| /* |
| * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #ifndef _HARDWARE_PWM_H |
| #define _HARDWARE_PWM_H |
| |
| #include "pico.h" |
| #include "hardware/structs/pwm.h" |
| #include "hardware/regs/dreq.h" |
| #include "hardware/regs/intctrl.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| // PICO_CONFIG: PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM, Enable/disable assertions in the hardware_pwm module, type=bool, default=0, group=hardware_pwm |
| #ifndef PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM |
| #ifdef PARAM_ASSERTIONS_ENABLED_PWM // backwards compatibility with SDK < 2.0.0 |
| #define PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM PARAM_ASSERTIONS_ENABLED_PWM |
| #else |
| #define PARAM_ASSERTIONS_ENABLED_HARDWARE_PWM 0 |
| #endif |
| #endif |
| |
| /** \file hardware/pwm.h |
| * \defgroup hardware_pwm hardware_pwm |
| * |
| * \brief Hardware Pulse Width Modulation (PWM) API |
| * |
| * The RP2040 PWM block has 8 identical slices, the RP2350 has 12. Each slice can drive two PWM output signals, or |
| * measure the frequency or duty cycle of an input signal. This gives a total of up to 16/24 controllable |
| * PWM outputs. All 30 GPIOs can be driven by the PWM block. |
| * |
| * The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a |
| * toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of |
| * time spent at the high signal level is known as the duty cycle of the signal. |
| * |
| * The default behaviour of a PWM slice is to count upward until the wrap value (\ref pwm_config_set_wrap) is reached, and then |
| * immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward after |
| * reaching TOP, until it reaches 0 again. |
| * |
| * \subsection pwm_example Example |
| * \addtogroup hardware_pwm |
| * \include hello_pwm.c |
| */ |
| |
| /** \brief PWM Divider mode settings |
| * \ingroup hardware_pwm |
| * |
| */ |
| enum pwm_clkdiv_mode |
| { |
| PWM_DIV_FREE_RUNNING = 0, ///< Free-running counting at rate dictated by fractional divider |
| PWM_DIV_B_HIGH = 1, ///< Fractional divider is gated by the PWM B pin |
| PWM_DIV_B_RISING = 2, ///< Fractional divider advances with each rising edge of the PWM B pin |
| PWM_DIV_B_FALLING = 3 ///< Fractional divider advances with each falling edge of the PWM B pin |
| }; |
| |
| enum pwm_chan |
| { |
| PWM_CHAN_A = 0, |
| PWM_CHAN_B = 1 |
| }; |
| |
| typedef struct { |
| uint32_t csr; |
| uint32_t div; |
| uint32_t top; |
| } pwm_config; |
| |
| /** |
| * \def PWM_DREQ_NUM(slice_num) |
| * \ingroup hardware_pwm |
| * \hideinitializer |
| * \brief Returns the \ref dreq_num_t used for pacing DMA transfers for a given PWM slice |
| * |
| * Note this macro is intended to resolve at compile time, and does no parameter checking |
| */ |
| #ifndef PWM_DREQ_NUM |
| static_assert(DREQ_PWM_WRAP1 == DREQ_PWM_WRAP0 + 1, ""); |
| static_assert(DREQ_PWM_WRAP7 == DREQ_PWM_WRAP0 + 7, ""); |
| #define PWM_DREQ_NUM(slice_num) (DREQ_PWM_WRAP0 + (slice_num)) |
| #endif |
| |
| /** |
| * \def PWM_GPIO_SLICE_NUM(gpio) |
| * \ingroup hardware_pwm |
| * \hideinitializer |
| * \brief Returns the PWM slice number for a given GPIO number |
| */ |
| #ifndef PWM_GPIO_SLICE_NUM |
| #define PWM_GPIO_SLICE_NUM(gpio) ({ \ |
| uint slice_num; \ |
| if ((gpio) < 32) { \ |
| slice_num = ((gpio) >> 1u) & 7u; \ |
| } else { \ |
| slice_num = 8u + (((gpio) >> 1u) & 3u); \ |
| } \ |
| slice_num; \ |
| }) |
| #endif |
| |
| static inline void check_slice_num_param(__unused uint slice_num) { |
| valid_params_if(HARDWARE_PWM, slice_num < NUM_PWM_SLICES); |
| } |
| |
| /** \brief Determine the PWM slice that is attached to the specified GPIO |
| * \ingroup hardware_pwm |
| * |
| * \return The PWM slice number that controls the specified GPIO. |
| */ |
| static inline uint pwm_gpio_to_slice_num(uint gpio) { |
| valid_params_if(HARDWARE_PWM, gpio < NUM_BANK0_GPIOS); |
| return PWM_GPIO_SLICE_NUM(gpio); |
| } |
| |
| /** \brief Determine the PWM channel that is attached to the specified GPIO. |
| * \ingroup hardware_pwm |
| * |
| * Each slice 0 to 7 has two channels, A and B. |
| * |
| * \return The PWM channel that controls the specified GPIO. |
| */ |
| static inline uint pwm_gpio_to_channel(uint gpio) { |
| valid_params_if(HARDWARE_PWM, gpio < NUM_BANK0_GPIOS); |
| return gpio & 1u; |
| } |
| |
| /** \brief Set phase correction in a PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * \param c PWM configuration struct to modify |
| * \param phase_correct true to set phase correct modulation, false to set trailing edge |
| * |
| * Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, |
| * the PWM starts counting back down. The output frequency is halved when phase-correct mode is enabled. |
| */ |
| static inline void pwm_config_set_phase_correct(pwm_config *c, bool phase_correct) { |
| c->csr = (c->csr & ~PWM_CH0_CSR_PH_CORRECT_BITS) |
| | (bool_to_bit(phase_correct) << PWM_CH0_CSR_PH_CORRECT_LSB); |
| } |
| |
| /** \brief Set PWM clock divider in a PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * \param c PWM configuration struct to modify |
| * \param div Value to divide counting rate by. Must be greater than or equal to 1. |
| * |
| * If the divide mode is free-running, the PWM counter runs at clk_sys / div. |
| * Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge) |
| * before passing them on to the PWM counter. |
| */ |
| static inline void pwm_config_set_clkdiv(pwm_config *c, float div) { |
| valid_params_if(HARDWARE_PWM, div >= 1.f && div < 256.f); |
| c->div = (uint32_t)(div * (float)(1u << PWM_CH0_DIV_INT_LSB)); |
| } |
| |
| /** \brief Set PWM clock divider in a PWM configuration using an 8:4 fractional value |
| * \ingroup hardware_pwm |
| * |
| * \param c PWM configuration struct to modify |
| * \param integer 8 bit integer part of the clock divider. Must be greater than or equal to 1. |
| * \param fract 4 bit fractional part of the clock divider |
| * |
| * If the divide mode is free-running, the PWM counter runs at clk_sys / div. |
| * Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge) |
| * before passing them on to the PWM counter. |
| */ |
| static inline void pwm_config_set_clkdiv_int_frac(pwm_config *c, uint8_t integer, uint8_t fract) { |
| valid_params_if(HARDWARE_PWM, integer >= 1); |
| valid_params_if(HARDWARE_PWM, fract < 16); |
| c->div = (((uint)integer) << PWM_CH0_DIV_INT_LSB) | (((uint)fract) << PWM_CH0_DIV_FRAC_LSB); |
| } |
| |
| /** \brief Set PWM clock divider in a PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * \param c PWM configuration struct to modify |
| * \param div Integer value to reduce counting rate by. Must be greater than or equal to 1. |
| * |
| * If the divide mode is free-running, the PWM counter runs at clk_sys / div. |
| * Otherwise, the divider reduces the rate of events seen on the B pin input (level or edge) |
| * before passing them on to the PWM counter. |
| */ |
| static inline void pwm_config_set_clkdiv_int(pwm_config *c, uint div) { |
| valid_params_if(HARDWARE_PWM, div >= 1 && div < 256); |
| pwm_config_set_clkdiv_int_frac(c, (uint8_t)div, 0); |
| } |
| |
| /** \brief Set PWM counting mode in a PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * \param c PWM configuration struct to modify |
| * \param mode PWM divide/count mode |
| * |
| * Configure which event gates the operation of the fractional divider. |
| * The default is always-on (free-running PWM). Can also be configured to count on |
| * high level, rising edge or falling edge of the B pin input. |
| */ |
| static inline void pwm_config_set_clkdiv_mode(pwm_config *c, enum pwm_clkdiv_mode mode) { |
| valid_params_if(HARDWARE_PWM, mode == PWM_DIV_FREE_RUNNING || |
| mode == PWM_DIV_B_RISING || |
| mode == PWM_DIV_B_HIGH || |
| mode == PWM_DIV_B_FALLING); |
| c->csr = (c->csr & ~PWM_CH0_CSR_DIVMODE_BITS) |
| | (((uint)mode) << PWM_CH0_CSR_DIVMODE_LSB); |
| } |
| |
| /** \brief Set output polarity in a PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * \param c PWM configuration struct to modify |
| * \param a true to invert output A |
| * \param b true to invert output B |
| */ |
| static inline void pwm_config_set_output_polarity(pwm_config *c, bool a, bool b) { |
| c->csr = (c->csr & ~(PWM_CH0_CSR_A_INV_BITS | PWM_CH0_CSR_B_INV_BITS)) |
| | ((bool_to_bit(a) << PWM_CH0_CSR_A_INV_LSB) | (bool_to_bit(b) << PWM_CH0_CSR_B_INV_LSB)); |
| } |
| |
| /** \brief Set PWM counter wrap value in a PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * Set the highest value the counter will reach before returning to 0. Also known as TOP. |
| * |
| * \param c PWM configuration struct to modify |
| * \param wrap Value to set wrap to |
| */ |
| static inline void pwm_config_set_wrap(pwm_config *c, uint16_t wrap) { |
| c->top = wrap; |
| } |
| |
| /** \brief Initialise a PWM with settings from a configuration object |
| * \ingroup hardware_pwm |
| * |
| * Use the \ref pwm_get_default_config() function to initialise a config structure, make changes as |
| * needed using the pwm_config_* functions, then call this function to set up the PWM. |
| * |
| * \param slice_num PWM slice number |
| * \param c The configuration to use |
| * \param start If true the PWM will be started running once configured. If false you will need to start |
| * manually using \ref pwm_set_enabled() or \ref pwm_set_mask_enabled() |
| */ |
| static inline void pwm_init(uint slice_num, pwm_config *c, bool start) { |
| check_slice_num_param(slice_num); |
| pwm_hw->slice[slice_num].csr = 0; |
| |
| pwm_hw->slice[slice_num].ctr = PWM_CH0_CTR_RESET; |
| pwm_hw->slice[slice_num].cc = PWM_CH0_CC_RESET; |
| pwm_hw->slice[slice_num].top = c->top; |
| pwm_hw->slice[slice_num].div = c->div; |
| pwm_hw->slice[slice_num].csr = c->csr | (bool_to_bit(start) << PWM_CH0_CSR_EN_LSB); |
| } |
| |
| /** \brief Get a set of default values for PWM configuration |
| * \ingroup hardware_pwm |
| * |
| * PWM config is free-running at system clock speed, no phase correction, wrapping at 0xffff, |
| * with standard polarities for channels A and B. |
| * |
| * \return Set of default values. |
| */ |
| static inline pwm_config pwm_get_default_config(void) { |
| pwm_config c = {0, 0, 0}; |
| pwm_config_set_phase_correct(&c, false); |
| pwm_config_set_clkdiv_int(&c, 1); |
| pwm_config_set_clkdiv_mode(&c, PWM_DIV_FREE_RUNNING); |
| pwm_config_set_output_polarity(&c, false, false); |
| pwm_config_set_wrap(&c, 0xffffu); |
| return c; |
| } |
| |
| /** \brief Set the current PWM counter wrap value |
| * \ingroup hardware_pwm |
| * |
| * Set the highest value the counter will reach before returning to 0. Also |
| * known as TOP. |
| * |
| * The counter wrap value is double-buffered in hardware. This means that, |
| * when the PWM is running, a write to the counter wrap value does not take |
| * effect until after the next time the PWM slice wraps (or, in phase-correct |
| * mode, the next time the slice reaches 0). If the PWM is not running, the |
| * write is latched in immediately. |
| * |
| * \param slice_num PWM slice number |
| * \param wrap Value to set wrap to |
| */ |
| static inline void pwm_set_wrap(uint slice_num, uint16_t wrap) { |
| check_slice_num_param(slice_num); |
| pwm_hw->slice[slice_num].top = wrap; |
| } |
| |
| /** \brief Set the current PWM counter compare value for one channel |
| * \ingroup hardware_pwm |
| * |
| * Set the value of the PWM counter compare value, for either channel A or channel B. |
| * |
| * The counter compare register is double-buffered in hardware. This means |
| * that, when the PWM is running, a write to the counter compare values does |
| * not take effect until the next time the PWM slice wraps (or, in |
| * phase-correct mode, the next time the slice reaches 0). If the PWM is not |
| * running, the write is latched in immediately. |
| * |
| * \param slice_num PWM slice number |
| * \param chan Which channel to update. 0 for A, 1 for B. |
| * \param level new level for the selected output |
| */ |
| static inline void pwm_set_chan_level(uint slice_num, uint chan, uint16_t level) { |
| check_slice_num_param(slice_num); |
| hw_write_masked( |
| &pwm_hw->slice[slice_num].cc, |
| ((uint)level) << (chan ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB), |
| chan ? PWM_CH0_CC_B_BITS : PWM_CH0_CC_A_BITS |
| ); |
| } |
| |
| /** \brief Set PWM counter compare values |
| * \ingroup hardware_pwm |
| * |
| * Set the value of the PWM counter compare values, A and B. |
| * |
| * The counter compare register is double-buffered in hardware. This means |
| * that, when the PWM is running, a write to the counter compare values does |
| * not take effect until the next time the PWM slice wraps (or, in |
| * phase-correct mode, the next time the slice reaches 0). If the PWM is not |
| * running, the write is latched in immediately. |
| * |
| * \param slice_num PWM slice number |
| * \param level_a Value to set compare A to. When the counter reaches this value the A output is deasserted |
| * \param level_b Value to set compare B to. When the counter reaches this value the B output is deasserted |
| */ |
| static inline void pwm_set_both_levels(uint slice_num, uint16_t level_a, uint16_t level_b) { |
| check_slice_num_param(slice_num); |
| pwm_hw->slice[slice_num].cc = (((uint)level_b) << PWM_CH0_CC_B_LSB) | (((uint)level_a) << PWM_CH0_CC_A_LSB); |
| } |
| |
| /** \brief Helper function to set the PWM level for the slice and channel associated with a GPIO. |
| * \ingroup hardware_pwm |
| * |
| * Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding |
| * counter compare field. |
| * |
| * This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs |
| * mapping to the same slice and channel (if GPIOs have a difference of 16). |
| * |
| * The counter compare register is double-buffered in hardware. This means |
| * that, when the PWM is running, a write to the counter compare values does |
| * not take effect until the next time the PWM slice wraps (or, in |
| * phase-correct mode, the next time the slice reaches 0). If the PWM is not |
| * running, the write is latched in immediately. |
| * |
| * \param gpio GPIO to set level of |
| * \param level PWM level for this GPIO |
| */ |
| static inline void pwm_set_gpio_level(uint gpio, uint16_t level) { |
| valid_params_if(HARDWARE_PWM, gpio < NUM_BANK0_GPIOS); |
| pwm_set_chan_level(pwm_gpio_to_slice_num(gpio), pwm_gpio_to_channel(gpio), level); |
| } |
| |
| /** \brief Get PWM counter |
| * \ingroup hardware_pwm |
| * |
| * Get current value of PWM counter |
| * |
| * \param slice_num PWM slice number |
| * \return Current value of the PWM counter |
| */ |
| static inline uint16_t pwm_get_counter(uint slice_num) { |
| check_slice_num_param(slice_num); |
| return (uint16_t)(pwm_hw->slice[slice_num].ctr); |
| } |
| |
| /** \brief Set PWM counter |
| * \ingroup hardware_pwm |
| * |
| * Set the value of the PWM counter |
| * |
| * \param slice_num PWM slice number |
| * \param c Value to set the PWM counter to |
| * |
| */ |
| static inline void pwm_set_counter(uint slice_num, uint16_t c) { |
| check_slice_num_param(slice_num); |
| pwm_hw->slice[slice_num].ctr = c; |
| } |
| |
| /** \brief Advance PWM count |
| * \ingroup hardware_pwm |
| * |
| * Advance the phase of a running the counter by 1 count. |
| * |
| * This function will return once the increment is complete. |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_advance_count(uint slice_num) { |
| check_slice_num_param(slice_num); |
| hw_set_bits(&pwm_hw->slice[slice_num].csr, PWM_CH0_CSR_PH_ADV_BITS); |
| while (pwm_hw->slice[slice_num].csr & PWM_CH0_CSR_PH_ADV_BITS) { |
| tight_loop_contents(); |
| } |
| } |
| |
| /** \brief Retard PWM count |
| * \ingroup hardware_pwm |
| * |
| * Retard the phase of a running counter by 1 count |
| * |
| * This function will return once the retardation is complete. |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_retard_count(uint slice_num) { |
| check_slice_num_param(slice_num); |
| hw_set_bits(&pwm_hw->slice[slice_num].csr, PWM_CH0_CSR_PH_RET_BITS); |
| while (pwm_hw->slice[slice_num].csr & PWM_CH0_CSR_PH_RET_BITS) { |
| tight_loop_contents(); |
| } |
| } |
| |
| /** \brief Set PWM clock divider using an 8:4 fractional value |
| * \ingroup hardware_pwm |
| * |
| * Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating. |
| * |
| * \param slice_num PWM slice number |
| * \param integer 8 bit integer part of the clock divider |
| * \param fract 4 bit fractional part of the clock divider |
| */ |
| static inline void pwm_set_clkdiv_int_frac(uint slice_num, uint8_t integer, uint8_t fract) { |
| check_slice_num_param(slice_num); |
| valid_params_if(HARDWARE_PWM, integer >= 1); |
| valid_params_if(HARDWARE_PWM, fract < 16); |
| pwm_hw->slice[slice_num].div = (((uint)integer) << PWM_CH0_DIV_INT_LSB) | (((uint)fract) << PWM_CH0_DIV_FRAC_LSB); |
| } |
| |
| /** \brief Set PWM clock divider |
| * \ingroup hardware_pwm |
| * |
| * Set the clock divider. Counter increment will be on sysclock divided by this value, taking into account the gating. |
| * |
| * \param slice_num PWM slice number |
| * \param divider Floating point clock divider, 1.f <= value < 256.f |
| */ |
| static inline void pwm_set_clkdiv(uint slice_num, float divider) { |
| check_slice_num_param(slice_num); |
| valid_params_if(HARDWARE_PWM, divider >= 1.f && divider < 256.f); |
| uint8_t i = (uint8_t)divider; |
| uint8_t f = (uint8_t)((divider - i) * (0x01 << 4)); |
| pwm_set_clkdiv_int_frac(slice_num, i, f); |
| } |
| |
| /** \brief Set PWM output polarity |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| * \param a true to invert output A |
| * \param b true to invert output B |
| */ |
| static inline void pwm_set_output_polarity(uint slice_num, bool a, bool b) { |
| check_slice_num_param(slice_num); |
| hw_write_masked(&pwm_hw->slice[slice_num].csr, bool_to_bit(a) << PWM_CH0_CSR_A_INV_LSB | bool_to_bit(b) << PWM_CH0_CSR_B_INV_LSB, |
| PWM_CH0_CSR_A_INV_BITS | PWM_CH0_CSR_B_INV_BITS); |
| } |
| |
| |
| /** \brief Set PWM divider mode |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| * \param mode Required divider mode |
| */ |
| static inline void pwm_set_clkdiv_mode(uint slice_num, enum pwm_clkdiv_mode mode) { |
| check_slice_num_param(slice_num); |
| valid_params_if(HARDWARE_PWM, mode == PWM_DIV_FREE_RUNNING || |
| mode == PWM_DIV_B_RISING || |
| mode == PWM_DIV_B_HIGH || |
| mode == PWM_DIV_B_FALLING); |
| hw_write_masked(&pwm_hw->slice[slice_num].csr, ((uint)mode) << PWM_CH0_CSR_DIVMODE_LSB, PWM_CH0_CSR_DIVMODE_BITS); |
| } |
| |
| /** \brief Set PWM phase correct on/off |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| * \param phase_correct true to set phase correct modulation, false to set trailing edge |
| * |
| * Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, |
| * the PWM starts counting back down. The output frequency is halved when phase-correct mode is enabled. |
| */ |
| static inline void pwm_set_phase_correct(uint slice_num, bool phase_correct) { |
| check_slice_num_param(slice_num); |
| hw_write_masked(&pwm_hw->slice[slice_num].csr, bool_to_bit(phase_correct) << PWM_CH0_CSR_PH_CORRECT_LSB, PWM_CH0_CSR_PH_CORRECT_BITS); |
| } |
| |
| /** \brief Enable/Disable PWM |
| * \ingroup hardware_pwm |
| * |
| * When a PWM is disabled, it halts its counter, and the output pins are left |
| * high or low depending on exactly when the counter is halted. When |
| * re-enabled the PWM resumes immediately from where it left off. |
| * |
| * If the PWM's output pins need to be low when halted: |
| * |
| * - The counter compare can be set to zero whilst the PWM is enabled, and |
| * then the PWM disabled once both pins are seen to be low |
| * |
| * - The GPIO output overrides can be used to force the actual pins low |
| * |
| * - The PWM can be run for one cycle (i.e. enabled then immediately disabled) |
| * with a TOP of 0, count of 0 and counter compare of 0, to force the pins |
| * low when the PWM has already been halted. The same method can be used |
| * with a counter compare value of 1 to force a pin high. |
| * |
| * Note that, when disabled, the PWM can still be advanced one count at a time |
| * by pulsing the PH_ADV bit in its CSR. The output pins transition as though |
| * the PWM were enabled. |
| * |
| * \param slice_num PWM slice number |
| * \param enabled true to enable the specified PWM, false to disable. |
| */ |
| static inline void pwm_set_enabled(uint slice_num, bool enabled) { |
| check_slice_num_param(slice_num); |
| hw_write_masked(&pwm_hw->slice[slice_num].csr, bool_to_bit(enabled) << PWM_CH0_CSR_EN_LSB, PWM_CH0_CSR_EN_BITS); |
| } |
| |
| /** \brief Enable/Disable multiple PWM slices simultaneously |
| * \ingroup hardware_pwm |
| * |
| * \param mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively |
| */ |
| static inline void pwm_set_mask_enabled(uint32_t mask) { |
| pwm_hw->en = mask; |
| } |
| |
| /** |
| * \def PWM_DEFAULT_IRQ_NUM() |
| * \ingroup hardware_pwm |
| * \hideinitializer |
| * \brief Returns the \ref irq_num_t for the default PWM IRQ. |
| * |
| * \if rp2040_specific |
| * On RP2040, there is only one PWM irq: PWM_IRQ_WRAP |
| * \endif |
| * |
| * \if rp2350_specific |
| * On RP2350 this returns to PWM_IRQ_WRAP0 |
| * \endif |
| * |
| * Note this macro is intended to resolve at compile time, and does no parameter checking |
| */ |
| #ifndef PWM_DEFAULT_IRQ_NUM |
| #if PICO_RP2040 |
| #define PWM_DEFAULT_IRQ_NUM() PWM_IRQ_WRAP |
| #else |
| #define PWM_DEFAULT_IRQ_NUM() PWM_IRQ_WRAP_0 |
| // backwards compatibility with RP2040 |
| #define PWM_IRQ_WRAP PWM_IRQ_WRAP_0 |
| #define isr_pwm_wrap isr_pwm_wrap_0 |
| #endif |
| #endif |
| |
| /*! \brief Enable PWM instance interrupt via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350) |
| * \ingroup hardware_pwm |
| * |
| * Used to enable a single PWM instance interrupt. |
| * |
| * Note there is only one PWM_IRQ_WRAP on RP2040. |
| * |
| * \param slice_num PWM block to enable/disable |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_set_irq_enabled(uint slice_num, bool enabled) { |
| check_slice_num_param(slice_num); |
| if (enabled) { |
| hw_set_bits(&pwm_hw->inte, 1u << slice_num); |
| } else { |
| hw_clear_bits(&pwm_hw->inte, 1u << slice_num); |
| } |
| } |
| |
| /*! \brief Enable PWM instance interrupt via PWM_IRQ_WRAP_0 |
| * \ingroup hardware_pwm |
| * |
| * Used to enable a single PWM instance interrupt. |
| * |
| * \param slice_num PWM block to enable/disable |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_set_irq0_enabled(uint slice_num, bool enabled) { |
| // irq0 always corresponds to the default IRQ |
| pwm_set_irq_enabled(slice_num, enabled); |
| } |
| |
| #if NUM_PWM_IRQS > 1 |
| /*! \brief Enable PWM instance interrupt via PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * Used to enable a single PWM instance interrupt. |
| * |
| * \param slice_num PWM block to enable/disable |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_set_irq1_enabled(uint slice_num, bool enabled) { |
| check_slice_num_param(slice_num); |
| if (enabled) { |
| hw_set_bits(&pwm_hw->inte1, 1u << slice_num); |
| } else { |
| hw_clear_bits(&pwm_hw->inte1, 1u << slice_num); |
| } |
| } |
| #endif |
| |
| /*! \brief Enable PWM instance interrupt via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * Used to enable a single PWM instance interrupt. |
| * |
| * Note there is only one PWM_IRQ_WRAP on RP2040. |
| * |
| * \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \param slice_num PWM block to enable/disable |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_irqn_set_slice_enabled(uint irq_index, uint slice_num, bool enabled) { |
| check_slice_num_param(slice_num); |
| invalid_params_if(HARDWARE_PWM, irq_index >= NUM_PWM_IRQS); |
| check_slice_num_param(slice_num); |
| if (enabled) { |
| hw_set_bits(&pwm_hw->irq_ctrl[irq_index].inte, 1u << slice_num); |
| } else { |
| hw_clear_bits(&pwm_hw->irq_ctrl[irq_index].inte, 1u << slice_num); |
| } |
| } |
| |
| /*! \brief Enable multiple PWM instance interrupts via the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350) |
| * \ingroup hardware_pwm |
| * |
| * Use this to enable multiple PWM interrupts at once. |
| * |
| * Note there is only one PWM_IRQ_WRAP on RP2040. |
| * |
| * \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc. |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_set_irq_mask_enabled(uint32_t slice_mask, bool enabled) { |
| valid_params_if(HARDWARE_PWM, slice_mask < 256); |
| #if PICO_RP2040 |
| if (enabled) { |
| hw_set_bits(&pwm_hw->inte, slice_mask); |
| } else { |
| hw_clear_bits(&pwm_hw->inte, slice_mask); |
| } |
| #else |
| static_assert(PWM_IRQ_WRAP_1 == PWM_IRQ_WRAP_0 + 1); |
| uint irq_index = PWM_DEFAULT_IRQ_NUM() - PWM_IRQ_WRAP_0; |
| if (enabled) { |
| hw_set_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask); |
| } else { |
| hw_clear_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask); |
| } |
| #endif |
| } |
| |
| /*! \brief Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_0 |
| * \ingroup hardware_pwm |
| * |
| * Use this to enable multiple PWM interrupts at once. |
| * |
| * \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc. |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_set_irq0_mask_enabled(uint32_t slice_mask, bool enabled) { |
| // default irq is irq0 |
| pwm_set_irq_mask_enabled(slice_mask, enabled); |
| } |
| |
| #if NUM_PWM_IRQS > 1 |
| /*! \brief Enable multiple PWM instance interrupts via PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * Use this to enable multiple PWM interrupts at once. |
| * |
| * \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc. |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_set_irq1_mask_enabled(uint32_t slice_mask, bool enabled) { |
| if (enabled) { |
| hw_set_bits(&pwm_hw->inte1, slice_mask); |
| } else { |
| hw_clear_bits(&pwm_hw->inte1, slice_mask); |
| } |
| } |
| #endif |
| |
| /*! \brief Enable PWM instance interrupts via either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * Used to enable a single PWM instance interrupt. |
| * |
| * Note there is only one PWM_IRQ_WRAP on RP2040. |
| * |
| * \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \param slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc. |
| * \param enabled true to enable, false to disable |
| */ |
| static inline void pwm_irqn_set_slice_mask_enabled(uint irq_index, uint slice_mask, bool enabled) { |
| invalid_params_if(HARDWARE_PWM, irq_index >= NUM_PWM_IRQS); |
| if (enabled) { |
| hw_set_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask); |
| } else { |
| hw_clear_bits(&pwm_hw->irq_ctrl[irq_index].inte, slice_mask); |
| } |
| } |
| |
| /*! \brief Clear a single PWM channel interrupt |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_clear_irq(uint slice_num) { |
| pwm_hw->intr = 1u << slice_num; |
| } |
| |
| /*! \brief Get PWM interrupt status, raw for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350) |
| * \ingroup hardware_pwm |
| * |
| * \return Bitmask of all PWM interrupts currently set |
| */ |
| static inline uint32_t pwm_get_irq_status_mask(void) { |
| return pwm_hw->ints; |
| } |
| |
| /*! \brief Get PWM interrupt status, raw for the PWM_IRQ_WRAP_0 |
| * \ingroup hardware_pwm |
| * |
| * \return Bitmask of all PWM interrupts currently set |
| */ |
| static inline uint32_t pwm_get_irq0_status_mask(void) { |
| return pwm_get_irq_status_mask(); |
| } |
| |
| #if NUM_PWM_IRQS > 1 |
| /*! \brief Get PWM interrupt status, raw for the PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * \return Bitmask of all PWM interrupts currently set |
| */ |
| static inline uint32_t pwm_get_irq1_status_mask(void) { |
| return pwm_hw->ints1; |
| } |
| #endif |
| |
| /*! \brief Get PWM interrupt status, raw for either PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \return Bitmask of all PWM interrupts currently set |
| */ |
| static inline uint32_t pwm_irqn_get_status_mask(uint irq_index) { |
| invalid_params_if(HARDWARE_PWM, irq_index >= NUM_DMA_IRQS); |
| return pwm_hw->irq_ctrl[irq_index].ints; |
| } |
| |
| /*! \brief Force PWM interrupt for the default PWM IRQ (PWM_IRQ_WRAP_0 on RP2350) |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_force_irq(uint slice_num) { |
| pwm_hw->intf = 1u << slice_num; |
| } |
| |
| /*! \brief Force PWM interrupt via PWM_IRQ_WRAP_0 |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_force_irq0(uint slice_num) { |
| pwm_force_irq(slice_num); |
| } |
| |
| #if NUM_PWM_IRQS > 1 |
| /*! \brief Force PWM interrupt via PWM_IRQ_WRAP_0 |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_force_irq1(uint slice_num) { |
| pwm_hw->intf1 = 1u << slice_num; |
| } |
| #endif |
| |
| /*! \brief Force PWM interrupt via PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \ingroup hardware_pwm |
| * |
| * \param irq_index the IRQ index; either 0 or 1 for PWM_IRQ_WRAP_0 or PWM_IRQ_WRAP_1 |
| * \param slice_num PWM slice number |
| */ |
| static inline void pwm_irqn_force(uint irq_index, uint slice_num) { |
| invalid_params_if(HARDWARE_PWM, irq_index >= NUM_PWM_IRQS); |
| pwm_hw->irq_ctrl[irq_index].intf = 1u << slice_num; |
| } |
| |
| /*! \brief Return the DREQ to use for pacing transfers to a particular PWM slice |
| * \ingroup hardware_pwm |
| * |
| * \param slice_num PWM slice number |
| */ |
| static inline uint pwm_get_dreq(uint slice_num) { |
| check_slice_num_param(slice_num); |
| return PWM_DREQ_NUM(slice_num); |
| } |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif |