blob: 93eb01dff10af142044e1ca4c752bf903b6a84bd [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "pico/float.h"
// opened a separate issue https://github.com/raspberrypi/pico-sdk/issues/166 to deal with these warnings if at all
GCC_Pragma("GCC diagnostic push")
GCC_Pragma("GCC diagnostic ignored \"-Wconversion\"")
GCC_Pragma("GCC diagnostic ignored \"-Wsign-conversion\"")
typedef uint32_t ui32;
typedef int32_t i32;
#define FPINF ( HUGE_VALF)
#define FMINF (-HUGE_VALF)
#define NANF ((float)NAN)
#define PZERO (+0.0)
#define MZERO (-0.0)
#define PI 3.14159265358979323846
#define LOG2 0.69314718055994530941
// Unfortunately in double precision ln(10) is very close to half-way between to representable numbers
#define LOG10 2.30258509299404568401
#define LOG2E 1.44269504088896340737
#define LOG10E 0.43429448190325182765
#define ONETHIRD 0.33333333333333333333
#define PIf 3.14159265358979323846f
#define LOG2f 0.69314718055994530941f
#define LOG2Ef 1.44269504088896340737f
#define LOG10Ef 0.43429448190325182765f
#define ONETHIRDf 0.33333333333333333333f
#define FUNPACK(x,e,m) e=((x)>>23)&0xff,m=((x)&0x007fffff)|0x00800000
#define FUNPACKS(x,s,e,m) s=((x)>>31),FUNPACK((x),(e),(m))
typedef union {
float f;
ui32 ix;
} float_ui32;
static inline float ui322float(ui32 ix) {
float_ui32 tmp;
tmp.ix = ix;
return tmp.f;
}
static inline ui32 float2ui32(float f) {
float_ui32 tmp;
tmp.f = f;
return tmp.ix;
}
#if PICO_FLOAT_PROPAGATE_NANS
static inline bool fisnan(float x) {
ui32 ix=float2ui32(x);
return ix * 2 > 0xff000000u;
}
#define check_nan_f1(x) if (fisnan((x))) return (x)
#define check_nan_f2(x,y) if (fisnan((x))) return (x); else if (fisnan((y))) return (y);
#else
#define check_nan_f1(x) ((void)0)
#define check_nan_f2(x,y) ((void)0)
#endif
static inline int fgetsignexp(float x) {
ui32 ix=float2ui32(x);
return (ix>>23)&0x1ff;
}
static inline int fgetexp(float x) {
ui32 ix=float2ui32(x);
return (ix>>23)&0xff;
}
static inline float fldexp(float x,int de) {
ui32 ix=float2ui32(x),iy;
int e;
e=fgetexp(x);
if(e==0||e==0xff) return x;
e+=de;
if(e<=0) iy=ix&0x80000000; // signed zero for underflow
else if(e>=0xff) iy=(ix&0x80000000)|0x7f800000ULL; // signed infinity on overflow
else iy=ix+((ui32)de<<23);
return ui322float(iy);
}
float WRAPPER_FUNC(ldexpf)(float x, int de) {
check_nan_f1(x);
return fldexp(x, de);
}
static inline float fcopysign(float x,float y) {
ui32 ix=float2ui32(x),iy=float2ui32(y);
ix=((ix&0x7fffffff)|(iy&0x80000000));
return ui322float(ix);
}
float WRAPPER_FUNC(copysignf)(float x, float y) {
check_nan_f2(x,y);
return fcopysign(x, y);
}
static inline int fiszero(float x) { return fgetexp (x)==0; }
//static inline int fispzero(float x) { return fgetsignexp(x)==0; }
//static inline int fismzero(float x) { return fgetsignexp(x)==0x100; }
static inline int fisinf(float x) { return fgetexp (x)==0xff; }
static inline int fispinf(float x) { return fgetsignexp(x)==0xff; }
static inline int fisminf(float x) { return fgetsignexp(x)==0x1ff; }
static inline int fisint(float x) {
ui32 ix=float2ui32(x),m;
int e=fgetexp(x);
if(e==0) return 1; // 0 is an integer
e-=0x7f; // remove exponent bias
if(e<0) return 0; // |x|<1
e=23-e; // bit position in mantissa with significance 1
if(e<=0) return 1; // |x| large, so must be an integer
m=(1<<e)-1; // mask for bits of significance <1
if(ix&m) return 0; // not an integer
return 1;
}
static inline int fisoddint(float x) {
ui32 ix=float2ui32(x),m;
int e=fgetexp(x);
e-=0x7f; // remove exponent bias
if(e<0) return 0; // |x|<1; 0 is not odd
e=23-e; // bit position in mantissa with significance 1
if(e<0) return 0; // |x| large, so must be even
m=(1<<e)-1; // mask for bits of significance <1 (if any)
if(ix&m) return 0; // not an integer
if(e==23) return 1; // value is exactly 1
return (ix>>e)&1;
}
static inline int fisstrictneg(float x) {
ui32 ix=float2ui32(x);
if(fiszero(x)) return 0;
return ix>>31;
}
static inline int fisneg(float x) {
ui32 ix=float2ui32(x);
return ix>>31;
}
static inline float fneg(float x) {
ui32 ix=float2ui32(x);
ix^=0x80000000;
return ui322float(ix);
}
static inline int fispo2(float x) {
ui32 ix=float2ui32(x);
if(fiszero(x)) return 0;
if(fisinf(x)) return 0;
ix&=0x007fffff;
return ix==0;
}
static inline float fnan_or(float x) {
#if PICO_FLOAT_PROPAGATE_NANS
return NANF;
#else
return x;
#endif
}
float WRAPPER_FUNC(truncf)(float x) {
check_nan_f1(x);
ui32 ix=float2ui32(x),m;
int e=fgetexp(x);
e-=0x7f; // remove exponent bias
if(e<0) { // |x|<1
ix&=0x80000000;
return ui322float(ix);
}
e=23-e; // bit position in mantissa with significance 1
if(e<=0) return x; // |x| large, so must be an integer
m=(1<<e)-1; // mask for bits of significance <1
ix&=~m;
return ui322float(ix);
}
float WRAPPER_FUNC(roundf)(float x) {
check_nan_f1(x);
ui32 ix=float2ui32(x),m;
int e=fgetexp(x);
e-=0x7f; // remove exponent bias
if(e<-1) { // |x|<0.5
ix&=0x80000000;
return ui322float(ix);
}
if(e==-1) { // 0.5<=|x|<1
ix&=0x80000000;
ix|=0x3f800000; // ±1
return ui322float(ix);
}
e=23-e; // bit position in mantissa with significance 1, <=23
if(e<=0) return x; // |x| large, so must be an integer
m=1<<(e-1); // mask for bit of significance 0.5
ix+=m;
m=m+m-1; // mask for bits of significance <1
ix&=~m;
return ui322float(ix);
}
float WRAPPER_FUNC(floorf)(float x) {
check_nan_f1(x);
ui32 ix=float2ui32(x),m;
int e=fgetexp(x);
if(e==0) { // x==0
ix&=0x80000000;
return ui322float(ix);
}
e-=0x7f; // remove exponent bias
if(e<0) { // |x|<1, not zero
if(fisneg(x)) return -1;
return PZERO;
}
e=23-e; // bit position in mantissa with significance 1
if(e<=0) return x; // |x| large, so must be an integer
m=(1<<e)-1; // mask for bit of significance <1
if(fisneg(x)) ix+=m; // add 1-ε to magnitude if negative
ix&=~m; // truncate
return ui322float(ix);
}
float WRAPPER_FUNC(ceilf)(float x) {
check_nan_f1(x);
ui32 ix=float2ui32(x),m;
int e=fgetexp(x);
if(e==0) { // x==0
ix&=0x80000000;
return ui322float(ix);
}
e-=0x7f; // remove exponent bias
if(e<0) { // |x|<1, not zero
if(fisneg(x)) return MZERO;
return 1;
}
e=23-e; // bit position in mantissa with significance 1
if(e<=0) return x; // |x| large, so must be an integer
m=(1<<e)-1; // mask for bit of significance <1
if(!fisneg(x)) ix+=m; // add 1-ε to magnitude if positive
ix&=~m; // truncate
return ui322float(ix);
}
float WRAPPER_FUNC(asinf)(float x) {
check_nan_f1(x);
float u;
u=(1.0f-x)*(1.0f+x);
if(fisstrictneg(u)) return fnan_or(FPINF);
return atan2f(x,sqrtf(u));
}
float WRAPPER_FUNC(acosf)(float x) {
check_nan_f1(x);
float u;
u=(1.0f-x)*(1.0f+x);
if(fisstrictneg(u)) return fnan_or(FPINF);
return atan2f(sqrtf(u),x);
}
float WRAPPER_FUNC(atanf)(float x) {
check_nan_f1(x);
if(fispinf(x)) return (float)( PIf/2);
if(fisminf(x)) return (float)(-PIf/2);
return atan2f(x,1.0f);
}
float WRAPPER_FUNC(sinhf)(float x) {
check_nan_f1(x);
return fldexp((expf(x)-expf(fneg(x))),-1);
}
float WRAPPER_FUNC(coshf)(float x) {
check_nan_f1(x);
return fldexp((expf(x)+expf(fneg(x))),-1);
}
float WRAPPER_FUNC(tanhf)(float x) {
check_nan_f1(x);
float u;
int e;
e=fgetexp(x);
if(e>=4+0x7f) { // |x|>=16?
if(!fisneg(x)) return 1; // 1 << exp 2x; avoid generating infinities later
else return -1; // 1 >> exp 2x
}
u=expf(fldexp(x,1));
return (u-1.0f)/(u+1.0f);
}
float WRAPPER_FUNC(asinhf)(float x) {
check_nan_f1(x);
int e;
e=fgetexp(x);
if(e>=16+0x7f) { // |x|>=2^16?
if(!fisneg(x)) return logf( x )+LOG2f; // 1/x^2 << 1
else return fneg(logf(fneg(x))+LOG2f); // 1/x^2 << 1
}
if(x>0) return (float)log(sqrt((double)x*(double)x+1.0)+(double)x);
else return fneg((float)log(sqrt((double)x*(double)x+1.0)-(double)x));
}
float WRAPPER_FUNC(acoshf)(float x) {
check_nan_f1(x);
int e;
if(fisneg(x)) x=fneg(x);
e=fgetexp(x);
if(e>=16+0x7f) return logf(x)+LOG2f; // |x|>=2^16?
return (float)log(sqrt(((double)x+1.0)*((double)x-1.0))+(double)x);
}
float WRAPPER_FUNC(atanhf)(float x) {
check_nan_f1(x);
return fldexp(logf((1.0f+x)/(1.0f-x)),-1);
}
float WRAPPER_FUNC(exp2f)(float x) { check_nan_f1(x); return (float)exp((double)x*LOG2); }
float WRAPPER_FUNC(log2f)(float x) { check_nan_f1(x); return logf(x)*LOG2Ef; }
float WRAPPER_FUNC(exp10f)(float x) { check_nan_f1(x); return (float)exp((double)x*LOG10); }
float WRAPPER_FUNC(log10f)(float x) { check_nan_f1(x); return logf(x)*LOG10Ef; }
float WRAPPER_FUNC(expm1f)(float x) { check_nan_f1(x); return (float)(exp((double)x)-1); }
float WRAPPER_FUNC(log1pf)(float x) { check_nan_f1(x); return (float)(log(1+(double)x)); }
float WRAPPER_FUNC(fmaf)(float x,float y,float z) {
check_nan_f2(x,y);
check_nan_f1(z);
return (float)((double)x*(double)y+(double)z);
} // has double rounding so not exact
// general power, x>0
static inline float fpow_1(float x,float y) {
return (float)exp(log((double)x)*(double)y); // using double-precision intermediates for better accuracy
}
static float fpow_int2(float x,int y) {
float u;
if(y==1) return x;
u=fpow_int2(x,y/2);
u*=u;
if(y&1) u*=x;
return u;
}
// for the case where x not zero or infinity, y small and not zero
static inline float fpowint_1(float x,int y) {
if(y<0) x=1.0f/x,y=-y;
return fpow_int2(x,y);
}
// for the case where x not zero or infinity
static float fpowint_0(float x,int y) {
int e;
if(fisneg(x)) {
if(fisoddint(y)) return fneg(fpowint_0(fneg(x),y));
else return fpowint_0(fneg(x),y);
}
if(fispo2(x)) {
e=fgetexp(x)-0x7f;
if(y>=256) y= 255; // avoid overflow
if(y<-256) y=-256;
y*=e;
return fldexp(1,y);
}
if(y==0) return 1;
if(y>=-32&&y<=32) return fpowint_1(x,y);
return fpow_1(x,y);
}
float WRAPPER_FUNC(powintf)(float x,int y) {
GCC_Pragma("GCC diagnostic push")
GCC_Pragma("GCC diagnostic ignored \"-Wfloat-equal\"")
if(x==1.0f||y==0) return 1;
if(x==0.0f) {
if(y>0) {
if(y&1) return x;
else return 0;
}
if((y&1)) return fcopysign(FPINF,x);
return FPINF;
}
GCC_Pragma("GCC diagnostic pop")
check_nan_f1(x);
if(fispinf(x)) {
if(y<0) return 0;
else return FPINF;
}
if(fisminf(x)) {
if(y>0) {
if((y&1)) return FMINF;
else return FPINF;
}
if((y&1)) return MZERO;
else return PZERO;
}
return fpowint_0(x,y);
}
// for the case where y is guaranteed a finite integer, x not zero or infinity
static float fpow_0(float x,float y) {
int e,p;
if(fisneg(x)) {
if(fisoddint(y)) return fneg(fpow_0(fneg(x),y));
else return fpow_0(fneg(x),y);
}
p=(int)y;
if(fispo2(x)) {
e=fgetexp(x)-0x7f;
if(p>=256) p= 255; // avoid overflow
if(p<-256) p=-256;
p*=e;
return fldexp(1,p);
}
if(p==0) return 1;
if(p>=-32&&p<=32) return fpowint_1(x,p);
return fpow_1(x,y);
}
float WRAPPER_FUNC(powf)(float x,float y) {
GCC_Like_Pragma("GCC diagnostic push")
GCC_Like_Pragma("GCC diagnostic ignored \"-Wfloat-equal\"")
if(x==1.0f||fiszero(y)) return 1;
check_nan_f2(x,y);
if(x==-1.0f&&fisinf(y)) return 1;
GCC_Like_Pragma("GCC diagnostic pop")
if(fiszero(x)) {
if(!fisneg(y)) {
if(fisoddint(y)) return x;
else return 0;
}
if(fisoddint(y)) return fcopysign(FPINF,x);
return FPINF;
}
if(fispinf(x)) {
if(fisneg(y)) return 0;
else return FPINF;
}
if(fisminf(x)) {
if(!fisneg(y)) {
if(fisoddint(y)) return FMINF;
else return FPINF;
}
if(fisoddint(y)) return MZERO;
else return PZERO;
}
if(fispinf(y)) {
if(fgetexp(x)<0x7f) return PZERO;
else return FPINF;
}
if(fisminf(y)) {
if(fgetexp(x)<0x7f) return FPINF;
else return PZERO;
}
if(fisint(y)) return fpow_0(x,y);
if(fisneg(x)) return FPINF;
return fpow_1(x,y);
}
float WRAPPER_FUNC(hypotf)(float x,float y) {
check_nan_f2(x,y);
int ex,ey;
ex=fgetexp(x); ey=fgetexp(y);
if(ex>=0x7f+50||ey>=0x7f+50) { // overflow, or nearly so
x=fldexp(x,-70),y=fldexp(y,-70);
return fldexp(sqrtf(x*x+y*y), 70);
}
else if(ex<=0x7f-50&&ey<=0x7f-50) { // underflow, or nearly so
x=fldexp(x, 70),y=fldexp(y, 70);
return fldexp(sqrtf(x*x+y*y),-70);
}
return sqrtf(x*x+y*y);
}
float WRAPPER_FUNC(cbrtf)(float x) {
check_nan_f1(x);
int e;
if(fisneg(x)) return fneg(cbrtf(fneg(x)));
if(fiszero(x)) return fcopysign(PZERO,x);
e=fgetexp(x)-0x7f;
e=(e*0x5555+0x8000)>>16; // ~e/3, rounded
x=fldexp(x,-e*3);
x=expf(logf(x)*ONETHIRDf);
return fldexp(x,e);
}
// reduces mx*2^e modulo my, returning bottom bits of quotient at *pquo
// 2^23<=|mx|,my<2^24, e>=0; 0<=result<my
static i32 frem_0(i32 mx,i32 my,int e,int*pquo) {
int quo=0,q,r=0,s;
if(e>0) {
r=0xffffffffU/(ui32)(my>>7); // reciprocal estimate Q16
}
while(e>0) {
s=e; if(s>12) s=12; // gain up to 12 bits on each iteration
q=(mx>>9)*r; // Q30
q=((q>>(29-s))+1)>>1; // Q(s), rounded
mx=(mx<<s)-my*q;
quo=(quo<<s)+q;
e-=s;
}
if(mx>=my) mx-=my,quo++; // when e==0 mx can be nearly as big as 2my
if(mx>=my) mx-=my,quo++;
if(mx<0) mx+=my,quo--;
if(mx<0) mx+=my,quo--;
if(pquo) *pquo=quo;
return mx;
}
float WRAPPER_FUNC(fmodf)(float x,float y) {
check_nan_f2(x,y);
ui32 ix=float2ui32(x),iy=float2ui32(y);
int sx,ex,ey;
i32 mx,my;
FUNPACKS(ix,sx,ex,mx);
FUNPACK(iy,ey,my);
if(ex==0xff) {
return fnan_or(FPINF);
}
if(ey==0) return FPINF;
if(ex==0) {
if(!fisneg(x)) return PZERO;
return MZERO;
}
if(ex<ey) return x; // |x|<|y|, including case x=±0
mx=frem_0(mx,my,ex-ey,0);
if(sx) mx=-mx;
return fix2float(mx,0x7f-ey+23);
}
float WRAPPER_FUNC(remquof)(float x,float y,int*quo) {
check_nan_f2(x,y);
ui32 ix=float2ui32(x),iy=float2ui32(y);
int sx,sy,ex,ey,q;
i32 mx,my;
FUNPACKS(ix,sx,ex,mx);
FUNPACKS(iy,sy,ey,my);
if(quo) *quo=0;
if(ex==0xff) return FPINF;
if(ey==0) return FPINF;
if(ex==0) return PZERO;
if(ey==0xff) return x;
if(ex<ey-1) return x; // |x|<|y|/2
if(ex==ey-1) {
if(mx<=my) return x; // |x|<=|y|/2, even quotient
// here |y|/2<|x|<|y|
if(!sx) { // x>|y|/2
mx-=my+my;
ey--;
q=1;
} else { // x<-|y|/2
mx=my+my-mx;
ey--;
q=-1;
}
}
else {
if(sx) mx=-mx;
mx=frem_0(mx,my,ex-ey,&q);
if(mx+mx>my || (mx+mx==my&&(q&1)) ) { // |x|>|y|/2, or equality and an odd quotient?
mx-=my;
q++;
}
}
if(sy) q=-q;
if(quo) *quo=q;
return fix2float(mx,0x7f-ey+23);
}
float WRAPPER_FUNC(dremf)(float x,float y) { check_nan_f2(x,y); return remquof(x,y,0); }
float WRAPPER_FUNC(remainderf)(float x,float y) { check_nan_f2(x,y); return remquof(x,y,0); }
GCC_Pragma("GCC diagnostic pop") // conversion