blob: 118547d8a408345310a410bfacb3cfbba8517291 [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdlib.h>
#include "pico.h"
#include "pico/time.h"
#include "pico/sync.h"
#include "pico/runtime_init.h"
const absolute_time_t ABSOLUTE_TIME_INITIALIZED_VAR(nil_time, 0);
const absolute_time_t ABSOLUTE_TIME_INITIALIZED_VAR(at_the_end_of_time, INT64_MAX);
typedef struct alarm_pool_entry {
// next entry link or -1
int16_t next;
// low 15 bits are a sequence number used in the low word of the alarm_id so that
// the alarm_id for this entry only repeats every 32767 adds (note this value is never zero)
// the top bit is a cancellation flag.
volatile uint16_t sequence;
int64_t target;
alarm_callback_t callback;
void *user_data;
} alarm_pool_entry_t;
struct alarm_pool {
uint8_t timer_alarm_num;
uint8_t core_num;
// this is protected by the lock (threads allocate from it, and the IRQ handler adds back to it)
int16_t free_head;
// this is protected by the lock (threads add to it, the IRQ handler removes from it)
volatile int16_t new_head;
volatile bool has_pending_cancellations;
// this is owned by the IRQ handler so doesn't need additional locking
int16_t ordered_head;
uint16_t num_entries;
alarm_pool_timer_t *timer;
spin_lock_t *lock;
alarm_pool_entry_t *entries;
};
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
// To avoid bringing in calloc, we statically allocate the arrays and the heap
static alarm_pool_entry_t default_alarm_pool_entries[PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS];
static alarm_pool_t default_alarm_pool = {
.entries = default_alarm_pool_entries,
};
static inline bool default_alarm_pool_initialized(void) {
return default_alarm_pool.lock != NULL;
}
static lock_core_t sleep_notifier;
#endif
#include "pico/time_adapter.h"
static alarm_pool_t *pools[TA_NUM_TIMERS][TA_NUM_TIMER_ALARMS];
static void alarm_pool_post_alloc_init(alarm_pool_t *pool, alarm_pool_timer_t *timer, uint hardware_alarm_num, uint max_timers);
static inline int16_t alarm_index(alarm_id_t id) {
return (int16_t)(id >> 16);
}
static inline uint16_t alarm_sequence(alarm_id_t id) {
return (uint16_t)id;
}
static alarm_id_t make_alarm_id(int index, uint16_t counter) {
return index << 16 | counter;
}
#if !PICO_RUNTIME_NO_INIT_DEFAULT_ALARM_POOL
void __weak runtime_init_default_alarm_pool(void) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
// allow multiple calls for ease of use from host tests
if (!default_alarm_pool_initialized()) {
alarm_pool_timer_t *timer = alarm_pool_get_default_timer();
ta_hardware_alarm_claim(timer, PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM);
alarm_pool_post_alloc_init(&default_alarm_pool,
timer,
PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM,
PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS);
}
lock_init(&sleep_notifier, PICO_SPINLOCK_ID_TIMER);
#endif
}
#endif
void alarm_pool_init_default(void) {
runtime_init_default_alarm_pool();
}
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
alarm_pool_t *alarm_pool_get_default(void) {
assert(default_alarm_pool_initialized());
return &default_alarm_pool;
}
#if defined(PICO_RUNTIME_INIT_DEFAULT_ALARM_POOL) && !PICO_RUNTIME_SKIP_INIT_DEFAULT_ALARM_POOL
PICO_RUNTIME_INIT_FUNC_RUNTIME(runtime_init_default_alarm_pool, PICO_RUNTIME_INIT_DEFAULT_ALARM_POOL);
#endif
#endif
// note the timer is created with IRQs on this core
alarm_pool_t *alarm_pool_create_on_timer(alarm_pool_timer_t *timer, uint hardware_alarm_num, uint max_timers) {
alarm_pool_t *pool = (alarm_pool_t *) malloc(sizeof(alarm_pool_t));
if (pool) {
pool->entries = (alarm_pool_entry_t *) calloc(max_timers, sizeof(alarm_pool_entry_t));
ta_hardware_alarm_claim(timer, hardware_alarm_num);
alarm_pool_post_alloc_init(pool, timer, hardware_alarm_num, max_timers);
}
return pool;
}
alarm_pool_t *alarm_pool_create_on_timer_with_unused_hardware_alarm(alarm_pool_timer_t *timer, uint max_timers) {
alarm_pool_t *pool = (alarm_pool_t *) malloc(sizeof(alarm_pool_t));
if (pool) {
pool->entries = (alarm_pool_entry_t *) calloc(max_timers, sizeof(alarm_pool_entry_t));
alarm_pool_post_alloc_init(pool, timer, (uint) ta_hardware_alarm_claim_unused(timer, true), max_timers);
}
return pool;
}
static void alarm_pool_irq_handler(void);
// marker which we can use in place of handler function to indicate we are a repeating timer
#define repeating_timer_marker ((alarm_callback_t)alarm_pool_irq_handler)
#include "hardware/gpio.h"
static void alarm_pool_irq_handler(void) {
// This IRQ handler does the main work, as it always (assuming the IRQ hasn't been enabled on both cores
// which is unsupported) run on the alarm pool's core, and can't be preempted by itself, meaning
// that it doesn't need locks except to protect against linked list access
uint timer_alarm_num;
alarm_pool_timer_t *timer = ta_from_current_irq(&timer_alarm_num);
uint timer_num = ta_timer_num(timer);
alarm_pool_t *pool = pools[timer_num][timer_alarm_num];
assert(pool->timer_alarm_num == timer_alarm_num);
int64_t now = (int64_t) ta_time_us_64(timer);
int64_t earliest_target;
// 1. clear force bits if we were forced (do this outside the loop, as forcing is hopefully rare)
ta_clear_force_irq(timer, timer_alarm_num);
do {
// 2. clear the IRQ if it was fired
ta_clear_irq(timer, timer_alarm_num);
// 3. we look at the earliest existing alarm first; the reasoning here is that we
// don't want to delay an existing callback because a later one is added, and
// if both are due now, then we have a race anyway (but we prefer to fire existing
// timers before new ones anyway.
int16_t earliest_index = pool->ordered_head;
// by default, we loop if there was any event pending (we will mark it false
// later if there is no work to do)
if (earliest_index >= 0) {
alarm_pool_entry_t *earliest_entry = &pool->entries[earliest_index];
earliest_target = earliest_entry->target;
if ((now - earliest_target) >= 0) {
// time to call the callback now (or in the past)
// note that an entry->target of < 0 means the entry has been canceled (not this is set
// by this function, in response to the entry having been queued by the cancel_alarm API
// meaning that we don't need to worry about tearing of the 64 bit value)
int64_t delta;
if (earliest_target >= 0) {
// special case repeating timer without making another function call which adds overhead
if (earliest_entry->callback == repeating_timer_marker) {
repeating_timer_t *rpt = (repeating_timer_t *)earliest_entry->user_data;
delta = rpt->callback(rpt) ? rpt->delay_us : 0;
} else {
alarm_id_t id = make_alarm_id(pool->ordered_head, earliest_entry->sequence);
delta = earliest_entry->callback(id, earliest_entry->user_data);
}
} else {
// negative target means cancel alarm
delta = 0;
}
if (delta) {
int64_t next_time;
if (delta < 0) {
// delta is (positive) delta from last fire time
next_time = earliest_target - delta;
} else {
// delta is relative to now
next_time = (int64_t) ta_time_us_64(timer) + delta;
}
earliest_entry->target = next_time;
// need to re-add, unless we are the only entry or already at the front
if (earliest_entry->next >= 0 && next_time - pool->entries[earliest_entry->next].target >= 0) {
// unlink this item
pool->ordered_head = earliest_entry->next;
int16_t *prev = &pool->ordered_head;
// find insertion point; note >= as if we add a new item for the same time as another, then it follows
while (*prev >= 0 && (next_time - pool->entries[*prev].target) >= 0) {
prev = &pool->entries[*prev].next;
}
earliest_entry->next = *prev;
*prev = earliest_index;
}
} else {
// need to remove the item
pool->ordered_head = earliest_entry->next;
// and add it back to the free list (under lock)
uint32_t save = spin_lock_blocking(pool->lock);
earliest_entry->next = pool->free_head;
pool->free_head = earliest_index;
spin_unlock(pool->lock, save);
}
}
}
// if we have any new alarms, add them to the ordered list
if (pool->new_head >= 0) {
uint32_t save = spin_lock_blocking(pool->lock);
// must re-read new head under lock
int16_t new_index = pool->new_head;
// clear the list
pool->new_head = -1;
spin_unlock(pool->lock, save);
// insert each of the new items
while (new_index >= 0) {
alarm_pool_entry_t *new_entry = &pool->entries[new_index];
int64_t new_entry_time = new_entry->target;
int16_t *prev = &pool->ordered_head;
// find insertion point; note >= as if we add a new item for the same time as another, then it follows
while (*prev >= 0 && (new_entry_time - pool->entries[*prev].target) >= 0) {
prev = &pool->entries[*prev].next;
}
int16_t next = *prev;
*prev = new_index;
new_index = new_entry->next;
new_entry->next = next;
}
}
// if we have any canceled alarms, then mark them for removal by setting their due time to -1 (which will
// cause them to be handled the next time round and removed)
if (pool->has_pending_cancellations) {
pool->has_pending_cancellations = false;
__compiler_memory_barrier();
int16_t *prev = &pool->ordered_head;
// set target for canceled items to -1, and move to front of the list
for(int16_t index = pool->ordered_head; index != -1; ) {
alarm_pool_entry_t *entry = &pool->entries[index];
int16_t next = entry->next;
if ((int16_t)entry->sequence < 0) {
// mark for deletion
entry->target = -1;
if (index != pool->ordered_head) {
// move to start of queue
*prev = entry->next;
entry->next = pool->ordered_head;
pool->ordered_head = index;
}
} else {
prev = &entry->next;
}
index = next;
}
}
now = (int64_t) ta_time_us_64(timer);
earliest_index = pool->ordered_head;
if (earliest_index < 0) break;
// need to wait
alarm_pool_entry_t *earliest_entry = &pool->entries[earliest_index];
earliest_target = earliest_entry->target;
ta_set_timeout(timer, timer_alarm_num, earliest_target);
// check we haven't now past the target time; if not we don't want to loop again
} while ((earliest_target - now) <= 0);
}
void alarm_pool_post_alloc_init(alarm_pool_t *pool, alarm_pool_timer_t *timer, uint hardware_alarm_num, uint max_timers) {
pool->timer = timer;
pool->lock = spin_lock_instance(next_striped_spin_lock_num());
pool->timer_alarm_num = (uint8_t) hardware_alarm_num;
invalid_params_if(PICO_TIME, max_timers > 65536);
pool->num_entries = (uint16_t)max_timers;
pool->core_num = (uint8_t) get_core_num();
pool->new_head = pool->ordered_head = -1;
pool->free_head = (int16_t)(max_timers - 1);
for(uint i=0;i<max_timers;i++) {
pool->entries[i].next = (int16_t)(i-1);
}
pools[ta_timer_num(timer)][hardware_alarm_num] = pool;
ta_enable_irq_handler(timer, hardware_alarm_num, alarm_pool_irq_handler);
}
void alarm_pool_destroy(alarm_pool_t *pool) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
if (pool == &default_alarm_pool) {
assert(false); // attempt to delete default alarm pool
return;
}
#endif
ta_disable_irq_handler(pool->timer, pool->timer_alarm_num, alarm_pool_irq_handler);
assert(pools[ta_timer_num(pool->timer)][pool->timer_alarm_num] == pool);
pools[ta_timer_num(pool->timer)][pool->timer_alarm_num] = NULL;
free(pool->entries);
free(pool);
}
alarm_id_t alarm_pool_add_alarm_at(alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback,
void *user_data, bool fire_if_past) {
if (!fire_if_past) {
absolute_time_t t = get_absolute_time();
if (absolute_time_diff_us(t, time) < 0) return 0;
}
return alarm_pool_add_alarm_at_force_in_context(pool, time, callback, user_data);
}
alarm_id_t alarm_pool_add_alarm_at_force_in_context(alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback,
void *user_data) {
// ---- take a free pool entry
uint32_t save = spin_lock_blocking(pool->lock);
int16_t index = pool->free_head;
alarm_pool_entry_t *entry = &pool->entries[index];
if (index >= 0) {
// remove from free list
pool->free_head = entry->next;
}
spin_unlock(pool->lock, save);
if (index < 0) return PICO_ERROR_GENERIC; // PICO_ERROR_INSUFFICIENT_RESOURCES - not using to preserve previous -1 return code
// ---- initialize the pool entry
entry->callback = callback;
entry->user_data = user_data;
entry->target = (int64_t)to_us_since_boot(time);
uint16_t next_sequence = (entry->sequence + 1) & 0x7fff;
if (!next_sequence) next_sequence = 1; // zero is not allowed
entry->sequence = next_sequence;
alarm_id_t id = make_alarm_id(index, next_sequence);
// ---- and add it to the new list
save = spin_lock_blocking(pool->lock);
entry->next = pool->new_head;
pool->new_head = index;
spin_unlock(pool->lock, save);
// force the IRQ
ta_force_irq(pool->timer, pool->timer_alarm_num);
return id;
}
bool alarm_pool_cancel_alarm(alarm_pool_t *pool, alarm_id_t alarm_id) {
int16_t index = alarm_index(alarm_id);
if (index >= pool->num_entries) return false;
uint16_t sequence = alarm_sequence(alarm_id);
bool canceled = false;
alarm_pool_entry_t *entry = &pool->entries[index];
uint32_t save = spin_lock_blocking(pool->lock);
// note this will not be true if the entry is already canceled (as the entry->sequence
// will have the top bit set)
uint current_sequence = entry->sequence;
if (sequence == current_sequence) {
entry->sequence = (uint16_t)(current_sequence | 0x8000);
__compiler_memory_barrier();
pool->has_pending_cancellations = true;
canceled = true;
}
spin_unlock(pool->lock, save);
// force the IRQ if we need to clean up an alarm id
if (canceled) ta_force_irq(pool->timer, pool->timer_alarm_num);
return canceled;
}
uint alarm_pool_timer_alarm_num(alarm_pool_t *pool) {
return pool->timer_alarm_num;
}
uint alarm_pool_core_num(alarm_pool_t *pool) {
return pool->core_num;
}
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
static int64_t sleep_until_callback(__unused alarm_id_t id, __unused void *user_data) {
uint32_t save = spin_lock_blocking(sleep_notifier.spin_lock);
lock_internal_spin_unlock_with_notify(&sleep_notifier, save);
return 0;
}
#endif
void sleep_until(absolute_time_t t) {
#if PICO_ON_DEVICE && !defined(NDEBUG)
if (__get_current_exception()) {
panic("Attempted to sleep inside of an exception handler; use busy_wait if you must");
}
#endif
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
uint64_t t_us = to_us_since_boot(t);
uint64_t t_before_us = t_us - PICO_TIME_SLEEP_OVERHEAD_ADJUST_US;
// needs to work in the first PICO_TIME_SLEEP_OVERHEAD_ADJUST_US of boot
if (t_before_us > t_us) t_before_us = 0;
absolute_time_t t_before;
update_us_since_boot(&t_before, t_before_us);
if (absolute_time_diff_us(get_absolute_time(), t_before) > 0) {
if (add_alarm_at(t_before, sleep_until_callback, NULL, false) >= 0) {
// able to add alarm for just before the time
while (!time_reached(t_before)) {
uint32_t save = spin_lock_blocking(sleep_notifier.spin_lock);
lock_internal_spin_unlock_with_wait(&sleep_notifier, save);
}
}
}
#else
// hook in case we're in RTOS; note we assume using the alarm pool is better always if available.
sync_internal_yield_until_before(t);
#endif
// now wait until the exact time
busy_wait_until(t);
}
void sleep_us(uint64_t us) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
sleep_until(make_timeout_time_us(us));
#else
if (us < PICO_TIME_SLEEP_OVERHEAD_ADJUST_US) {
busy_wait_us(us);
} else {
// hook in case we're in RTOS; note we assume using the alarm pool is better always if available.
absolute_time_t t = make_timeout_time_us(us - PICO_TIME_SLEEP_OVERHEAD_ADJUST_US);
sync_internal_yield_until_before(t);
// then wait the rest of the way
busy_wait_until(t);
}
#endif
}
void sleep_ms(uint32_t ms) {
sleep_us(ms * 1000ull);
}
bool best_effort_wfe_or_timeout(absolute_time_t timeout_timestamp) {
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
if (__get_current_exception()) {
tight_loop_contents();
return time_reached(timeout_timestamp);
} else {
alarm_id_t id;
id = add_alarm_at(timeout_timestamp, sleep_until_callback, NULL, false);
if (id <= 0) {
tight_loop_contents();
return time_reached(timeout_timestamp);
} else {
// the above alarm add now may force an IRQ which will wake us up,
// so we want to consume one __wfe.. we do an explicit __sev
// just to make sure there is one
__sev(); // make sure there is an event sow ee don't block
__wfe();
if (!time_reached(timeout_timestamp))
{
// ^ at the point above the timer hadn't fired, so it is safe
// to wait; the event will happen due to IRQ at some point between
// then and the correct wakeup time
__wfe();
}
// we need to clean up if it wasn't us that caused the wfe; if it was this will be a noop.
cancel_alarm(id);
return time_reached(timeout_timestamp);
}
}
#else
tight_loop_contents();
return time_reached(timeout_timestamp);
#endif
}
bool alarm_pool_add_repeating_timer_us(alarm_pool_t *pool, int64_t delay_us, repeating_timer_callback_t callback, void *user_data, repeating_timer_t *out) {
if (!delay_us) delay_us = 1;
out->pool = pool;
out->callback = callback;
out->delay_us = delay_us;
out->user_data = user_data;
out->alarm_id = alarm_pool_add_alarm_at(pool, make_timeout_time_us((uint64_t)(delay_us >= 0 ? delay_us : -delay_us)),
repeating_timer_marker, out, true);
return out->alarm_id > 0;
}
bool cancel_repeating_timer(repeating_timer_t *timer) {
bool rc = false;
if (timer->alarm_id) {
rc = alarm_pool_cancel_alarm(timer->pool, timer->alarm_id);
timer->alarm_id = 0;
}
return rc;
}
alarm_pool_timer_t *alarm_pool_timer_for_timer_num(uint timer_num) {
return ta_timer_instance(timer_num);
}
alarm_pool_timer_t *alarm_pool_get_default_timer(void) {
return ta_default_timer_instance();
}
int64_t alarm_pool_remaining_alarm_time_us(alarm_pool_t *pool, alarm_id_t alarm_id) {
// note there is no point distinguishing between invalid alarm_id and timer passed,
// since an alarm_id that has fired without being re-enabled becomes logically invalid after
// that point anyway
int64_t rc = -1;
int16_t index = alarm_index(alarm_id);
if ((uint16_t)index < pool->num_entries) {
uint16_t sequence = alarm_sequence(alarm_id);
alarm_pool_entry_t *entry = &pool->entries[index];
if (entry->sequence == sequence) {
uint32_t save = spin_lock_blocking(pool->lock);
int16_t search_index = pool->ordered_head;
while (search_index >= 0) {
entry = &pool->entries[search_index];
if (index == search_index) {
if (entry->sequence == sequence) {
rc = entry->target - (int64_t) ta_time_us_64(pool->timer);
}
break;
}
search_index = entry->next;
}
spin_unlock(pool->lock, save);
}
}
return rc;
}
int32_t alarm_pool_remaining_alarm_time_ms(alarm_pool_t *pool, alarm_id_t alarm_id) {
int64_t rc = alarm_pool_remaining_alarm_time_us(pool, alarm_id);
if (rc >= 0) rc /= 1000;
return rc >= INT32_MAX ? INT32_MAX : (int32_t) rc;
}
#if !PICO_TIME_DEFAULT_ALARM_POOL_DISABLED
int64_t remaining_alarm_time_us(alarm_id_t alarm_id) {
return alarm_pool_remaining_alarm_time_us(alarm_pool_get_default(), alarm_id);
}
int32_t remaining_alarm_time_ms(alarm_id_t alarm_id) {
return alarm_pool_remaining_alarm_time_ms(alarm_pool_get_default(), alarm_id);
}
#endif