blob: 0f9e3188d4ffe92de1fa7daf22070ad00b41af1d [file] [log] [blame]
/**
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef LIB_TINYUSB_HOST
#include "tusb.h"
#include "pico/stdio_usb.h"
// these may not be set if the user is providing tud support (i.e. LIB_TINYUSB_DEVICE is 1 because
// the user linked in tinyusb_device) but they haven't selected CDC
#if (CFG_TUD_ENABLED | TUSB_OPT_DEVICE_ENABLED) && CFG_TUD_CDC
#include "pico/binary_info.h"
#include "pico/time.h"
#include "pico/stdio/driver.h"
#include "pico/mutex.h"
#include "hardware/irq.h"
#include "device/usbd_pvt.h" // for usbd_defer_func
static mutex_t stdio_usb_mutex;
#if PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK
static void (*chars_available_callback)(void*);
static void *chars_available_param;
#endif
// when tinyusb_device is explicitly linked we do no background tud processing
#if !LIB_TINYUSB_DEVICE
// if this crit_sec is initialized, we are not in periodic timer mode, and must make sure
// we don't either create multiple one shot timers, or miss creating one. this crit_sec
// is used to protect the one_shot_timer_pending flag
static critical_section_t one_shot_timer_crit_sec;
static volatile bool one_shot_timer_pending;
#ifdef PICO_STDIO_USB_LOW_PRIORITY_IRQ
static_assert(PICO_STDIO_USB_LOW_PRIORITY_IRQ >= NUM_IRQS - NUM_USER_IRQS, "");
#define low_priority_irq_num PICO_STDIO_USB_LOW_PRIORITY_IRQ
#else
static uint8_t low_priority_irq_num;
#endif
static int64_t timer_task(__unused alarm_id_t id, __unused void *user_data) {
int64_t repeat_time;
if (critical_section_is_initialized(&one_shot_timer_crit_sec)) {
critical_section_enter_blocking(&one_shot_timer_crit_sec);
one_shot_timer_pending = false;
critical_section_exit(&one_shot_timer_crit_sec);
repeat_time = 0; // don't repeat
} else {
repeat_time = PICO_STDIO_USB_TASK_INTERVAL_US;
}
if (irq_is_enabled(low_priority_irq_num)) {
irq_set_pending(low_priority_irq_num);
return repeat_time;
} else {
return 0; // don't repeat
}
}
static void low_priority_worker_irq(void) {
if (mutex_try_enter(&stdio_usb_mutex, NULL)) {
tud_task();
#if PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK
uint32_t chars_avail = tud_cdc_available();
#endif
mutex_exit(&stdio_usb_mutex);
#if PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK
if (chars_avail && chars_available_callback) chars_available_callback(chars_available_param);
#endif
} else {
// if the mutex is already owned, then we are in non IRQ code in this file.
//
// it would seem simplest to just let that code call tud_task() at the end, however this
// code might run during the call to tud_task() and we might miss a necessary tud_task() call
//
// if we are using a periodic timer (crit_sec is not initialized in this case),
// then we are happy just to wait until the next tick, however when we are not using a periodic timer,
// we must kick off a one-shot timer to make sure the tud_task() DOES run (this method
// will be called again as a result, and will try the mutex_try_enter again, and if that fails
// create another one shot timer again, and so on).
if (critical_section_is_initialized(&one_shot_timer_crit_sec)) {
bool need_timer;
critical_section_enter_blocking(&one_shot_timer_crit_sec);
need_timer = !one_shot_timer_pending;
one_shot_timer_pending = true;
critical_section_exit(&one_shot_timer_crit_sec);
if (need_timer) {
add_alarm_in_us(PICO_STDIO_USB_TASK_INTERVAL_US, timer_task, NULL, true);
}
}
}
}
static void usb_irq(void) {
irq_set_pending(low_priority_irq_num);
}
#endif
static void stdio_usb_out_chars(const char *buf, int length) {
static uint64_t last_avail_time;
if (!mutex_try_enter_block_until(&stdio_usb_mutex, make_timeout_time_ms(PICO_STDIO_DEADLOCK_TIMEOUT_MS))) {
return;
}
if (stdio_usb_connected()) {
for (int i = 0; i < length;) {
int n = length - i;
int avail = (int) tud_cdc_write_available();
if (n > avail) n = avail;
if (n) {
int n2 = (int) tud_cdc_write(buf + i, (uint32_t)n);
tud_task();
tud_cdc_write_flush();
i += n2;
last_avail_time = time_us_64();
} else {
tud_task();
tud_cdc_write_flush();
if (!stdio_usb_connected() ||
(!tud_cdc_write_available() && time_us_64() > last_avail_time + PICO_STDIO_USB_STDOUT_TIMEOUT_US)) {
break;
}
}
}
} else {
// reset our timeout
last_avail_time = 0;
}
mutex_exit(&stdio_usb_mutex);
}
static void stdio_usb_out_flush(void) {
if (!mutex_try_enter_block_until(&stdio_usb_mutex, make_timeout_time_ms(PICO_STDIO_DEADLOCK_TIMEOUT_MS))) {
return;
}
do {
tud_task();
} while (tud_cdc_write_flush());
mutex_exit(&stdio_usb_mutex);
}
int stdio_usb_in_chars(char *buf, int length) {
// note we perform this check outside the lock, to try and prevent possible deadlock conditions
// with printf in IRQs (which we will escape through timeouts elsewhere, but that would be less graceful).
//
// these are just checks of state, so we can call them while not holding the lock.
// they may be wrong, but only if we are in the middle of a tud_task call, in which case at worst
// we will mistakenly think we have data available when we do not (we will check again), or
// tud_task will complete running and we will check the right values the next time.
//
int rc = PICO_ERROR_NO_DATA;
if (stdio_usb_connected() && tud_cdc_available()) {
if (!mutex_try_enter_block_until(&stdio_usb_mutex, make_timeout_time_ms(PICO_STDIO_DEADLOCK_TIMEOUT_MS))) {
return PICO_ERROR_NO_DATA; // would deadlock otherwise
}
if (stdio_usb_connected() && tud_cdc_available()) {
int count = (int) tud_cdc_read(buf, (uint32_t) length);
rc = count ? count : PICO_ERROR_NO_DATA;
} else {
// because our mutex use may starve out the background task, run tud_task here (we own the mutex)
tud_task();
}
mutex_exit(&stdio_usb_mutex);
}
return rc;
}
#if PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK
void stdio_usb_set_chars_available_callback(void (*fn)(void*), void *param) {
chars_available_callback = fn;
chars_available_param = param;
}
#endif
stdio_driver_t stdio_usb = {
.out_chars = stdio_usb_out_chars,
.out_flush = stdio_usb_out_flush,
.in_chars = stdio_usb_in_chars,
#if PICO_STDIO_USB_SUPPORT_CHARS_AVAILABLE_CALLBACK
.set_chars_available_callback = stdio_usb_set_chars_available_callback,
#endif
#if PICO_STDIO_ENABLE_CRLF_SUPPORT
.crlf_enabled = PICO_STDIO_USB_DEFAULT_CRLF
#endif
};
bool stdio_usb_init(void) {
if (get_core_num() != alarm_pool_core_num(alarm_pool_get_default())) {
// included an assertion here rather than just returning false, as this is likely
// a coding bug, rather than anything else.
assert(false);
return false;
}
#if !PICO_NO_BI_STDIO_USB
bi_decl_if_func_used(bi_program_feature("USB stdin / stdout"));
#endif
#if !defined(LIB_TINYUSB_DEVICE)
// initialize TinyUSB, as user hasn't explicitly linked it
tusb_init();
#else
assert(tud_inited()); // we expect the caller to have initialized if they are using TinyUSB
#endif
if (!mutex_is_initialized(&stdio_usb_mutex)) mutex_init(&stdio_usb_mutex);
bool rc = true;
#if !LIB_TINYUSB_DEVICE
#ifdef PICO_STDIO_USB_LOW_PRIORITY_IRQ
user_irq_claim(PICO_STDIO_USB_LOW_PRIORITY_IRQ);
#else
low_priority_irq_num = (uint8_t) user_irq_claim_unused(true);
#endif
irq_set_exclusive_handler(low_priority_irq_num, low_priority_worker_irq);
irq_set_enabled(low_priority_irq_num, true);
if (irq_has_shared_handler(USBCTRL_IRQ)) {
critical_section_init_with_lock_num(&one_shot_timer_crit_sec, spin_lock_claim_unused(true));
// we can use a shared handler to notice when there may be work to do
irq_add_shared_handler(USBCTRL_IRQ, usb_irq, PICO_SHARED_IRQ_HANDLER_LOWEST_ORDER_PRIORITY);
} else {
// we use initialization state of the one_shot_timer_critsec as a flag
memset(&one_shot_timer_crit_sec, 0, sizeof(one_shot_timer_crit_sec));
rc = add_alarm_in_us(PICO_STDIO_USB_TASK_INTERVAL_US, timer_task, NULL, true) >= 0;
}
#endif
if (rc) {
stdio_set_driver_enabled(&stdio_usb, true);
#if PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS
#if PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS > 0
absolute_time_t until = make_timeout_time_ms(PICO_STDIO_USB_CONNECT_WAIT_TIMEOUT_MS);
#else
absolute_time_t until = at_the_end_of_time;
#endif
do {
if (stdio_usb_connected()) {
#if PICO_STDIO_USB_POST_CONNECT_WAIT_DELAY_MS != 0
sleep_ms(PICO_STDIO_USB_POST_CONNECT_WAIT_DELAY_MS);
#endif
break;
}
sleep_ms(10);
} while (!time_reached(until));
#endif
}
return rc;
}
bool stdio_usb_deinit(void) {
if (get_core_num() != alarm_pool_core_num(alarm_pool_get_default())) {
// included an assertion here rather than just returning false, as this is likely
// a coding bug, rather than anything else.
assert(false);
return false;
}
assert(tud_inited()); // we expect the caller to have initialized when calling sdio_usb_init
bool rc = true;
stdio_set_driver_enabled(&stdio_usb, false);
#if PICO_STDIO_USB_DEINIT_DELAY_MS != 0
sleep_ms(PICO_STDIO_USB_DEINIT_DELAY_MS);
#endif
#if !LIB_TINYUSB_DEVICE
if (irq_has_shared_handler(USBCTRL_IRQ)) {
spin_lock_unclaim(spin_lock_get_num(one_shot_timer_crit_sec.spin_lock));
critical_section_deinit(&one_shot_timer_crit_sec);
// we can use a shared handler to notice when there may be work to do
irq_remove_handler(USBCTRL_IRQ, usb_irq);
} else {
// timer is disabled by disabling the irq
}
irq_set_enabled(low_priority_irq_num, false);
user_irq_unclaim(low_priority_irq_num);
#endif
return rc;
}
bool stdio_usb_connected(void) {
#if PICO_STDIO_USB_CONNECTION_WITHOUT_DTR
return tud_ready();
#else
// this actually checks DTR
return tud_cdc_connected();
#endif
}
#else
#warning stdio USB was configured along with user use of TinyUSB device mode, but CDC is not enabled
bool stdio_usb_init(void) {
return false;
}
#endif // CFG_TUD_ENABLED && CFG_TUD_CDC
#else
#warning stdio USB was configured, but is being disabled as TinyUSB host is explicitly linked
bool stdio_usb_init(void) {
return false;
}
#endif // !LIB_TINYUSB_HOST