| /* |
| * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include "pico.h" |
| #include "hardware/regs/clocks.h" |
| #include "hardware/platform_defs.h" |
| #include "hardware/clocks.h" |
| #include "hardware/pll.h" |
| #include "hardware/irq.h" |
| #include "hardware/gpio.h" |
| |
| check_hw_layout(clocks_hw_t, clk[clk_adc].selected, CLOCKS_CLK_ADC_SELECTED_OFFSET); |
| check_hw_layout(clocks_hw_t, fc0.result, CLOCKS_FC0_RESULT_OFFSET); |
| check_hw_layout(clocks_hw_t, ints, CLOCKS_INTS_OFFSET); |
| |
| static uint32_t configured_freq[CLK_COUNT]; |
| |
| static resus_callback_t _resus_callback; |
| |
| // Clock muxing consists of two components: |
| // - A glitchless mux, which can be switched freely, but whose inputs must be |
| // free-running |
| // - An auxiliary (glitchy) mux, whose output glitches when switched, but has |
| // no constraints on its inputs |
| // Not all clocks have both types of mux. |
| static inline bool has_glitchless_mux(clock_handle_t clock) { |
| return clock == clk_sys || clock == clk_ref; |
| } |
| |
| void clock_stop(clock_handle_t clock) { |
| clock_hw_t *clock_hw = &clocks_hw->clk[clock]; |
| hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_USB_CTRL_ENABLE_BITS); |
| configured_freq[clock] = 0; |
| } |
| |
| /// \tag::clock_configure[] |
| static void clock_configure_internal(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t actual_freq, uint32_t div) { |
| clock_hw_t *clock_hw = &clocks_hw->clk[clock]; |
| |
| // If increasing divisor, set divisor before source. Otherwise set source |
| // before divisor. This avoids a momentary overspeed when e.g. switching |
| // to a faster source and increasing divisor to compensate. |
| if (div > clock_hw->div) |
| clock_hw->div = div; |
| |
| // If switching a glitchless slice (ref or sys) to an aux source, switch |
| // away from aux *first* to avoid passing glitches when changing aux mux. |
| // Assume (!!!) glitchless source 0 is no faster than the aux source. |
| if (has_glitchless_mux(clock) && src == CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) { |
| hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS); |
| while (!(clock_hw->selected & 1u)) |
| tight_loop_contents(); |
| } |
| // If no glitchless mux, cleanly stop the clock to avoid glitches |
| // propagating when changing aux mux. Note it would be a really bad idea |
| // to do this on one of the glitchless clocks (clk_sys, clk_ref). |
| else { |
| // Disable clock. On clk_ref and clk_sys this does nothing, |
| // all other clocks have the ENABLE bit in the same position. |
| hw_clear_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); |
| if (configured_freq[clock] > 0) { |
| // Delay for 3 cycles of the target clock, for ENABLE propagation. |
| // Note XOSC_COUNT is not helpful here because XOSC is not |
| // necessarily running, nor is timer... |
| uint delay_cyc = configured_freq[clk_sys] / configured_freq[clock] + 1; |
| busy_wait_at_least_cycles(delay_cyc * 3); |
| } |
| } |
| |
| // Set aux mux first, and then glitchless mux if this clock has one |
| hw_write_masked(&clock_hw->ctrl, |
| (auxsrc << CLOCKS_CLK_SYS_CTRL_AUXSRC_LSB), |
| CLOCKS_CLK_SYS_CTRL_AUXSRC_BITS |
| ); |
| |
| if (has_glitchless_mux(clock)) { |
| hw_write_masked(&clock_hw->ctrl, |
| src << CLOCKS_CLK_REF_CTRL_SRC_LSB, |
| CLOCKS_CLK_REF_CTRL_SRC_BITS |
| ); |
| while (!(clock_hw->selected & (1u << src))) |
| tight_loop_contents(); |
| } |
| |
| // Enable clock. On clk_ref and clk_sys this does nothing, |
| // all other clocks have the ENABLE bit in the same position. |
| hw_set_bits(&clock_hw->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS); |
| |
| // Now that the source is configured, we can trust that the user-supplied |
| // divisor is a safe value. |
| clock_hw->div = div; |
| configured_freq[clock] = actual_freq; |
| } |
| |
| bool clock_configure(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq) { |
| assert(src_freq >= freq); |
| |
| if (freq > src_freq) |
| return false; |
| |
| uint32_t div = (uint32_t)((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / freq); |
| uint32_t actual_freq = (uint32_t) ((((uint64_t) src_freq) << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) / div); |
| |
| clock_configure_internal(clock, src, auxsrc, actual_freq, div); |
| // Store the configured frequency |
| return true; |
| } |
| |
| void clock_configure_int_divider(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t int_divider) { |
| clock_configure_internal(clock, src, auxsrc, src_freq / int_divider, int_divider << CLOCKS_CLK_GPOUT0_DIV_INT_LSB); |
| } |
| |
| void clock_configure_undivided(clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq) { |
| clock_configure_internal(clock, src, auxsrc, src_freq, 1u << CLOCKS_CLK_GPOUT0_DIV_INT_LSB); |
| } |
| |
| /// \end::clock_configure[] |
| |
| /// \tag::clock_get_hz[] |
| uint32_t clock_get_hz(clock_handle_t clock) { |
| return configured_freq[clock]; |
| } |
| /// \end::clock_get_hz[] |
| |
| void clock_set_reported_hz(clock_handle_t clock, uint hz) { |
| configured_freq[clock] = hz; |
| } |
| |
| /// \tag::frequency_count_khz[] |
| uint32_t frequency_count_khz(uint src) { |
| fc_hw_t *fc = &clocks_hw->fc0; |
| |
| // If frequency counter is running need to wait for it. It runs even if the source is NULL |
| while(fc->status & CLOCKS_FC0_STATUS_RUNNING_BITS) { |
| tight_loop_contents(); |
| } |
| |
| // Set reference freq |
| fc->ref_khz = clock_get_hz(clk_ref) / 1000; |
| |
| // FIXME: Don't pick random interval. Use best interval |
| fc->interval = 10; |
| |
| // No min or max |
| fc->min_khz = 0; |
| fc->max_khz = 0xffffffff; |
| |
| // Set SRC which automatically starts the measurement |
| fc->src = src; |
| |
| while(!(fc->status & CLOCKS_FC0_STATUS_DONE_BITS)) { |
| tight_loop_contents(); |
| } |
| |
| // Return the result |
| return fc->result >> CLOCKS_FC0_RESULT_KHZ_LSB; |
| } |
| /// \end::frequency_count_khz[] |
| |
| static void clocks_handle_resus(void) { |
| // Set clk_sys back to the ref clock rather than it being forced to clk_ref |
| // by resus. Call the user's resus callback if they have set one |
| |
| // CLK SYS = CLK_REF. Must be running for this code to be running |
| uint clk_ref_freq = clock_get_hz(clk_ref); |
| clock_configure_undivided(clk_sys, |
| CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF, |
| 0, |
| clk_ref_freq); |
| |
| // Assert we have been resussed |
| assert(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS); |
| |
| // Now we have fixed clk_sys we can safely remove the resus |
| hw_set_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS); |
| hw_clear_bits(&clocks_hw->resus.ctrl, CLOCKS_CLK_SYS_RESUS_CTRL_CLEAR_BITS); |
| |
| // Now we should no longer be resussed |
| assert(!(clocks_hw->resus.status & CLOCKS_CLK_SYS_RESUS_STATUS_RESUSSED_BITS)); |
| |
| // Call the user's callback to notify them of the resus event |
| if (_resus_callback) { |
| _resus_callback(); |
| } |
| } |
| |
| static void clocks_irq_handler(void) { |
| // Clocks interrupt handler. Only resus but handle irq |
| // defensively just in case. |
| uint32_t ints = clocks_hw->ints; |
| |
| if (ints & CLOCKS_INTE_CLK_SYS_RESUS_BITS) { |
| ints &= ~CLOCKS_INTE_CLK_SYS_RESUS_BITS; |
| clocks_handle_resus(); |
| } |
| |
| #ifndef NDEBUG |
| if (ints) { |
| panic("Unexpected clocks irq\n"); |
| } |
| #endif |
| } |
| |
| void clocks_enable_resus(resus_callback_t resus_callback) { |
| // Restart clk_sys if it is stopped by forcing it |
| // to the default source of clk_ref. If clk_ref stops running this will |
| // not work. |
| |
| // Store user's resus callback |
| _resus_callback = resus_callback; |
| |
| irq_set_exclusive_handler(CLOCKS_IRQ, clocks_irq_handler); |
| |
| // Enable the resus interrupt in clocks |
| clocks_hw->inte = CLOCKS_INTE_CLK_SYS_RESUS_BITS; |
| |
| // Enable the clocks irq |
| irq_set_enabled(CLOCKS_IRQ, true); |
| |
| // 2 * clk_ref freq / clk_sys_min_freq; |
| // assume clk_ref is 3MHz and we want clk_sys to be no lower than 1MHz |
| uint timeout = 2 * 3 * 1; |
| |
| // Enable resus with the maximum timeout |
| clocks_hw->resus.ctrl = CLOCKS_CLK_SYS_RESUS_CTRL_ENABLE_BITS | timeout; |
| } |
| |
| void clock_gpio_init_int_frac(uint gpio, uint src, uint32_t div_int, uint8_t div_frac) { |
| // Bit messy but it's as much code to loop through a lookup |
| // table. The sources for each gpout generators are the same |
| // so just call with the sources from GP0 |
| uint gpclk = 0; |
| if (gpio == 21) gpclk = clk_gpout0; |
| else if (gpio == 23) gpclk = clk_gpout1; |
| else if (gpio == 24) gpclk = clk_gpout2; |
| else if (gpio == 25) gpclk = clk_gpout3; |
| #if !PICO_RP2040 |
| else if (gpio == 13) gpclk = clk_gpout0; |
| else if (gpio == 15) gpclk = clk_gpout1; |
| #endif |
| else { |
| invalid_params_if(HARDWARE_CLOCKS, true); |
| } |
| |
| // Set up the gpclk generator |
| clocks_hw->clk[gpclk].ctrl = (src << CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_LSB) | |
| CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS; |
| clocks_hw->clk[gpclk].div = (div_int << CLOCKS_CLK_GPOUT0_DIV_INT_LSB) | div_frac; |
| |
| // Set gpio pin to gpclock function |
| gpio_set_function(gpio, GPIO_FUNC_GPCK); |
| } |
| |
| static const uint8_t gpin0_src[CLK_COUNT] = { |
| CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT0 |
| CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT1 |
| CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT2 |
| CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_GPOUT3 |
| CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_REF |
| CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_SYS |
| CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_PERI |
| #if !PICO_RP2040 |
| CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_HSTX |
| #endif |
| CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_USB |
| CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_ADC |
| #if PICO_RP2040 |
| CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0, // CLK_RTC |
| #endif |
| }; |
| |
| // Assert GPIN1 is GPIN0 + 1 |
| static_assert(CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT0_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT1_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT2_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_GPOUT3_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_REF_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| #if HAS_HSTX |
| static_assert(CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_HSTX_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| #endif |
| static_assert(CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_USB_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| static_assert(CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_ADC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| #if HAS_RP2040_RTC |
| static_assert(CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN1 == (CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN0 + 1), "hw mismatch"); |
| #endif |
| |
| bool clock_configure_gpin(clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq) { |
| // Configure a clock to run from a GPIO input |
| uint gpin = 0; |
| if (gpio == 20) gpin = 0; |
| else if (gpio == 22) gpin = 1; |
| #if PICO_RP2350 |
| else if (gpio == 12) gpin = 0; |
| else if (gpio == 14) gpin = 1; |
| #endif |
| else { |
| invalid_params_if(HARDWARE_CLOCKS, true); |
| } |
| |
| // Work out sources. GPIN is always an auxsrc |
| uint src = 0; |
| |
| // GPIN1 == GPIN0 + 1 |
| uint auxsrc = gpin0_src[clock] + gpin; |
| |
| if (has_glitchless_mux(clock)) { |
| // AUX src is always 1 |
| src = 1; |
| } |
| |
| // Set the GPIO function |
| gpio_set_function(gpio, GPIO_FUNC_GPCK); |
| |
| // Now we have the src, auxsrc, and configured the gpio input |
| // call clock configure to run the clock from a gpio |
| return clock_configure(clock, src, auxsrc, src_freq, freq); |
| } |
| |
| // everything running off the USB oscillator |
| void set_sys_clock_48mhz(void) { |
| if (!running_on_fpga()) { |
| // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB |
| // which has a source frequency of 48MHz |
| clock_configure_undivided(clk_sys, |
| CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, |
| CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, |
| USB_CLK_HZ); |
| |
| // Turn off PLL sys for good measure |
| pll_deinit(pll_sys); |
| |
| // CLK peri is clocked from clk_sys so need to change clk_peri's freq |
| clock_configure_undivided(clk_peri, |
| 0, |
| CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS, |
| USB_CLK_HZ); |
| } |
| } |
| |
| // PICO_CONFIG: PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK, When the SYS clock PLL is changed keep the peripheral clock attached to it, type=bool, default=0, advanced=true, group=hardware_clocks |
| #ifndef PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK |
| // By default, when reconfiguring the system clock PLL settings after runtime initialization, |
| // the peripheral clock is switched to the 48MHz USB clock to ensure continuity of peripheral operation. |
| // Setting this value to 1 changes the behavior to have the peripheral clock re-configured |
| // to the system clock at it's new frequency. |
| #define PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK 0 |
| #endif |
| |
| void set_sys_clock_pll(uint32_t vco_freq, uint post_div1, uint post_div2) { |
| if (!running_on_fpga()) { |
| clock_configure_undivided(clk_sys, |
| CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, |
| CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, |
| USB_CLK_HZ); |
| |
| pll_init(pll_sys, PLL_SYS_REFDIV, vco_freq, post_div1, post_div2); |
| uint32_t freq = vco_freq / (post_div1 * post_div2); |
| |
| // Configure clocks |
| // CLK_REF is the XOSC source |
| clock_configure_undivided(clk_ref, |
| CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC, |
| 0, // No aux mux |
| XOSC_HZ); |
| |
| // CLK SYS = PLL SYS (usually) 125MHz / 1 = 125MHz |
| clock_configure_undivided(clk_sys, |
| CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX, |
| CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, |
| freq); |
| |
| #if PICO_CLOCK_AJDUST_PERI_CLOCK_WITH_SYS_CLOCK |
| clock_configure_undivided(clk_peri, |
| 0, |
| CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, |
| freq); |
| #else |
| clock_configure_undivided(clk_peri, |
| 0, // Only AUX mux on ADC |
| CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB, |
| USB_CLK_HZ); |
| #endif |
| } |
| } |
| |
| bool check_sys_clock_hz(uint32_t freq_hz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) { |
| uint reference_freq_hz = XOSC_HZ / PLL_SYS_REFDIV; |
| for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { |
| uint vco_hz = fbdiv * reference_freq_hz; |
| if (vco_hz < PICO_PLL_VCO_MIN_FREQ_HZ || vco_hz > PICO_PLL_VCO_MAX_FREQ_HZ) continue; |
| for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { |
| for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { |
| uint out = vco_hz / (postdiv1 * postdiv2); |
| if (out == freq_hz && !(vco_hz % (postdiv1 * postdiv2))) { |
| *vco_out = vco_hz; |
| *postdiv1_out = postdiv1; |
| *postdiv2_out = postdiv2; |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| // Note this impl is kept to preserve previous rounding behavior, vs calling check_sys_clock_hz |
| bool check_sys_clock_khz(uint32_t freq_khz, uint *vco_out, uint *postdiv1_out, uint *postdiv2_out) { |
| uint reference_freq_khz = (XOSC_HZ / KHZ) / PLL_SYS_REFDIV; |
| for (uint fbdiv = 320; fbdiv >= 16; fbdiv--) { |
| uint vco_khz = fbdiv * reference_freq_khz; |
| if (vco_khz < PICO_PLL_VCO_MIN_FREQ_HZ / KHZ || vco_khz > PICO_PLL_VCO_MAX_FREQ_HZ / KHZ) continue; |
| for (uint postdiv1 = 7; postdiv1 >= 1; postdiv1--) { |
| for (uint postdiv2 = postdiv1; postdiv2 >= 1; postdiv2--) { |
| uint out = vco_khz / (postdiv1 * postdiv2); |
| if (out == freq_khz && !(vco_khz % (postdiv1 * postdiv2))) { |
| *vco_out = vco_khz * KHZ; |
| *postdiv1_out = postdiv1; |
| *postdiv2_out = postdiv2; |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |