blob: 9fab28cdf7913f25ff753088e3a1070893e50919 [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/** \file platform.h
* \defgroup pico_platform pico_platform
*
* \brief Macros and definitions (and functions when included by non assembly code) for the RP2 family device / architecture
* to provide a common abstraction over low level compiler / platform specifics
*
* This header may be included by assembly code
*/
#ifndef _PICO_PLATFORM_H
#define _PICO_PLATFORM_H
#ifndef _PICO_H
#error pico/platform.h should not be included directly; include pico.h instead
#endif
#include "pico/platform/compiler.h"
#include "pico/platform/sections.h"
#include "pico/platform/panic.h"
#include "hardware/regs/addressmap.h"
#include "hardware/regs/sio.h"
#ifdef __riscv
#include "hardware/regs/rvcsr.h"
#endif
// PICO_CONFIG: PICO_RP2350A, Whether the current board has an RP2350 in an A (30 GPIO) package, type=bool, default=Usually provided via board header, group=pico_platform
// PICO_CONFIG: PICO_STACK_SIZE, Minimum amount of stack space reserved in the linker script for each core. See also PICO_CORE1_STACK_SIZE, min=0x100, default=0x800, advanced=true, group=pico_platform
#ifndef PICO_STACK_SIZE
#define PICO_STACK_SIZE _u(0x800)
#endif
// PICO_CONFIG: PICO_HEAP_SIZE, Minimum amount of heap space reserved by the linker script, min=0x100, default=0x800, advanced=true, group=pico_platform
#ifndef PICO_HEAP_SIZE
#define PICO_HEAP_SIZE _u(0x800)
#endif
// PICO_CONFIG: PICO_NO_RAM_VECTOR_TABLE, Enable/disable the RAM vector table, type=bool, default=0, advanced=true, group=pico_platform
#ifndef PICO_NO_RAM_VECTOR_TABLE
#define PICO_NO_RAM_VECTOR_TABLE 0
#endif
#ifndef PICO_RAM_VECTOR_TABLE_SIZE
#define PICO_RAM_VECTOR_TABLE_SIZE (VTABLE_FIRST_IRQ + NUM_IRQS)
#endif
// PICO_CONFIG: PICO_USE_STACK_GUARDS, Enable/disable stack guards, type=bool, default=0, advanced=true, group=pico_platform
#ifndef PICO_USE_STACK_GUARDS
#define PICO_USE_STACK_GUARDS 0
#endif
#ifndef __ASSEMBLER__
/*! \brief No-op function for the body of tight loops
* \ingroup pico_platform
*
* No-op function intended to be called by any tight hardware polling loop. Using this ubiquitously
* makes it much easier to find tight loops, but also in the future \#ifdef-ed support for lockup
* debugging might be added
*/
static __force_inline void tight_loop_contents(void) {}
/*! \brief Helper method to busy-wait for at least the given number of cycles
* \ingroup pico_platform
*
* This method is useful for introducing very short delays.
*
* This method busy-waits in a tight loop for the given number of system clock cycles. The total wait time is only accurate to within 2 cycles,
* and this method uses a loop counter rather than a hardware timer, so the method will always take longer than expected if an
* interrupt is handled on the calling core during the busy-wait; you can of course disable interrupts to prevent this.
*
* You can use \ref clock_get_hz(clk_sys) to determine the number of clock cycles per second if you want to convert an actual
* time duration to a number of cycles.
*
* \param minimum_cycles the minimum number of system clock cycles to delay for
*/
static inline void busy_wait_at_least_cycles(uint32_t minimum_cycles) {
pico_default_asm_volatile (
#ifdef __riscv
// Note the range is halved on RISC-V due to signed comparison (no carry flag)
".option push\n"
".option norvc\n" // force 32 bit addi, so branch prediction guaranteed
".p2align 2\n"
"1: \n"
"addi %0, %0, -2 \n"
"bgez %0, 1b\n"
".option pop"
#else
"1: subs %0, #3\n"
"bcs 1b\n"
#endif
: "+r" (minimum_cycles) : : "cc", "memory"
);
}
// PICO_CONFIG: PICO_NO_FPGA_CHECK, Remove the FPGA platform check for small code size reduction, type=bool, default=platform dependent, advanced=true, group=pico_runtime
#ifndef PICO_NO_FPGA_CHECK
#if !PICO_RP2040
#define PICO_NO_FPGA_CHECK 1
#endif
#endif
// PICO_CONFIG: PICO_NO_SIM_CHECK, Remove the SIM platform check for small code size reduction, type=bool, default=1, advanced=true, group=pico_runtime
#ifndef PICO_NO_SIM_CHECK
#define PICO_NO_SIM_CHECK 1
#endif
#if PICO_NO_FPGA_CHECK
static inline bool running_on_fpga(void) {return false;}
#else
bool running_on_fpga(void);
#endif
#if PICO_NO_SIM_CHECK
static inline bool running_in_sim(void) {return false;}
#else
bool running_in_sim(void);
#endif
/*! \brief Execute a breakpoint instruction
* \ingroup pico_platform
*/
static __force_inline void __breakpoint(void) {
#ifdef __riscv
__asm ("ebreak");
#else
pico_default_asm_volatile ("bkpt #0" : : : "memory");
#endif
}
/*! \brief Get the current core number
* \ingroup pico_platform
*
* \return The core number the call was made from
*/
__force_inline static uint get_core_num(void) {
return (*(uint32_t *) (SIO_BASE + SIO_CPUID_OFFSET));
}
/*! \brief Get the current exception level on this core
* \ingroup pico_platform
*
* On Cortex-M this is the exception number defined in the architecture
* reference, which is equal to VTABLE_FIRST_IRQ + irq num if inside an
* interrupt handler. (VTABLE_FIRST_IRQ is defined in platform_defs.h).
*
* On Hazard3, this function returns VTABLE_FIRST_IRQ + irq num if inside of
* an external IRQ handler (or a fault from such a handler), and 0 otherwise,
* generally aligning with the Cortex-M values.
*
* \return the exception number if the CPU is handling an exception, or 0 otherwise
*/
static __force_inline uint __get_current_exception(void) {
#ifdef __riscv
uint32_t meicontext;
pico_default_asm_volatile (
"csrr %0, %1\n"
: "=r" (meicontext) : "i" (RVCSR_MEICONTEXT_OFFSET)
);
if (meicontext & RVCSR_MEICONTEXT_NOIRQ_BITS) {
return 0;
} else {
return VTABLE_FIRST_IRQ + (
(meicontext & RVCSR_MEICONTEXT_IRQ_BITS) >> RVCSR_MEICONTEXT_IRQ_LSB
);
}
#else
uint exception;
pico_default_asm_volatile (
"mrs %0, ipsr\n"
"uxtb %0, %0\n"
: "=l" (exception)
);
return exception;
#endif
}
/*! \brief Return true if executing in the NonSecure state (Arm-only)
* \ingroup pico_platform
*
* \return True if currently executing in the NonSecure state on an Arm processor
*/
__force_inline static bool pico_processor_state_is_nonsecure(void) {
#ifndef __riscv
// todo add a define to disable NS checking at all?
// IDAU-Exempt addresses return S=1 when tested in the Secure state,
// whereas executing a tt in the NonSecure state will always return S=0.
uint32_t tt;
pico_default_asm_volatile (
"movs %0, #0\n"
"tt %0, %0\n"
: "=r" (tt) : : "cc"
);
return !(tt & (1u << 22));
#else
// NonSecure is an Arm concept, there is nothing meaningful to return
// here. Note it's not possible in general to detect whether you are
// executing in U-mode as, for example, M-mode is classically
// virtualisable in U-mode.
return false;
#endif
}
#define host_safe_hw_ptr(x) ((uintptr_t)(x))
#define native_safe_hw_ptr(x) host_safe_hw_ptr(x)
/*! \brief Returns the RP2350 chip revision number
* \ingroup pico_platform
* @return the RP2350 chip revision number (1 for B0/B1, 2 for B2)
*/
uint8_t rp2350_chip_version(void);
/*! \brief Returns the RP2040 chip revision number for compatibility
* \ingroup pico_platform
* @return 2 RP2040 errata fixed in B2 are fixed in RP2350
*/
static inline uint8_t rp2040_chip_version(void) {
return 2;
}
/*! \brief Returns the RP2040 rom version number
* \ingroup pico_platform
* @return the RP2040 rom version number (1 for RP2040-B0, 2 for RP2040-B1, 3 for RP2040-B2)
*/
static inline uint8_t rp2040_rom_version(void) {
GCC_Pragma("GCC diagnostic push")
GCC_Pragma("GCC diagnostic ignored \"-Warray-bounds\"")
return *(uint8_t*)0x13;
GCC_Pragma("GCC diagnostic pop")
}
/*! \brief Multiply two integers using an assembly `MUL` instruction
* \ingroup pico_platform
*
* This multiplies a by b using multiply instruction using the ARM mul instruction regardless of values (the compiler
* might otherwise choose to perform shifts/adds), i.e. this is a 1 cycle operation.
*
* \param a the first operand
* \param b the second operand
* \return a * b
*/
__force_inline static int32_t __mul_instruction(int32_t a, int32_t b) {
#ifdef __riscv
__asm ("mul %0, %0, %1" : "+l" (a) : "l" (b) : );
#else
pico_default_asm ("muls %0, %1" : "+l" (a) : "l" (b) : "cc");
#endif
return a;
}
/*! \brief multiply two integer values using the fastest method possible
* \ingroup pico_platform
*
* Efficiently multiplies value a by possibly constant value b.
*
* If b is known to be constant and not zero or a power of 2, then a mul instruction is used rather than gcc's default
* which is often a slow combination of shifts and adds. If b is a power of 2 then a single shift is of course preferable
* and will be used
*
* \param a the first operand
* \param b the second operand
* \return a * b
*/
#define __fast_mul(a, b) __builtin_choose_expr(__builtin_constant_p(b) && !__builtin_constant_p(a), \
(__builtin_popcount(b) >= 2 ? __mul_instruction(a,b) : (a)*(b)), \
(a)*(b))
#endif // __ASSEMBLER__
#endif