blob: bceb14a71adba490b3b349c13fe2a92ac0343316 [file] [log] [blame]
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PIO_H
#define _HARDWARE_STRUCTS_PIO_H
/**
* \file rp2040/pio.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/pio.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#tab-registerlist_pio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(PIO_SM0_CLKDIV_OFFSET) // PIO_SM0_CLKDIV
// Clock divisor register for state machine 0 +
// 0xffff0000 [31:16] INT (0x0001) Effective frequency is sysclk/(int + frac/256)
// 0x0000ff00 [15:8] FRAC (0x00) Fractional part of clock divisor
io_rw_32 clkdiv;
_REG_(PIO_SM0_EXECCTRL_OFFSET) // PIO_SM0_EXECCTRL
// Execution/behavioural settings for state machine 0
// 0x80000000 [31] EXEC_STALLED (0) If 1, an instruction written to SMx_INSTR is stalled,...
// 0x40000000 [30] SIDE_EN (0) If 1, the MSB of the Delay/Side-set instruction field is...
// 0x20000000 [29] SIDE_PINDIR (0) If 1, side-set data is asserted to pin directions,...
// 0x1f000000 [28:24] JMP_PIN (0x00) The GPIO number to use as condition for JMP PIN
// 0x00f80000 [23:19] OUT_EN_SEL (0x00) Which data bit to use for inline OUT enable
// 0x00040000 [18] INLINE_OUT_EN (0) If 1, use a bit of OUT data as an auxiliary write enable +
// 0x00020000 [17] OUT_STICKY (0) Continuously assert the most recent OUT/SET to the pins
// 0x0001f000 [16:12] WRAP_TOP (0x1f) After reaching this address, execution is wrapped to wrap_bottom
// 0x00000f80 [11:7] WRAP_BOTTOM (0x00) After reaching wrap_top, execution is wrapped to this address
// 0x00000010 [4] STATUS_SEL (0) Comparison used for the MOV x, STATUS instruction
// 0x0000000f [3:0] STATUS_N (0x0) Comparison level for the MOV x, STATUS instruction
io_rw_32 execctrl;
_REG_(PIO_SM0_SHIFTCTRL_OFFSET) // PIO_SM0_SHIFTCTRL
// Control behaviour of the input/output shift registers for state machine 0
// 0x80000000 [31] FJOIN_RX (0) When 1, RX FIFO steals the TX FIFO's storage, and...
// 0x40000000 [30] FJOIN_TX (0) When 1, TX FIFO steals the RX FIFO's storage, and...
// 0x3e000000 [29:25] PULL_THRESH (0x00) Number of bits shifted out of OSR before autopull, or...
// 0x01f00000 [24:20] PUSH_THRESH (0x00) Number of bits shifted into ISR before autopush, or...
// 0x00080000 [19] OUT_SHIFTDIR (1) 1 = shift out of output shift register to right
// 0x00040000 [18] IN_SHIFTDIR (1) 1 = shift input shift register to right (data enters from left)
// 0x00020000 [17] AUTOPULL (0) Pull automatically when the output shift register is emptied, i
// 0x00010000 [16] AUTOPUSH (0) Push automatically when the input shift register is filled, i
io_rw_32 shiftctrl;
_REG_(PIO_SM0_ADDR_OFFSET) // PIO_SM0_ADDR
// Current instruction address of state machine 0
// 0x0000001f [4:0] SM0_ADDR (0x00)
io_ro_32 addr;
_REG_(PIO_SM0_INSTR_OFFSET) // PIO_SM0_INSTR
// Read to see the instruction currently addressed by state machine 0's program counter +
// 0x0000ffff [15:0] SM0_INSTR (-)
io_rw_32 instr;
_REG_(PIO_SM0_PINCTRL_OFFSET) // PIO_SM0_PINCTRL
// State machine pin control
// 0xe0000000 [31:29] SIDESET_COUNT (0x0) The number of MSBs of the Delay/Side-set instruction...
// 0x1c000000 [28:26] SET_COUNT (0x5) The number of pins asserted by a SET
// 0x03f00000 [25:20] OUT_COUNT (0x00) The number of pins asserted by an OUT PINS, OUT PINDIRS...
// 0x000f8000 [19:15] IN_BASE (0x00) The pin which is mapped to the least-significant bit of...
// 0x00007c00 [14:10] SIDESET_BASE (0x00) The lowest-numbered pin that will be affected by a...
// 0x000003e0 [9:5] SET_BASE (0x00) The lowest-numbered pin that will be affected by a SET...
// 0x0000001f [4:0] OUT_BASE (0x00) The lowest-numbered pin that will be affected by an OUT...
io_rw_32 pinctrl;
} pio_sm_hw_t;
typedef struct {
_REG_(PIO_IRQ0_INTE_OFFSET) // PIO_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 inte;
_REG_(PIO_IRQ0_INTF_OFFSET) // PIO_IRQ0_INTF
// Interrupt Force for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 intf;
_REG_(PIO_IRQ0_INTS_OFFSET) // PIO_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 ints;
} pio_irq_ctrl_hw_t;
typedef struct {
_REG_(PIO_CTRL_OFFSET) // PIO_CTRL
// PIO control register
// 0x00000f00 [11:8] CLKDIV_RESTART (0x0) Restart a state machine's clock divider from an initial...
// 0x000000f0 [7:4] SM_RESTART (0x0) Write 1 to instantly clear internal SM state which may...
// 0x0000000f [3:0] SM_ENABLE (0x0) Enable/disable each of the four state machines by...
io_rw_32 ctrl;
_REG_(PIO_FSTAT_OFFSET) // PIO_FSTAT
// FIFO status register
// 0x0f000000 [27:24] TXEMPTY (0xf) State machine TX FIFO is empty
// 0x000f0000 [19:16] TXFULL (0x0) State machine TX FIFO is full
// 0x00000f00 [11:8] RXEMPTY (0xf) State machine RX FIFO is empty
// 0x0000000f [3:0] RXFULL (0x0) State machine RX FIFO is full
io_ro_32 fstat;
_REG_(PIO_FDEBUG_OFFSET) // PIO_FDEBUG
// FIFO debug register
// 0x0f000000 [27:24] TXSTALL (0x0) State machine has stalled on empty TX FIFO during a...
// 0x000f0000 [19:16] TXOVER (0x0) TX FIFO overflow (i
// 0x00000f00 [11:8] RXUNDER (0x0) RX FIFO underflow (i
// 0x0000000f [3:0] RXSTALL (0x0) State machine has stalled on full RX FIFO during a...
io_rw_32 fdebug;
_REG_(PIO_FLEVEL_OFFSET) // PIO_FLEVEL
// FIFO levels
// 0xf0000000 [31:28] RX3 (0x0)
// 0x0f000000 [27:24] TX3 (0x0)
// 0x00f00000 [23:20] RX2 (0x0)
// 0x000f0000 [19:16] TX2 (0x0)
// 0x0000f000 [15:12] RX1 (0x0)
// 0x00000f00 [11:8] TX1 (0x0)
// 0x000000f0 [7:4] RX0 (0x0)
// 0x0000000f [3:0] TX0 (0x0)
io_ro_32 flevel;
// (Description copied from array index 0 register PIO_TXF0 applies similarly to other array indexes)
_REG_(PIO_TXF0_OFFSET) // PIO_TXF0
// Direct write access to the TX FIFO for this state machine
// 0xffffffff [31:0] TXF0 (0x00000000)
io_wo_32 txf[4];
// (Description copied from array index 0 register PIO_RXF0 applies similarly to other array indexes)
_REG_(PIO_RXF0_OFFSET) // PIO_RXF0
// Direct read access to the RX FIFO for this state machine
// 0xffffffff [31:0] RXF0 (-)
io_ro_32 rxf[4];
_REG_(PIO_IRQ_OFFSET) // PIO_IRQ
// State machine IRQ flags register
// 0x000000ff [7:0] IRQ (0x00)
io_rw_32 irq;
_REG_(PIO_IRQ_FORCE_OFFSET) // PIO_IRQ_FORCE
// Writing a 1 to each of these bits will forcibly assert the corresponding IRQ
// 0x000000ff [7:0] IRQ_FORCE (0x00)
io_wo_32 irq_force;
_REG_(PIO_INPUT_SYNC_BYPASS_OFFSET) // PIO_INPUT_SYNC_BYPASS
// There is a 2-flipflop synchronizer on each GPIO input, which protects PIO logic from metastabilities
// 0xffffffff [31:0] INPUT_SYNC_BYPASS (0x00000000)
io_rw_32 input_sync_bypass;
_REG_(PIO_DBG_PADOUT_OFFSET) // PIO_DBG_PADOUT
// Read to sample the pad output values PIO is currently driving to the GPIOs
// 0xffffffff [31:0] DBG_PADOUT (0x00000000)
io_ro_32 dbg_padout;
_REG_(PIO_DBG_PADOE_OFFSET) // PIO_DBG_PADOE
// Read to sample the pad output enables (direction) PIO is currently driving to the GPIOs
// 0xffffffff [31:0] DBG_PADOE (0x00000000)
io_ro_32 dbg_padoe;
_REG_(PIO_DBG_CFGINFO_OFFSET) // PIO_DBG_CFGINFO
// The PIO hardware has some free parameters that may vary between chip products
// 0x003f0000 [21:16] IMEM_SIZE (-) The size of the instruction memory, measured in units of...
// 0x00000f00 [11:8] SM_COUNT (-) The number of state machines this PIO instance is equipped with
// 0x0000003f [5:0] FIFO_DEPTH (-) The depth of the state machine TX/RX FIFOs, measured in words
io_ro_32 dbg_cfginfo;
// (Description copied from array index 0 register PIO_INSTR_MEM0 applies similarly to other array indexes)
_REG_(PIO_INSTR_MEM0_OFFSET) // PIO_INSTR_MEM0
// Write-only access to instruction memory location 0
// 0x0000ffff [15:0] INSTR_MEM0 (0x0000)
io_wo_32 instr_mem[32];
pio_sm_hw_t sm[4];
_REG_(PIO_INTR_OFFSET) // PIO_INTR
// Raw Interrupts
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 intr;
union {
struct {
_REG_(PIO_IRQ0_INTE_OFFSET) // PIO_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 inte0;
_REG_(PIO_IRQ0_INTF_OFFSET) // PIO_IRQ0_INTF
// Interrupt Force for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 intf0;
_REG_(PIO_IRQ0_INTS_OFFSET) // PIO_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 ints0;
_REG_(PIO_IRQ1_INTE_OFFSET) // PIO_IRQ1_INTE
// Interrupt Enable for irq1
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 inte1;
_REG_(PIO_IRQ1_INTF_OFFSET) // PIO_IRQ1_INTF
// Interrupt Force for irq1
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 intf1;
_REG_(PIO_IRQ1_INTS_OFFSET) // PIO_IRQ1_INTS
// Interrupt status after masking & forcing for irq1
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 ints1;
};
pio_irq_ctrl_hw_t irq_ctrl[2];
};
} pio_hw_t;
#define pio0_hw ((pio_hw_t *)PIO0_BASE)
#define pio1_hw ((pio_hw_t *)PIO1_BASE)
static_assert(sizeof (pio_hw_t) == 0x0144, "");
#endif // _HARDWARE_STRUCTS_PIO_H