blob: d394c72150c76666eca611dcf666377157d76eb2 [file] [log] [blame]
/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_PWM_H
#define _HARDWARE_PWM_H
#include "pico.h"
#include "hardware/structs/pwm.h"
#include "hardware/regs/dreq.h"
#include "hardware/regs/intctrl.h"
#ifdef __cplusplus
extern "C" {
#endif
// PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM, Enable/disable assertions in the hardware_pwm module, type=bool, default=0, group=hardware_pwm
#ifndef PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM
#ifdef PARAM_ASSERTIONS_ENABLED_PWM // backwards compatibility with SDK < 2.0.0
#define PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM PARAM_ASSERTIONS_ENABLED_PWM
#else
#define PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM 0
#endif
#endif
/** \file hardware/pwm.h
* \defgroup hardware_pwm hardware_pwm
*
* \brief Hardware Pulse Width Modulation (PWM) API
*
* The RP2040 PWM block has 8 identical slices, the RP2350 has 12. Each slice can drive two PWM output signals, or
* measure the frequency or duty cycle of an input signal. This gives a total of up to 16/24 controllable
* PWM outputs. All 30 GPIOs can be driven by the PWM block.
*
* The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
* toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
* time spent at the high signal level is known as the duty cycle of the signal.
*
* The default behaviour of a PWM slice is to count upward until the wrap value (\ref pwm_config_set_wrap) is reached, and then
* immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward after
* reaching TOP, until it reaches 0 again.
*
* \subsection pwm_example Example
* \addtogroup hardware_pwm
* \include hello_pwm.c
*/
/** \brief PWM Divider mode settings
* \ingroup hardware_pwm
*
*/
enum pwm_clkdiv_mode
{
PWM_DIV_FREE_RUNNING = 0, ///< Free-running counting at rate dictated by fractional divider
PWM_DIV_B_HIGH = 1, ///< Fractional divider is gated by the PWM B pin
PWM_DIV_B_RISING = 2, ///< Fractional divider advances with each rising edge of the PWM B pin
PWM_DIV_B_FALLING = 3 ///< Fractional divider advances with each falling edge of the PWM B pin
};
enum pwm_chan
{
PWM_CHAN_A = 0,
PWM_CHAN_B = 1
};
typedef struct {
uint32_t csr;
uint32_t div;
uint32_t top;
} pwm_config;
/**
* \def PWM_DREQ_NUM(slice_num)
* \ingroup hardware_pwm
* \hideinitializer
* \brief Returns the \ref dreq_num_t used for pacing DMA transfers for a given PWM slice
*
* Note this macro is intended to resolve at compile time, and does no parameter checking
*/
#ifndef PWM_DREQ_NUM
static_assert(DREQ_PWM_WRAP1 == DREQ_PWM_WRAP0 + 1, "");
static_assert(DREQ_PWM_WRAP7 == DREQ_PWM_WRAP0 + 7, "");
#define PWM_DREQ_NUM(slice_num) (DREQ_PWM_WRAP0 + (slice_num))
#endif
/**
* \def PWM_GPIO_SLICE_NUM(gpio)
* \ingroup hardware_pwm
* \hideinitializer
* \brief Returns the PWM slice number for a given GPIO number
*/
#ifndef PWM_GPIO_SLICE_NUM
#define PWM_GPIO_SLICE_NUM(gpio) ({ \
uint slice_num; \
if ((gpio) < 32) { \
slice_num = ((gpio) >> 1u) & 7u; \
} else { \
slice_num = 8u + (((gpio) >> 1u) & 3u); \
} \
slice_num; \
})
#endif
static inline void check_slice_num_param(__unused uint slice_num) {
valid_params_if(HARDWARE_PWM, slice_num < NUM_PWM_SLICES);
}
/** \brief Determine the PWM slice that is attached to the specified GPIO
* \ingroup hardware_pwm
*
* \return The PWM slice number that controls the specified GPIO.
*/
static inline uint pwm_gpio_to_slice_num(uint gpio) {
valid_params_if(HARDWARE_PWM, gpio < NUM_BANK0_GPIOS);
return PWM_GPIO_SLICE_NUM(gpio);
}
/** \brief Determine the PWM channel that is attached to the specified GPIO.
* \ingroup hardware_pwm
*
* Each slice 0 to 7 has two channels, A and B.
*
* \return The PWM channel that controls the specified GPIO.
*/
static inline uint pwm_gpio_to_channel(uint gpio) {
valid_params_if(HARDWARE_PWM, gpio < NUM_BANK0_GPIOS);
return gpio & 1u;
}
/** \brief Set phase correction in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param phase_correct true to set phase correct modulation, false to set trailing edge
*
* Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached,
* the PWM starts counting back down. The output frequency is halved when phase-correct mode is enabled.
*/
static inline void pwm_config_set_phase_correct(pwm_config *c, bool phase_correct) {
c->csr = (c->csr & ~PWM_CH0_CSR_PH_CORRECT_BITS)
| (bool_to_bit(phase_correct) << PWM_CH0_CSR_PH_CORRECT_LSB);
}
/** \brief Set PWM clock divider in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param div Value to divide counting rate by. Must be greater than or equal to 1.
*
* If the divide mode is free-running, the PWM counter runs at clk_sys / div.
* Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge)
* before passing them on to the PWM counter.
*/
static inline void pwm_config_set_clkdiv(pwm_config *c, float div) {
valid_params_if(HARDWARE_PWM, div >= 1.f && div < 256.f);
c->div = (uint32_t)(div * (float)(1u << PWM_CH0_DIV_INT_LSB));
}
/** \brief Set PWM clock divider in a PWM configuration using an 8:4 fractional value
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param integer 8 bit integer part of the clock divider. Must be greater than or equal to 1.
* \param fract 4 bit fractional part of the clock divider
*
* If the divide mode is free-running, the PWM counter runs at clk_sys / div.
* Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge)
* before passing them on to the PWM counter.
*/
static inline void pwm_config_set_clkdiv_int_frac(pwm_config *c, uint8_t integer, uint8_t fract) {
valid_params_if(HARDWARE_PWM, integer >= 1);
valid_params_if(HARDWARE_PWM, fract < 16);
c->div = (((uint)integer) << PWM_CH0_DIV_INT_LSB) | (((uint)fract) << PWM_CH0_DIV_FRAC_LSB);
}
/** \brief Set PWM clock divider in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param div Integer value to reduce counting rate by. Must be greater than or equal to 1.
*
* If the divide mode is free-running, the PWM counter runs at clk_sys / div.
* Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge)
* before passing them on to the PWM counter.
*/
static inline void pwm_config_set_clkdiv_int(pwm_config *c, uint div) {
valid_params_if(HARDWARE_PWM, div >= 1 && div < 256);
pwm_config_set_clkdiv_int_frac(c, (uint8_t)div, 0);
}
/** \brief Set PWM counting mode in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param mode PWM divide/count mode
*
* Configure which event gates the operation of the fractional divider.
* The default is always-on (free-running PWM). Can also be configured to count on
* high level, rising edge or falling edge of the B pin input.
*/
static inline void pwm_config_set_clkdiv_mode(pwm_config *c, enum pwm_clkdiv_mode mode) {
valid_params_if(HARDWARE_PWM, mode == PWM_DIV_FREE_RUNNING ||
mode == PWM_DIV_B_RISING ||
mode == PWM_DIV_B_HIGH ||
mode == PWM_DIV_B_FALLING);
c->csr = (c->csr & ~PWM_CH0_CSR_DIVMODE_BITS)
| (((uint)mode) << PWM_CH0_CSR_DIVMODE_LSB);
}
/** \brief Set output polarity in a PWM configuration
* \ingroup hardware_pwm
*
* \param c PWM configuration struct to modify
* \param a true to invert output A
* \param b true to invert output B
*/
static inline void pwm_config_set_output_polarity(pwm_config *c, bool a, bool b) {
c->csr = (c->csr & ~(PWM_CH0_CSR_A_INV_BITS | PWM_CH0_CSR_B_INV_BITS))
| ((bool_to_bit(a) << PWM_CH0_CSR_A_INV_LSB) | (bool_to_bit(b) << PWM_CH0_CSR_B_INV_LSB));
}
/** \brief Set PWM counter wrap value in a PWM configuration
* \ingroup hardware_pwm
*
* Set the highest value the counter will reach before returning to 0. Also known as TOP.
*
* \param c PWM configuration struct to modify
* \param wrap Value to set wrap to
*/
static inline void pwm_config_set_wrap(pwm_config *c, uint16_t wrap) {
c->top = wrap;
}
/** \brief Initialise a PWM with settings from a configuration object
* \ingroup hardware_pwm
*
* Use the \ref pwm_get_default_config() function to initialise a config structure, make changes as
* needed using the pwm_config_* functions, then call this function to set up the PWM.
*
* \param slice_num PWM slice number
* \param c The configuration to use
* \param start If true the PWM will be started running once configured. If false you will need to start
* manually using \ref pwm_set_enabled() or \ref pwm_set_mask_enabled()
*/
static inline void pwm_init(uint slice_num, pwm_config *c, bool start) {
check_slice_num_param(slice_num);
pwm_hw->slice[slice_num].csr = 0;
pwm_hw->slice[slice_num].ctr = PWM_CH0_CTR_RESET;
pwm_hw->slice[slice_num].cc = PWM_CH0_CC_RESET;
pwm_hw->slice[slice_num].top = c->top;
pwm_hw->slice[slice_num].div = c->div;
pwm_hw->slice[slice_num].csr = c->csr | (bool_to_bit(start) << PWM_CH0_CSR_EN_LSB);
}
/** \brief Get a set of default values for PWM configuration
* \ingroup hardware_pwm
*
* PWM config is free-running at system clock speed, no phase correction, wrapping at 0xffff,
* with standard polarities for channels A and B.
*
* \return Set of default values.
*/
static inline pwm_config pwm_get_default_config(void) {
pwm_config c = {0, 0, 0};
pwm_config_set_phase_correct(&c, false);
pwm_config_set_clkdiv_int(&c, 1);
pwm_config_set_clkdiv_mode(&c, PWM_DIV_FREE_RUNNING);
pwm_config_set_output_polarity(&c, false, false);
pwm_config_set_wrap(&c, 0xffffu);
return c;
}
/** \brief Set the current PWM counter wrap value
* \ingroup hardware_pwm
*
* Set the highest value the counter will reach before returning to 0. Also
* known as TOP.
*
* The counter wrap value is double-buffered in hardware. This means that,
* when the PWM is running, a write to the counter wrap value does not take
* effect until after the next time the PWM slice wraps (or, in phase-correct
* mode, the next time the slice reaches 0). If the PWM is not running, the
* write is latched in immediately.
*
* \param slice_num PWM slice number
* \param wrap Value to set wrap to
*/
static inline void pwm_set_wrap(uint slice_num, uint16_t wrap) {
check_slice_num_param(slice_num);
pwm_hw->slice[slice_num].top = wrap;
}
/** \brief Set the current PWM counter compare value for one channel
* \ingroup hardware_pwm
*
* Set the value of the PWM counter compare value, for either channel A or channel B.
*
* The counter compare register is double-buffered in hardware. This means
* that, when the PWM is running, a write to the counter compare values does
* not take effect until the next time the PWM slice wraps (or, in
* phase-correct mode, the next time the slice reaches 0). If the PWM is not
* running, the write is latched in immediately.
*
* \param slice_num PWM slice number
* \param chan Which channel to update. 0 for A, 1 for B.
* \param level new level for the selected output
*/
static inline void pwm_set_chan_level(uint slice_num, uint chan, uint16_t level) {
check_slice_num_param(slice_num);
hw_write_masked(
&pwm_hw->slice[slice_num].cc,
((uint)level) << (chan ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB),
chan ? PWM_CH0_CC_B_BITS : PWM_CH0_CC_A_BITS
);
}
/** \brief Set PWM counter compare values
* \ingroup hardware_pwm
*
* Set the value of the PWM counter compare values, A and B.
*
* The counter compare register is double-buffered in hardware. This means
* that, when the PWM is running, a write to the counter compare values does
* not take effect until the next time the PWM slice wraps (or, in
* phase-correct mode, the next time the slice reaches 0). If the PWM is not
* running, the write is latched in immediately.
*
* \param slice_num PWM slice number
* \param level_a Value to set compare A to. When the counter reaches this value the A output is deasserted
* \param level_b Value to set compare B to. When the counter reaches this value the B output is deasserted
*/
static inline void pwm_set_both_levels(uint slice_num, uint16_t level_a, uint16_t level_b) {
check_slice_num_param(slice_num);
pwm_hw->slice[slice_num].cc = (((uint)level_b) << PWM_CH0_CC_B_LSB) | (((uint)level_a) << PWM_CH0_CC_A_LSB);
}
/** \brief Helper function to set the PWM level for the slice and channel associated with a GPIO.
* \ingroup hardware_pwm
*
* Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding
* counter compare field.
*
* This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs
* mapping to the same slice and channel (if GPIOs have a difference of 16).
*
* The counter compare register is double-buffered in hardware. This means
* that, when the PWM is running, a write to the counter compare values does
* not take effect until the next time the PWM slice wraps (or, in
* phase-correct mode, the next time the slice reaches 0). If the PWM is not
* running, the write is latched in immediately.
*
* \param gpio GPIO to set level of
* \param level PWM level for this GPIO
*/
static inline void pwm_set_gpio_level(uint gpio, uint16_t level) {
valid_params_if(HARDWARE_PWM, gpio < NUM_BANK0_GPIOS);
pwm_set_chan_level(pwm_gpio_to_slice_num(gpio), pwm_gpio_to_channel(gpio), level);
}
/** \brief Get PWM counter
* \ingroup hardware_pwm
*
* Get current value of PWM counter
*
* \param slice_num PWM slice number
* \return Current value of the PWM counter
*/
static inline uint16_t pwm_get_counter(uint slice_num) {
check_slice_num_param(slice_num);
return (uint16_t)(pwm_hw->slice[slice_num].ctr);
}
/** \brief Set PWM counter
* \ingroup hardware_pwm
*
* Set the value of the PWM counter
*
* \param slice_num PWM slice number
* \param c Value to set the PWM counter to
*
*/
static inline void pwm_set_counter(uint slice_num, uint16_t c) {
check_slice_num_param(slice_num);
pwm_hw->slice[slice_num].ctr = c;
}
/** \brief Advance PWM count
* \ingroup hardware_pwm
*
* Advance the phase of a running the counter by 1 count.
*
* This function will return once the increment is complete.
*
* \param slice_num PWM slice number
*/
static inline void pwm_advance_count(uint slice_num) {
check_slice_num_param(slice_num);
hw_set_bits(&pwm_hw->slice[slice_num].csr, PWM_CH0_CSR_PH_ADV_BITS);
while (pwm_hw->slice[slice_num].csr & PWM_CH0_CSR_PH_ADV_BITS) {
tight_loop_contents();
}
}
/** \brief Retard PWM count
* \ingroup hardware_pwm
*
* Retard the phase of a running counter by 1 count
*
* This function will return once the retardation is complete.
*
* \param slice_num PWM slice number
*/
static inline void pwm_retard_count(uint slice_num) {
check_slice_num_param(slice_num);
hw_set_bits(&pwm_hw->slice[slice_num].csr, PWM_CH0_CSR_PH_RET_BITS);
while (pwm_hw->slice[slice_num].csr & PWM_CH0_CSR_PH_RET_BITS) {
tight_loop_contents();
}
}
/** \brief Set PWM clock divider using an 8:4 fractional value
* \ingroup hardware_pwm
*
* Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.
*
* \param slice_num PWM slice number
* \param integer 8 bit integer part of the clock divider
* \param fract 4 bit fractional part of the clock divider
*/
static inline void pwm_set_clkdiv_int_frac(uint slice_num, uint8_t integer, uint8_t fract) {
check_slice_num_param(slice_num);
valid_params_if(HARDWARE_PWM, integer >= 1);
valid_params_if(HARDWARE_PWM, fract < 16);
pwm_hw->slice[slice_num].div = (((uint)integer) << PWM_CH0_DIV_INT_LSB) | (((uint)fract) << PWM_CH0_DIV_FRAC_LSB);
}
/** \brief Set PWM clock divider
* \ingroup hardware_pwm
*
* Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating.
*
* \param slice_num PWM slice number
* \param divider Floating point clock divider, 1.f <= value < 256.f
*/
static inline void pwm_set_clkdiv(uint slice_num, float divider) {
check_slice_num_param(slice_num);
valid_params_if(HARDWARE_PWM, divider >= 1.f && divider < 256.f);
uint8_t i = (uint8_t)divider;
uint8_t f = (uint8_t)((divider - i) * (0x01 << 4));
pwm_set_clkdiv_int_frac(slice_num, i, f);
}
/** \brief Set PWM output polarity
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param a true to invert output A
* \param b true to invert output B
*/
static inline void pwm_set_output_polarity(uint slice_num, bool a, bool b) {
check_slice_num_param(slice_num);
hw_write_masked(&pwm_hw->slice[slice_num].csr, bool_to_bit(a) << PWM_CH0_CSR_A_INV_LSB | bool_to_bit(b) << PWM_CH0_CSR_B_INV_LSB,
PWM_CH0_CSR_A_INV_BITS | PWM_CH0_CSR_B_INV_BITS);
}
/** \brief Set PWM divider mode
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param mode Required divider mode
*/
static inline void pwm_set_clkdiv_mode(uint slice_num, enum pwm_clkdiv_mode mode) {
check_slice_num_param(slice_num);
valid_params_if(HARDWARE_PWM, mode == PWM_DIV_FREE_RUNNING ||
mode == PWM_DIV_B_RISING ||
mode == PWM_DIV_B_HIGH ||
mode == PWM_DIV_B_FALLING);
hw_write_masked(&pwm_hw->slice[slice_num].csr, ((uint)mode) << PWM_CH0_CSR_DIVMODE_LSB, PWM_CH0_CSR_DIVMODE_BITS);
}
/** \brief Set PWM phase correct on/off
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
* \param phase_correct true to set phase correct modulation, false to set trailing edge
*
* Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached,
* the PWM starts counting back down. The output frequency is halved when phase-correct mode is enabled.
*/
static inline void pwm_set_phase_correct(uint slice_num, bool phase_correct) {
check_slice_num_param(slice_num);
hw_write_masked(&pwm_hw->slice[slice_num].csr, bool_to_bit(phase_correct) << PWM_CH0_CSR_PH_CORRECT_LSB, PWM_CH0_CSR_PH_CORRECT_BITS);
}
/** \brief Enable/Disable PWM
* \ingroup hardware_pwm
*
* When a PWM is disabled, it halts its counter, and the output pins are left
* high or low depending on exactly when the counter is halted. When
* re-enabled the PWM resumes immediately from where it left off.
*
* If the PWM's output pins need to be low when halted:
*
* - The counter compare can be set to zero whilst the PWM is enabled, and
* then the PWM disabled once both pins are seen to be low
*
* - The GPIO output overrides can be used to force the actual pins low
*
* - The PWM can be run for one cycle (i.e. enabled then immediately disabled)
* with a TOP of 0, count of 0 and counter compare of 0, to force the pins
* low when the PWM has already been halted. The same method can be used
* with a counter compare value of 1 to force a pin high.
*
* Note that, when disabled, the PWM can still be advanced one count at a time
* by pulsing the PH_ADV bit in its CSR. The output pins transition as though
* the PWM were enabled.
*
* \param slice_num PWM slice number
* \param enabled true to enable the specified PWM, false to disable.
*/
static inline void pwm_set_enabled(uint slice_num, bool enabled) {
check_slice_num_param(slice_num);
hw_write_masked(&pwm_hw->slice[slice_num].csr, bool_to_bit(enabled) << PWM_CH0_CSR_EN_LSB, PWM_CH0_CSR_EN_BITS);
}
/** \brief Enable/Disable multiple PWM slices simultaneously
* \ingroup hardware_pwm
*
* \param mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively
*/
static inline void pwm_set_mask_enabled(uint32_t mask) {
pwm_hw->en = mask;
}
/**
* \def PWM_DEFAULT_IRQ_NUM()
* \ingroup hardware_pwm
* \hideinitializer
* \brief Returns the \ref irq_num_t for the default PWM IRQ.
*
* \if rp2040_specific
* On RP2040, there is only one PWM irq: PWM_IRQ_WRAP
* \endif
*
* \if rp2350_specific
* On RP2350 this returns to PWM_IRQ_WRAP0
* \endif
*
* Note this macro is intended to resolve at compile time, and does no parameter checking
*/
#ifndef PWM_DEFAULT_IRQ_NUM
#if PICO_RP2040
#define PWM_DEFAULT_IRQ_NUM() PWM_IRQ_WRAP
#else
#define PWM_DEFAULT_IRQ_NUM() PWM_IRQ_WRAP_0
// backwards compatibility with RP2040
#define PWM_IRQ_WRAP PWM_IRQ_WRAP_0
#define isr_pwm_wrap isr_pwm_wrap_0
#endif
#endif
/*! \brief Enable PWM instance interrupt via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
* \ingroup hardware_pwm
*
* Used to enable a single PWM instance interrupt.
*
* Note there is only one PWM_IRQ_WRAP on RP2040.
*
* \param slice_num PWM block to enable/disable
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq_enabled(uint slice_num, bool enabled) {
check_slice_num_param(slice_num);
if (enabled) {
hw_set_bits(&pwm_hw->inte, 1u << slice_num);
} else {
hw_clear_bits(&pwm_hw->inte, 1u << slice_num);
}
}
/*! \brief Enable PWM instance interrupt via PWM_IRQ_WRAP_0
* \ingroup hardware_pwm
*
* Used to enable a single PWM instance interrupt.
*
* \param slice_num PWM block to enable/disable
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq0_enabled(uint slice_num, bool enabled) {
// irq0 always corresponds to the default IRQ
pwm_set_irq_enabled(slice_num, enabled);
}
#if NUM_PWM_IRQS > 1
/*! \brief Enable PWM instance interrupt via PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* Used to enable a single PWM instance interrupt.
*
* \param slice_num PWM block to enable/disable
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq1_enabled(uint slice_num, bool enabled) {
check_slice_num_param(slice_num);
if (enabled) {
hw_set_bits(&pwm_hw->inte1, 1u << slice_num);
} else {
hw_clear_bits(&pwm_hw->inte1, 1u << slice_num);
}
}
#endif
/*! \brief Enable PWM instance interrupt via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* Used to enable a single PWM instance interrupt.
*
* Note there is only one PWM_IRQ_WRAP on RP2040.
*
* \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \param slice_num PWM block to enable/disable
* \param enabled true to enable, false to disable
*/
static inline void pwm_irqn_set_slice_enabled(uint irq_index, uint slice_num, bool enabled) {
check_slice_num_param(slice_num);
invalid_params_if(HARDWARE_PWM, irq_index >= NUM_PWM_IRQS);
check_slice_num_param(slice_num);
if (enabled) {
hw_set_bits(&pwm_hw->irq_ctrl[irq_index].inte, 1u << slice_num);
} else {
hw_clear_bits(&pwm_hw->irq_ctrl[irq_index].inte, 1u << slice_num);
}
}
/*! \brief Enable multiple PWM instance interrupts via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
* \ingroup hardware_pwm
*
* Use this to enable multiple PWM interrupts at once.
*
* Note there is only one PWM_IRQ_WRAP on RP2040.
*
* \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq_mask_enabled(uint32_t slice_mask, bool enabled) {
valid_params_if(HARDWARE_PWM, slice_mask < 256);
#if PICO_RP2040
if (enabled) {
hw_set_bits(&pwm_hw->inte, slice_mask);
} else {
hw_clear_bits(&pwm_hw->inte, slice_mask);
}
#else
static_assert(PWM_IRQ_WRAP_1 == PWM_IRQ_WRAP_0 + 1);
uint irq_index = PWM_DEFAULT_IRQ_NUM() - PWM_IRQ_WRAP_0;
if (enabled) {
hw_set_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask);
} else {
hw_clear_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask);
}
#endif
}
/*! \brief Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_0
* \ingroup hardware_pwm
*
* Use this to enable multiple PWM interrupts at once.
*
* \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq0_mask_enabled(uint32_t slice_mask, bool enabled) {
// default irq is irq0
pwm_set_irq_mask_enabled(slice_mask, enabled);
}
#if NUM_PWM_IRQS > 1
/*! \brief Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* Use this to enable multiple PWM interrupts at once.
*
* \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
* \param enabled true to enable, false to disable
*/
static inline void pwm_set_irq1_mask_enabled(uint32_t slice_mask, bool enabled) {
if (enabled) {
hw_set_bits(&pwm_hw->inte1, slice_mask);
} else {
hw_clear_bits(&pwm_hw->inte1, slice_mask);
}
}
#endif
/*! \brief Enable PWM instance interrupts via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* Used to enable a single PWM instance interrupt.
*
* Note there is only one PWM_IRQ_WRAP on RP2040.
*
* \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.
* \param enabled true to enable, false to disable
*/
static inline void pwm_irqn_set_slice_mask_enabled(uint irq_index, uint slice_mask, bool enabled) {
invalid_params_if(HARDWARE_PWM, irq_index >= NUM_PWM_IRQS);
if (enabled) {
hw_set_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask);
} else {
hw_clear_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask);
}
}
/*! \brief Clear a single PWM channel interrupt
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline void pwm_clear_irq(uint slice_num) {
pwm_hw->intr = 1u << slice_num;
}
/*! \brief Get PWM interrupt status, raw for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
* \ingroup hardware_pwm
*
* \return Bitmask of all PWM interrupts currently set
*/
static inline uint32_t pwm_get_irq_status_mask(void) {
return pwm_hw->ints;
}
/*! \brief Get PWM interrupt status, raw for the PWM_IRQ_WRAP_0
* \ingroup hardware_pwm
*
* \return Bitmask of all PWM interrupts currently set
*/
static inline uint32_t pwm_get_irq0_status_mask(void) {
return pwm_get_irq_status_mask();
}
#if NUM_PWM_IRQS > 1
/*! \brief Get PWM interrupt status, raw for the PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* \return Bitmask of all PWM interrupts currently set
*/
static inline uint32_t pwm_get_irq1_status_mask(void) {
return pwm_hw->ints1;
}
#endif
/*! \brief Get PWM interrupt status, raw for either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \return Bitmask of all PWM interrupts currently set
*/
static inline uint32_t pwm_irqn_get_status_mask(uint irq_index) {
invalid_params_if(HARDWARE_PWM, irq_index >= NUM_DMA_IRQS);
return pwm_hw->irq_ctrl[irq_index].ints;
}
/*! \brief Force PWM interrupt for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350)
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline void pwm_force_irq(uint slice_num) {
pwm_hw->intf = 1u << slice_num;
}
/*! \brief Force PWM interrupt via PWM_IRQ_WRAP_0
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline void pwm_force_irq0(uint slice_num) {
pwm_force_irq(slice_num);
}
#if NUM_PWM_IRQS > 1
/*! \brief Force PWM interrupt via PWM_IRQ_WRAP_0
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline void pwm_force_irq1(uint slice_num) {
pwm_hw->intf1 = 1u << slice_num;
}
#endif
/*! \brief Force PWM interrupt via PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \ingroup hardware_pwm
*
* \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1
* \param slice_num PWM slice number
*/
static inline void pwm_irqn_force(uint irq_index, uint slice_num) {
invalid_params_if(HARDWARE_PWM, irq_index >= NUM_PWM_IRQS);
pwm_hw->irq_ctrl[irq_index].intf = 1u << slice_num;
}
/*! \brief Return the DREQ to use for pacing transfers to a particular PWM slice
* \ingroup hardware_pwm
*
* \param slice_num PWM slice number
*/
static inline uint pwm_get_dreq(uint slice_num) {
check_slice_num_param(slice_num);
return PWM_DREQ_NUM(slice_num);
}
#ifdef __cplusplus
}
#endif
#endif