blob: cafdc1b621543a2473be64505197597eb9e54881 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////
// \author (c) Marco Paland (info@paland.com)
// 2014-2019, PALANDesign Hannover, Germany
//
// \license The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// \brief Tiny printf, sprintf and (v)snprintf implementation, optimized for speed on
// embedded systems with a very limited resources. These routines are thread
// safe and reentrant!
// Use this instead of the bloated standard/newlib printf cause these use
// malloc for printf (and may not be thread safe).
//
///////////////////////////////////////////////////////////////////////////////
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include "pico.h"
#include "pico/printf.h"
// PICO_CONFIG: PICO_PRINTF_NTOA_BUFFER_SIZE, Define printf ntoa buffer size, min=0, max=128, default=32, group=pico_printf
// 'ntoa' conversion buffer size, this must be big enough to hold one converted
// numeric number including padded zeros (dynamically created on stack)
#ifndef PICO_PRINTF_NTOA_BUFFER_SIZE
#define PICO_PRINTF_NTOA_BUFFER_SIZE 32U
#endif
// PICO_CONFIG: PICO_PRINTF_FTOA_BUFFER_SIZE, Define printf ftoa buffer size, min=0, max=128, default=32, group=pico_printf
// 'ftoa' conversion buffer size, this must be big enough to hold one converted
// float number including padded zeros (dynamically created on stack)
#ifndef PICO_PRINTF_FTOA_BUFFER_SIZE
#define PICO_PRINTF_FTOA_BUFFER_SIZE 32U
#endif
// PICO_CONFIG: PICO_PRINTF_SUPPORT_FLOAT, Enable floating point printing, type=bool, default=1, group=pico_printf
// support for the floating point type (%f)
#ifndef PICO_PRINTF_SUPPORT_FLOAT
#define PICO_PRINTF_SUPPORT_FLOAT 1
#endif
// PICO_CONFIG: PICO_PRINTF_SUPPORT_EXPONENTIAL, Enable exponential floating point printing, type=bool, default=1, group=pico_printf
// support for exponential floating point notation (%e/%g)
#ifndef PICO_PRINTF_SUPPORT_EXPONENTIAL
#define PICO_PRINTF_SUPPORT_EXPONENTIAL 1
#endif
// PICO_CONFIG: PICO_PRINTF_DEFAULT_FLOAT_PRECISION, Define default floating point precision, min=1, max=16, default=6, group=pico_printf
#ifndef PICO_PRINTF_DEFAULT_FLOAT_PRECISION
#define PICO_PRINTF_DEFAULT_FLOAT_PRECISION 6U
#endif
// PICO_CONFIG: PICO_PRINTF_MAX_FLOAT, Define the largest float suitable to print with %f, min=1, max=1e9, default=1e9, group=pico_printf
#ifndef PICO_PRINTF_MAX_FLOAT
#define PICO_PRINTF_MAX_FLOAT 1e9
#endif
// PICO_CONFIG: PICO_PRINTF_SUPPORT_LONG_LONG, Enable support for long long types (%llu or %p), type=bool, default=1, group=pico_printf
#ifndef PICO_PRINTF_SUPPORT_LONG_LONG
#define PICO_PRINTF_SUPPORT_LONG_LONG 1
#endif
// PICO_CONFIG: PICO_PRINTF_SUPPORT_PTRDIFF_T, Enable support for the ptrdiff_t type (%t), type=bool, default=1, group=pico_printf
// ptrdiff_t is normally defined in <stddef.h> as long or long long type
#ifndef PICO_PRINTF_SUPPORT_PTRDIFF_T
#define PICO_PRINTF_SUPPORT_PTRDIFF_T 1
#endif
///////////////////////////////////////////////////////////////////////////////
// internal flag definitions
#define FLAGS_ZEROPAD (1U << 0U)
#define FLAGS_LEFT (1U << 1U)
#define FLAGS_PLUS (1U << 2U)
#define FLAGS_SPACE (1U << 3U)
#define FLAGS_HASH (1U << 4U)
#define FLAGS_UPPERCASE (1U << 5U)
#define FLAGS_CHAR (1U << 6U)
#define FLAGS_SHORT (1U << 7U)
#define FLAGS_LONG (1U << 8U)
#define FLAGS_LONG_LONG (1U << 9U)
#define FLAGS_PRECISION (1U << 10U)
#define FLAGS_ADAPT_EXP (1U << 11U)
// import float.h for DBL_MAX
#if PICO_PRINTF_SUPPORT_FLOAT
#include <float.h>
#endif
/**
* Output a character to a custom device like UART, used by the printf() function
* This function is declared here only. You have to write your custom implementation somewhere
* \param character Character to output
*/
static void _putchar(char character) {
putchar(character);
}
// output function type
typedef void (*out_fct_type)(char character, void *buffer, size_t idx, size_t maxlen);
#if !PICO_PRINTF_ALWAYS_INCLUDED
// we don't have a way to specify a truly weak symbol reference (the linker will always include targets in a single link step,
// so we make a function pointer that is initialized on the first printf called... if printf is not included in the binary
// (or has never been called - we can't tell) then this will be null. the assumption is that if you are using printf
// you are likely to have printed something.
static int (*lazy_vsnprintf)(out_fct_type out, char *buffer, const size_t maxlen, const char *format, va_list va);
#endif
// wrapper (used as buffer) for output function type
typedef struct {
void (*fct)(char character, void *arg);
void *arg;
} out_fct_wrap_type;
// internal buffer output
static inline void _out_buffer(char character, void *buffer, size_t idx, size_t maxlen) {
if (idx < maxlen) {
((char *) buffer)[idx] = character;
}
}
// internal null output
static inline void _out_null(char character, void *buffer, size_t idx, size_t maxlen) {
(void) character;
(void) buffer;
(void) idx;
(void) maxlen;
}
// internal _putchar wrapper
static inline void _out_char(char character, void *buffer, size_t idx, size_t maxlen) {
(void) buffer;
(void) idx;
(void) maxlen;
if (character) {
_putchar(character);
}
}
// internal output function wrapper
static inline void _out_fct(char character, void *buffer, size_t idx, size_t maxlen) {
(void) idx;
(void) maxlen;
if (character) {
// buffer is the output fct pointer
((out_fct_wrap_type *) buffer)->fct(character, ((out_fct_wrap_type *) buffer)->arg);
}
}
// internal secure strlen
// \return The length of the string (excluding the terminating 0) limited by 'maxsize'
static inline unsigned int _strnlen_s(const char *str, size_t maxsize) {
const char *s;
for (s = str; *s && maxsize--; ++s);
return (unsigned int) (s - str);
}
// internal test if char is a digit (0-9)
// \return true if char is a digit
static inline bool _is_digit(char ch) {
return (ch >= '0') && (ch <= '9');
}
// internal ASCII string to unsigned int conversion
static unsigned int _atoi(const char **str) {
unsigned int i = 0U;
while (_is_digit(**str)) {
i = i * 10U + (unsigned int) (*((*str)++) - '0');
}
return i;
}
// output the specified string in reverse, taking care of any zero-padding
static size_t _out_rev(out_fct_type out, char *buffer, size_t idx, size_t maxlen, const char *buf, size_t len,
unsigned int width, unsigned int flags) {
const size_t start_idx = idx;
// pad spaces up to given width
if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
for (size_t i = len; i < width; i++) {
out(' ', buffer, idx++, maxlen);
}
}
// reverse string
while (len) {
out(buf[--len], buffer, idx++, maxlen);
}
// append pad spaces up to given width
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) {
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
// internal itoa format
static size_t _ntoa_format(out_fct_type out, char *buffer, size_t idx, size_t maxlen, char *buf, size_t len,
bool negative, unsigned int base, unsigned int prec, unsigned int width,
unsigned int flags) {
// pad leading zeros
if (!(flags & FLAGS_LEFT)) {
if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < prec) && (len < PICO_PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PICO_PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
// handle hash
if (flags & FLAGS_HASH) {
if (!(flags & FLAGS_PRECISION) && len && ((len == prec) || (len == width))) {
len--;
if (len && (base == 16U)) {
len--;
}
}
if ((base == 16U) && !(flags & FLAGS_UPPERCASE) && (len < PICO_PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'x';
} else if ((base == 16U) && (flags & FLAGS_UPPERCASE) && (len < PICO_PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'X';
} else if ((base == 2U) && (len < PICO_PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'b';
}
if (len < PICO_PRINTF_NTOA_BUFFER_SIZE) {
buf[len++] = '0';
}
}
if (len < PICO_PRINTF_NTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
} else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
} else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
// internal itoa for 'long' type
static size_t _ntoa_long(out_fct_type out, char *buffer, size_t idx, size_t maxlen, unsigned long value, bool negative,
unsigned long base, unsigned int prec, unsigned int width, unsigned int flags) {
char buf[PICO_PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char) (value % base);
buf[len++] = (char)(digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10);
value /= base;
} while (value && (len < PICO_PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int) base, prec, width, flags);
}
// internal itoa for 'long long' type
#if PICO_PRINTF_SUPPORT_LONG_LONG
static size_t _ntoa_long_long(out_fct_type out, char *buffer, size_t idx, size_t maxlen, unsigned long long value,
bool negative, unsigned long long base, unsigned int prec, unsigned int width,
unsigned int flags) {
char buf[PICO_PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char) (value % base);
buf[len++] = (char)(digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10);
value /= base;
} while (value && (len < PICO_PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int) base, prec, width, flags);
}
#endif // PICO_PRINTF_SUPPORT_LONG_LONG
#if PICO_PRINTF_SUPPORT_FLOAT
#if PICO_PRINTF_SUPPORT_EXPONENTIAL
// forward declaration so that _ftoa can switch to exp notation for values > PICO_PRINTF_MAX_FLOAT
static size_t _etoa(out_fct_type out, char *buffer, size_t idx, size_t maxlen, double value, unsigned int prec,
unsigned int width, unsigned int flags);
#endif
#define is_nan __builtin_isnan
// internal ftoa for fixed decimal floating point
static size_t _ftoa(out_fct_type out, char *buffer, size_t idx, size_t maxlen, double value, unsigned int prec,
unsigned int width, unsigned int flags) {
char buf[PICO_PRINTF_FTOA_BUFFER_SIZE];
size_t len = 0U;
double diff = 0.0;
// powers of 10
static const double pow10[] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
// test for special values
if (is_nan(value))
return _out_rev(out, buffer, idx, maxlen, "nan", 3, width, flags);
if (value < -DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, "fni-", 4, width, flags);
if (value > DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U,
width, flags);
// test for very large values
// standard printf behavior is to print EVERY whole number digit -- which could be 100s of characters overflowing your buffers == bad
if ((value > PICO_PRINTF_MAX_FLOAT) || (value < -PICO_PRINTF_MAX_FLOAT)) {
#if PICO_PRINTF_SUPPORT_EXPONENTIAL
return _etoa(out, buffer, idx, maxlen, value, prec, width, flags);
#else
return 0U;
#endif
}
// test for negative
bool negative = false;
if (value < 0) {
negative = true;
value = 0 - value;
}
// set default precision, if not set explicitly
if (!(flags & FLAGS_PRECISION)) {
prec = PICO_PRINTF_DEFAULT_FLOAT_PRECISION;
}
// limit precision to 9, cause a prec >= 10 can lead to overflow errors
while ((len < PICO_PRINTF_FTOA_BUFFER_SIZE) && (prec > 9U)) {
buf[len++] = '0';
prec--;
}
int whole = (int) value;
double tmp = (value - whole) * pow10[prec];
unsigned long frac = (unsigned long) tmp;
diff = tmp - frac;
if (diff > 0.5) {
++frac;
// handle rollover, e.g. case 0.99 with prec 1 is 1.0
if (frac >= pow10[prec]) {
frac = 0;
++whole;
}
} else if (diff < 0.5) {
} else if ((frac == 0U) || (frac & 1U)) {
// if halfway, round up if odd OR if last digit is 0
++frac;
}
if (prec == 0U) {
diff = value - (double) whole;
if (!((diff < 0.5) || (diff > 0.5)) && (whole & 1)) {
// exactly 0.5 and ODD, then round up
// 1.5 -> 2, but 2.5 -> 2
++whole;
}
} else {
unsigned int count = prec;
// now do fractional part, as an unsigned number
while (len < PICO_PRINTF_FTOA_BUFFER_SIZE) {
--count;
buf[len++] = (char) (48U + (frac % 10U));
if (!(frac /= 10U)) {
break;
}
}
// add extra 0s
while ((len < PICO_PRINTF_FTOA_BUFFER_SIZE) && (count-- > 0U)) {
buf[len++] = '0';
}
if (len < PICO_PRINTF_FTOA_BUFFER_SIZE) {
// add decimal
buf[len++] = '.';
}
}
// do whole part, number is reversed
while (len < PICO_PRINTF_FTOA_BUFFER_SIZE) {
buf[len++] = (char) (48 + (whole % 10));
if (!(whole /= 10)) {
break;
}
}
// pad leading zeros
if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) {
if (width && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < width) && (len < PICO_PRINTF_FTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
if (len < PICO_PRINTF_FTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
} else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
} else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
#if PICO_PRINTF_SUPPORT_EXPONENTIAL
// internal ftoa variant for exponential floating-point type, contributed by Martijn Jasperse <m.jasperse@gmail.com>
static size_t _etoa(out_fct_type out, char *buffer, size_t idx, size_t maxlen, double value, unsigned int prec,
unsigned int width, unsigned int flags) {
// check for NaN and special values
if (is_nan(value) || (value > DBL_MAX) || (value < -DBL_MAX)) {
return _ftoa(out, buffer, idx, maxlen, value, prec, width, flags);
}
// determine the sign
const bool negative = value < 0;
if (negative) {
value = -value;
}
// default precision
if (!(flags & FLAGS_PRECISION)) {
prec = PICO_PRINTF_DEFAULT_FLOAT_PRECISION;
}
// determine the decimal exponent
// based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c)
union {
uint64_t U;
double F;
} conv;
conv.F = value;
int expval;
if (conv.U) {
int exp2 = (int) ((conv.U >> 52U) & 0x07FFU) - 1023; // effectively log2
conv.U = (conv.U & ((1ULL << 52U) - 1U)) | (1023ULL << 52U); // drop the exponent so conv.F is now in [1,2)
// now approximate log10 from the log2 integer part and an expansion of ln around 1.5
expval = (int) (0.1760912590558 + exp2 * 0.301029995663981 + (conv.F - 1.5) * 0.289529654602168);
// now we want to compute 10^expval but we want to be sure it won't overflow
exp2 = (int) (expval * 3.321928094887362 + 0.5);
const double z = expval * 2.302585092994046 - exp2 * 0.6931471805599453;
const double z2 = z * z;
conv.U = (uint64_t) (exp2 + 1023) << 52U;
// compute exp(z) using continued fractions, see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
conv.F *= 1 + 2 * z / (2 - z + (z2 / (6 + (z2 / (10 + z2 / 14)))));
// correct for rounding errors
if (value < conv.F) {
expval--;
conv.F /= 10;
}
} else {
expval = 0;
}
// the exponent format is "%+03d" and largest value is "307", so set aside 4-5 characters
unsigned int minwidth = ((expval < 100) && (expval > -100)) ? 4U : 5U;
// in "%g" mode, "prec" is the number of *significant figures* not decimals
if (flags & FLAGS_ADAPT_EXP) {
// do we want to fall-back to "%f" mode?
if ((conv.U == 0) || ((value >= 1e-4) && (value < 1e6))) {
if ((int) prec > expval) {
prec = (unsigned) ((int) prec - expval - 1);
} else {
prec = 0;
}
flags |= FLAGS_PRECISION; // make sure _ftoa respects precision
// no characters in exponent
minwidth = 0U;
expval = 0;
} else {
// we use one sigfig for the whole part
if ((prec > 0) && (flags & FLAGS_PRECISION)) {
--prec;
}
}
}
// will everything fit?
unsigned int fwidth = width;
if (width > minwidth) {
// we didn't fall-back so subtract the characters required for the exponent
fwidth -= minwidth;
} else {
// not enough characters, so go back to default sizing
fwidth = 0U;
}
if ((flags & FLAGS_LEFT) && minwidth) {
// if we're padding on the right, DON'T pad the floating part
fwidth = 0U;
}
// rescale the float value
if (expval) {
value /= conv.F;
}
// output the floating part
const size_t start_idx = idx;
idx = _ftoa(out, buffer, idx, maxlen, negative ? -value : value, prec, fwidth, flags & ~FLAGS_ADAPT_EXP);
// output the exponent part
if (minwidth) {
// output the exponential symbol
out((flags & FLAGS_UPPERCASE) ? 'E' : 'e', buffer, idx++, maxlen);
// output the exponent value
idx = _ntoa_long(out, buffer, idx, maxlen, (uint)((expval < 0) ? -expval : expval), expval < 0, 10, 0, minwidth - 1,
FLAGS_ZEROPAD | FLAGS_PLUS);
// might need to right-pad spaces
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
#endif // PICO_PRINTF_SUPPORT_EXPONENTIAL
#endif // PICO_PRINTF_SUPPORT_FLOAT
// internal vsnprintf
static int _vsnprintf(out_fct_type out, char *buffer, const size_t maxlen, const char *format, va_list va) {
#if !PICO_PRINTF_ALWAYS_INCLUDED
lazy_vsnprintf = _vsnprintf;
#endif
unsigned int flags, width, precision, n;
size_t idx = 0U;
if (!buffer) {
// use null output function
out = _out_null;
}
while (*format) {
// format specifier? %[flags][width][.precision][length]
if (*format != '%') {
// no
out(*format, buffer, idx++, maxlen);
format++;
continue;
} else {
// yes, evaluate it
format++;
}
// evaluate flags
flags = 0U;
do {
switch (*format) {
case '0':
flags |= FLAGS_ZEROPAD;
format++;
n = 1U;
break;
case '-':
flags |= FLAGS_LEFT;
format++;
n = 1U;
break;
case '+':
flags |= FLAGS_PLUS;
format++;
n = 1U;
break;
case ' ':
flags |= FLAGS_SPACE;
format++;
n = 1U;
break;
case '#':
flags |= FLAGS_HASH;
format++;
n = 1U;
break;
default :
n = 0U;
break;
}
} while (n);
// evaluate width field
width = 0U;
if (_is_digit(*format)) {
width = _atoi(&format);
} else if (*format == '*') {
const int w = va_arg(va, int);
if (w < 0) {
flags |= FLAGS_LEFT; // reverse padding
width = (unsigned int) -w;
} else {
width = (unsigned int) w;
}
format++;
}
// evaluate precision field
precision = 0U;
if (*format == '.') {
flags |= FLAGS_PRECISION;
format++;
if (_is_digit(*format)) {
precision = _atoi(&format);
} else if (*format == '*') {
const int prec = (int) va_arg(va, int);
precision = prec > 0 ? (unsigned int) prec : 0U;
format++;
}
}
// evaluate length field
switch (*format) {
case 'l' :
flags |= FLAGS_LONG;
format++;
if (*format == 'l') {
flags |= FLAGS_LONG_LONG;
format++;
}
break;
case 'h' :
flags |= FLAGS_SHORT;
format++;
if (*format == 'h') {
flags |= FLAGS_CHAR;
format++;
}
break;
#if PICO_PRINTF_SUPPORT_PTRDIFF_T
case 't' :
flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
#endif
case 'j' :
flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
case 'z' :
flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
default :
break;
}
// evaluate specifier
switch (*format) {
case 'd' :
case 'i' :
case 'u' :
case 'x' :
case 'X' :
case 'o' :
case 'b' : {
// set the base
unsigned int base;
if (*format == 'x' || *format == 'X') {
base = 16U;
} else if (*format == 'o') {
base = 8U;
} else if (*format == 'b') {
base = 2U;
} else {
base = 10U;
flags &= ~FLAGS_HASH; // no hash for dec format
}
// uppercase
if (*format == 'X') {
flags |= FLAGS_UPPERCASE;
}
// no plus or space flag for u, x, X, o, b
if ((*format != 'i') && (*format != 'd')) {
flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
}
// ignore '0' flag when precision is given
if (flags & FLAGS_PRECISION) {
flags &= ~FLAGS_ZEROPAD;
}
// convert the integer
if ((*format == 'i') || (*format == 'd')) {
// signed
if (flags & FLAGS_LONG_LONG) {
#if PICO_PRINTF_SUPPORT_LONG_LONG
const long long value = va_arg(va, long long);
idx = _ntoa_long_long(out, buffer, idx, maxlen,
(unsigned long long) (value > 0 ? value : 0 - value), value < 0, base,
precision, width, flags);
#endif
} else if (flags & FLAGS_LONG) {
const long value = va_arg(va, long);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long) (value > 0 ? value : 0 - value),
value < 0, base, precision, width, flags);
} else {
const int value = (flags & FLAGS_CHAR) ? (char) va_arg(va, int) : (flags & FLAGS_SHORT)
? (short int) va_arg(va, int)
: va_arg(va, int);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned int) (value > 0 ? value : 0 - value),
value < 0, base, precision, width, flags);
}
} else {
// unsigned
if (flags & FLAGS_LONG_LONG) {
#if PICO_PRINTF_SUPPORT_LONG_LONG
idx = _ntoa_long_long(out, buffer, idx, maxlen, va_arg(va, unsigned long long), false, base,
precision, width, flags);
#endif
} else if (flags & FLAGS_LONG) {
idx = _ntoa_long(out, buffer, idx, maxlen, va_arg(va, unsigned long), false, base, precision,
width, flags);
} else {
const unsigned int value = (flags & FLAGS_CHAR) ? (unsigned char) va_arg(va, unsigned int)
: (flags & FLAGS_SHORT)
? (unsigned short int) va_arg(va,
unsigned int)
: va_arg(va, unsigned int);
idx = _ntoa_long(out, buffer, idx, maxlen, value, false, base, precision, width, flags);
}
}
format++;
break;
}
case 'f' :
case 'F' :
#if PICO_PRINTF_SUPPORT_FLOAT
if (*format == 'F') flags |= FLAGS_UPPERCASE;
idx = _ftoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
#else
for(int i=0;i<2;i++) out('?', buffer, idx++, maxlen);
va_arg(va, double);
#endif
format++;
break;
case 'e':
case 'E':
case 'g':
case 'G':
#if PICO_PRINTF_SUPPORT_FLOAT && PICO_PRINTF_SUPPORT_EXPONENTIAL
if ((*format == 'g') || (*format == 'G')) flags |= FLAGS_ADAPT_EXP;
if ((*format == 'E') || (*format == 'G')) flags |= FLAGS_UPPERCASE;
idx = _etoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
#else
for(int i=0;i<2;i++) out('?', buffer, idx++, maxlen);
va_arg(va, double);
#endif
format++;
break;
case 'c' : {
unsigned int l = 1U;
// pre padding
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// char output
out((char) va_arg(va, int), buffer, idx++, maxlen);
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 's' : {
const char *p = va_arg(va, char*);
unsigned int l = _strnlen_s(p, precision ? precision : (size_t) -1);
// pre padding
if (flags & FLAGS_PRECISION) {
l = (l < precision ? l : precision);
}
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// string output
while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision--)) {
out(*(p++), buffer, idx++, maxlen);
}
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 'p' : {
width = sizeof(void *) * 2U;
flags |= FLAGS_ZEROPAD | FLAGS_UPPERCASE;
#if PICO_PRINTF_SUPPORT_LONG_LONG
const bool is_ll = sizeof(uintptr_t) == sizeof(long long);
if (is_ll) {
idx = _ntoa_long_long(out, buffer, idx, maxlen, (uintptr_t) va_arg(va, void*), false, 16U,
precision, width, flags);
} else {
#endif
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long) ((uintptr_t) va_arg(va, void*)), false,
16U, precision, width, flags);
#if PICO_PRINTF_SUPPORT_LONG_LONG
}
#endif
format++;
break;
}
case '%' :
out('%', buffer, idx++, maxlen);
format++;
break;
default :
out(*format, buffer, idx++, maxlen);
format++;
break;
}
}
// termination
out((char) 0, buffer, idx < maxlen ? idx : maxlen - 1U, maxlen);
// return written chars without terminating \0
return (int) idx;
}
///////////////////////////////////////////////////////////////////////////////
int WRAPPER_FUNC(sprintf)(char *buffer, const char *format, ...) {
va_list va;
va_start(va, format);
const int ret = _vsnprintf(_out_buffer, buffer, (size_t) -1, format, va);
va_end(va);
return ret;
}
int WRAPPER_FUNC(snprintf)(char *buffer, size_t count, const char *format, ...) {
va_list va;
va_start(va, format);
const int ret = _vsnprintf(_out_buffer, buffer, count, format, va);
va_end(va);
return ret;
}
int WRAPPER_FUNC(vsnprintf)(char *buffer, size_t count, const char *format, va_list va) {
return _vsnprintf(_out_buffer, buffer, count, format, va);
}
int vfctprintf(void (*out)(char character, void *arg), void *arg, const char *format, va_list va) {
const out_fct_wrap_type out_fct_wrap = {out, arg};
return _vsnprintf(_out_fct, (char *) (uintptr_t) &out_fct_wrap, (size_t) -1, format, va);
}
#if LIB_PICO_PRINTF_PICO
#if !PICO_PRINTF_ALWAYS_INCLUDED
bool weak_raw_printf(const char *fmt, ...) {
va_list va;
va_start(va, fmt);
bool rc = weak_raw_vprintf(fmt, va);
va_end(va);
return rc;
}
bool weak_raw_vprintf(const char *fmt, va_list args) {
if (lazy_vsnprintf) {
char buffer[1];
lazy_vsnprintf(_out_char, buffer, (size_t) -1, fmt, args);
return true;
} else {
puts(fmt);
return false;
}
}
#endif
#endif