_y." group)))
/*! \brief Section attribute macro for data that is to be left uninitialized
* \ingroup pico_platform
*
* Data marked this way will retain its value across a reset (normally uninitialized data - in the .bss
* section) is initialized to zero during runtime initialization
*
* For example a `uint32_t` foo that will retain its value if the program is restarted by reset.
*
* uint32_t __uninitialized_ram(foo);
*
* The section attribute is `.uninitialized_data.<group>`
*
* \param group a string suffix to use in the section name to distinguish groups that can be linker
* garbage-collected independently
*/
#define __uninitialized_ram(group) __attribute__((section(".uninitialized_data." #group))) group
/*! \brief Section attribute macro for placement in flash even in a COPY_TO_RAM binary
* \ingroup pico_platform
*
* For example a `uint32_t` variable explicitly placed in flash (it will hard fault if you attempt to write it!)
*
* uint32_t __in_flash("my_group_name") foo = 23;
*
* The section attribute is `.flashdata.<group>`
*
* \param group a string suffix to use in the section name to distinguish groups that can be linker
* garbage-collected independently
*/
#define __in_flash(group) __attribute__((section(".flashdata." group)))
/*! \brief Indicates a function should not be stored in flash
* \ingroup pico_platform
*
* Decorates a function name, such that the function will execute from RAM (assuming it is not inlined
* into a flash function by the compiler)
*
* For example a function called my_func taking an int parameter:
*
* void __not_in_flash_func(my_func)(int some_arg) {
*
* The function is placed in the `.time_critical.<func_name>` linker section
*
* \see __no_inline_not_in_flash_func
*/
#define __not_in_flash_func(func_name) __not_in_flash(__STRING(func_name)) func_name
/*! \brief Indicates a function is time/latency critical and should not run from flash
* \ingroup pico_platform
*
* Decorates a function name, such that the function will execute from RAM (assuming it is not inlined
* into a flash function by the compiler) to avoid possible flash latency. Currently this macro is identical
* in implementation to `__not_in_flash_func`, however the semantics are distinct and a `__time_critical_func`
* may in the future be treated more specially to reduce the overhead when calling such function from a flash
* function.
*
* For example a function called my_func taking an int parameter:
*
* void __time_critical(my_func)(int some_arg) {
*
* The function is placed in the `.time_critical.<func_name>` linker section
*
* \see __not_in_flash_func
*/
#define __time_critical_func(func_name) __not_in_flash_func(func_name)
/*! \brief Indicate a function should not be stored in flash and should not be inlined
* \ingroup pico_platform
*
* Decorates a function name, such that the function will execute from RAM, explicitly marking it as
* noinline to prevent it being inlined into a flash function by the compiler
*
* For example a function called my_func taking an int parameter:
*
* void __no_inline_not_in_flash_func(my_func)(int some_arg) {
*
* The function is placed in the `.time_critical.<func_name>` linker section
*/
#define __no_inline_not_in_flash_func(func_name) __noinline __not_in_flash_func(func_name)
#define __packed_aligned __packed __aligned(4)
/*! \brief Attribute to force inlining of a function regardless of optimization level
* \ingroup pico_platform
*
* For example my_function here will always be inlined:
*
* int __force_inline my_function(int x) {
*
*/
#if PICO_C_COMPILER_IS_GNU && (__GNUC__ <= 6 || (__GNUC__ == 7 && (__GNUC_MINOR__ < 3 || !defined(__cplusplus))))
#define __force_inline inline __always_inline
#else
#define __force_inline __always_inline
#endif
/*! \brief Macro to determine the number of elements in an array
* \ingroup pico_platform
*/
#ifndef count_of
#define count_of(a) (sizeof(a)/sizeof((a)[0]))
#endif
/*! \brief Macro to return the maximum of two comparable values
* \ingroup pico_platform
*/
#ifndef MAX
#define MAX(a, b) ((a)>(b)?(a):(b))
#endif
/*! \brief Macro to return the minimum of two comparable values
* \ingroup pico_platform
*/
#ifndef MIN
#define MIN(a, b) ((b)>(a)?(a):(b))
#endif
#define pico_default_asm(...) __asm (".syntax unified\n" __VA_ARGS__)
#define pico_default_asm_volatile(...) __asm volatile (".syntax unified\n" __VA_ARGS__)
/*! \brief Execute a breakpoint instruction
* \ingroup pico_platform
*/
static inline void __breakpoint(void) {
pico_default_asm ("bkpt #0");
}
/*! \brief Ensure that the compiler does not move memory access across this method call
* \ingroup pico_platform
*
* For example in the following code:
*
* *some_memory_location = var_a;
* __compiler_memory_barrier();
* uint32_t var_b = *some_other_memory_location
*
* The compiler will not move the load from `some_other_memory_location` above the memory barrier (which it otherwise
* might - even above the memory store!)
*/
__force_inline static void __compiler_memory_barrier(void) {
pico_default_asm_volatile ("" : : : "memory");
}
/*! \brief Macro for converting memory addresses to 32 bit addresses suitable for DMA
* \ingroup pico_platform
*
* This is just a cast to `uintptr_t` on the RP2040, however you may want to use this when developing code
* that also runs in "host" mode. If the host mode is 64 bit and you are embedding data pointers
* in other data (e.g. DMA chaining), then there is a need in "host" mode to convert a 64 bit native
* pointer to a 32 bit value for storage, which can be done using this macro.
*/
#define host_safe_hw_ptr(x) ((uintptr_t)(x))
#define native_safe_hw_ptr(x) host_safe_hw_ptr(x)
/*! \brief Panics with the message "Unsupported"
* \ingroup pico_platform
* \see panic
*/
void __attribute__((noreturn)) panic_unsupported(void);
/*! \brief Displays a panic message and halts execution
* \ingroup pico_platform
*
* An attempt is made to output the message to all registered STDOUT drivers
* after which this method executes a BKPT instruction.
*
* @param fmt format string (printf-like)
* @param ... printf-like arguments
*/
void __attribute__((noreturn)) panic(const char *fmt, ...);
#ifdef NDEBUG
#define panic_compact(...) panic(__VA_ARGS__)
#else
#define panic_compact(...) panic("")
#endif
// PICO_CONFIG: PICO_NO_FPGA_CHECK, Remove the FPGA platform check for small code size reduction, type=bool, default=0, advanced=true, group=pico_runtime
#ifndef PICO_NO_FPGA_CHECK
#define PICO_NO_FPGA_CHECK 0
#endif
#if PICO_NO_FPGA_CHECK
static inline bool running_on_fpga(void) {return false;}
#else
bool running_on_fpga(void);
#endif
/*! \brief Returns the RP2040 chip revision number
* \ingroup pico_platform
* @return the RP2040 chip revision number (1 for B0/B1, 2 for B2)
*/
uint8_t rp2040_chip_version(void);
/*! \brief Returns the RP2040 rom version number
* \ingroup pico_platform
* @return the RP2040 rom version number (1 for RP2040-B0, 2 for RP2040-B1, 3 for RP2040-B2)
*/
static inline uint8_t rp2040_rom_version(void) {
GCC_Pragma("GCC diagnostic push")
GCC_Pragma("GCC diagnostic ignored \"-Warray-bounds\"")
return *(uint8_t*)0x13;
GCC_Pragma("GCC diagnostic pop")
}
/*! \brief No-op function for the body of tight loops
* \ingroup pico_platform
*
* No-op function intended to be called by any tight hardware polling loop. Using this ubiquitously
* makes it much easier to find tight loops, but also in the future \#ifdef-ed support for lockup
* debugging might be added
*/
static __force_inline void tight_loop_contents(void) {}
/*! \brief Multiply two integers using an assembly `MUL` instruction
* \ingroup pico_platform
*
* This multiplies a by b using multiply instruction using the ARM mul instruction regardless of values (the compiler
* might otherwise choose to perform shifts/adds), i.e. this is a 1 cycle operation.
*
* \param a the first operand
* \param b the second operand
* \return a * b
*/
__force_inline static int32_t __mul_instruction(int32_t a, int32_t b) {
pico_default_asm ("muls %0, %1" : "+l" (a) : "l" (b) : );
return a;
}
/*! \brief multiply two integer values using the fastest method possible
* \ingroup pico_platform
*
* Efficiently multiplies value a by possibly constant value b.
*
* If b is known to be constant and not zero or a power of 2, then a mul instruction is used rather than gcc's default
* which is often a slow combination of shifts and adds. If b is a power of 2 then a single shift is of course preferable
* and will be used
*
* \param a the first operand
* \param b the second operand
* \return a * b
*/
#define __fast_mul(a, b) __builtin_choose_expr(__builtin_constant_p(b) && !__builtin_constant_p(a), \
(__builtin_popcount(b) >= 2 ? __mul_instruction(a,b) : (a)*(b)), \
(a)*(b))
/*! \brief Utility macro to assert two types are equivalent.
* \ingroup pico_platform
*
* This macro can be useful in other macros along with `typeof` to assert that two parameters are of equivalent type
* (or that a single parameter is of an expected type)
*/
#define __check_type_compatible(type_a, type_b) static_assert(__builtin_types_compatible_p(type_a, type_b), __STRING(type_a) " is not compatible with " __STRING(type_b));
/*! \brief Get the current exception level on this core
* \ingroup pico_platform
*
* \return the exception number if the CPU is handling an exception, or 0 otherwise
*/
static __force_inline uint __get_current_exception(void) {
uint exception;
pico_default_asm( "mrs %0, ipsr" : "=l" (exception));
return exception;
}
#define WRAPPER_FUNC(x) __wrap_ ## x
#define REAL_FUNC(x) __real_ ## x
/*! \brief Helper method to busy-wait for at least the given number of cycles
* \ingroup pico_platform
*
* This method is useful for introducing very short delays.
*
* This method busy-waits in a tight loop for the given number of system clock cycles. The total wait time is only accurate to within 2 cycles,
* and this method uses a loop counter rather than a hardware timer, so the method will always take longer than expected if an
* interrupt is handled on the calling core during the busy-wait; you can of course disable interrupts to prevent this.
*
* You can use \ref clock_get_hz(clk_sys) to determine the number of clock cycles per second if you want to convert an actual
* time duration to a number of cycles.
*
* \param minimum_cycles the minimum number of system clock cycles to delay for
*/
static inline void busy_wait_at_least_cycles(uint32_t minimum_cycles) {
pico_default_asm_volatile(
"1: subs %0, #3\n"
"bcs 1b\n"
: "+l" (minimum_cycles) : : "memory"
);
}
/*! \brief Get the current core number
* \ingroup pico_platform
*
* \return The core number the call was made from
*/
__force_inline static uint get_core_num(void) {
return (*(uint32_t *) (SIO_BASE + SIO_CPUID_OFFSET));
}
#ifdef __cplusplus
}
#endif
#else // __ASSEMBLER__
#if defined __GNUC__
// note LLVM defines __GNUC__
#ifdef __clang__
#define PICO_ASSEMBLER_IS_CLANG 1
#else
#define PICO_ASSEMBLER_IS_GNU 1
#endif
#elif defined __ICCARM__
#else
#error Unsupported toolchain
#endif
#define WRAPPER_FUNC_NAME(x) __wrap_##x
#define SECTION_NAME(x) .text.##x
#define RAM_SECTION_NAME(x) .time_critical.##x
#endif // !__ASSEMBLER__
#endif