blob: cb41ae82a1eae1f1139cd9a58d0823084ab3c946 [file] [log] [blame]
/*
* Copyright (c) 2024 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/irq.h>
#include <zephyr/drivers/clock_control/renesas_ra_cgc.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/drivers/pinctrl.h>
#include "r_gpt.h"
#include "r_gpt_cfg.h"
#include <zephyr/logging/log.h>
#include <stdio.h>
LOG_MODULE_REGISTER(pwm_renesas_ra8, CONFIG_PWM_LOG_LEVEL);
#define DT_DRV_COMPAT renesas_ra8_pwm
#define MAX_PIN 2U
#define GPT_PRV_GTIO_HIGH_COMPARE_MATCH_LOW_CYCLE_END 0x6U
#define GPT_PRV_GTIO_LOW_COMPARE_MATCH_HIGH_CYCLE_END 0x9U
#define GPT_PRV_GTIOR_INITIAL_LEVEL_BIT 4
#define GPT_PRV_GTIO_TOGGLE_COMPARE_MATCH 0x3U
struct pwm_ra8_capture_data {
pwm_capture_callback_handler_t callback;
void *user_data;
uint64_t period;
uint64_t pulse;
bool is_pulse_capture;
bool is_busy;
uint32_t overflows;
bool continuous;
};
struct pwm_ra8_data {
gpt_instance_ctrl_t fsp_ctrl;
timer_cfg_t fsp_cfg;
gpt_extended_cfg_t extend_cfg;
uint16_t capture_a_event;
uint16_t overflow_event;
#ifdef CONFIG_PWM_CAPTURE
struct pwm_ra8_capture_data capture;
#endif /* CONFIG_PWM_CAPTURE */
};
struct pwm_ra8_config {
const struct device *clock_dev;
struct clock_control_ra_subsys_cfg clock_subsys;
const struct pinctrl_dev_config *pincfg;
};
static uint32_t pwm_ra8_gtior_calculate(gpt_pin_level_t const stop_level)
{
/* The stop level is used as both the initial level and the stop level. */
uint32_t gtior = R_GPT0_GTIOR_OAE_Msk | ((uint32_t)stop_level << R_GPT0_GTIOR_OADFLT_Pos) |
((uint32_t)stop_level << GPT_PRV_GTIOR_INITIAL_LEVEL_BIT);
uint32_t gtion = GPT_PRV_GTIO_LOW_COMPARE_MATCH_HIGH_CYCLE_END;
/* Calculate the gtior value for PWM mode only */
gtior |= gtion;
return gtior;
}
static int pwm_ra8_apply_gtior_config(gpt_instance_ctrl_t *const p_ctrl,
timer_cfg_t const *const p_cfg)
{
gpt_extended_cfg_t *p_extend = (gpt_extended_cfg_t *)p_cfg->p_extend;
uint32_t gtior = p_extend->gtior_setting.gtior;
#if GPT_CFG_OUTPUT_SUPPORT_ENABLE
/* Check if custom GTIOR settings are provided. */
if (p_extend->gtior_setting.gtior == 0) {
/* If custom GTIOR settings are not provided, calculate GTIOR. */
if (p_extend->gtioca.output_enabled) {
uint32_t gtioca_gtior =
pwm_ra8_gtior_calculate(p_extend->gtioca.stop_level);
gtior |= gtioca_gtior << R_GPT0_GTIOR_GTIOA_Pos;
}
if (p_extend->gtiocb.output_enabled) {
uint32_t gtiocb_gtior =
pwm_ra8_gtior_calculate(p_extend->gtiocb.stop_level);
gtior |= gtiocb_gtior << R_GPT0_GTIOR_GTIOB_Pos;
}
}
#endif
#if GPT_PRV_EXTRA_FEATURES_ENABLED == GPT_CFG_OUTPUT_SUPPORT_ENABLE
gpt_extended_pwm_cfg_t const *p_pwm_cfg = p_extend->p_pwm_cfg;
if (NULL != p_pwm_cfg) {
/* Check if custom GTIOR settings are provided. */
if (p_extend->gtior_setting.gtior == 0) {
/* If custom GTIOR settings are not provided, set gtioca_disable_settings
* and gtiocb_disable_settings.
*/
gtior |= (uint32_t)(p_pwm_cfg->gtioca_disable_setting
<< R_GPT0_GTIOR_OADF_Pos);
gtior |= (uint32_t)(p_pwm_cfg->gtiocb_disable_setting
<< R_GPT0_GTIOR_OBDF_Pos);
}
}
#endif
/* Check if custom GTIOR settings are provided. */
if (p_extend->gtior_setting.gtior == 0) {
/*
* If custom GTIOR settings are not provided, configure the noise filter for
* the GTIOC pins.
*/
gtior |= (uint32_t)(p_extend->capture_filter_gtioca << R_GPT0_GTIOR_NFAEN_Pos);
gtior |= (uint32_t)(p_extend->capture_filter_gtiocb << R_GPT0_GTIOR_NFBEN_Pos);
}
/* Set the I/O control register. */
p_ctrl->p_reg->GTIOR = gtior;
return 0;
}
static int pwm_ra8_set_cycles(const struct device *dev, uint32_t pin, uint32_t period_cycles,
uint32_t pulse_cycles, pwm_flags_t flags)
{
struct pwm_ra8_data *data = dev->data;
uint32_t pulse;
fsp_err_t err;
if (pin >= MAX_PIN) {
LOG_ERR("Only valid for gtioca and gtiocb pins");
return -EINVAL;
}
if ((data->fsp_ctrl.variant == TIMER_VARIANT_16_BIT && period_cycles > UINT16_MAX) ||
(data->fsp_ctrl.variant == TIMER_VARIANT_32_BIT && period_cycles > UINT32_MAX)) {
LOG_ERR("Out of range period cycles are not valid");
return -EINVAL;
}
/* gtioca and gtiocb setting */
if (pin == GPT_IO_PIN_GTIOCA) {
data->extend_cfg.gtioca.output_enabled = true;
} else {
data->extend_cfg.gtiocb.output_enabled = true;
}
pulse = (flags & PWM_POLARITY_INVERTED) ? period_cycles - pulse_cycles : pulse_cycles;
/* Apply gtio output setting */
pwm_ra8_apply_gtior_config(&data->fsp_ctrl, &data->fsp_cfg);
/* Stop timer */
err = R_GPT_Stop(&data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Update period cycles, reflected at an overflow */
err = R_GPT_PeriodSet(&data->fsp_ctrl, period_cycles);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Update pulse cycles, reflected at an overflow */
err = R_GPT_DutyCycleSet(&data->fsp_ctrl, pulse, pin);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Start timer */
err = R_GPT_Start(&data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
LOG_DBG("channel %u, pin %u, pulse %u, period %u, prescaler: %u.", data->fsp_cfg.channel,
pin, pulse_cycles, period_cycles, data->fsp_cfg.source_div);
return 0;
};
static int pwm_ra8_get_cycles_per_sec(const struct device *dev, uint32_t pin, uint64_t *cycles)
{
struct pwm_ra8_data *data = dev->data;
timer_info_t info;
fsp_err_t err;
if (pin >= MAX_PIN) {
LOG_ERR("Only valid for gtioca and gtiocb pins");
return -EINVAL;
}
err = R_GPT_InfoGet(&data->fsp_ctrl, &info);
if (err != FSP_SUCCESS) {
return -EIO;
}
*cycles = (uint64_t)info.clock_frequency;
return 0;
};
#ifdef CONFIG_PWM_CAPTURE
extern void gpt_capture_compare_a_isr(void);
extern void gpt_counter_overflow_isr(void);
static void enable_irq(IRQn_Type const irq, uint32_t priority, void *p_context)
{
if (irq >= 0) {
R_BSP_IrqCfgEnable(irq, priority, p_context);
}
}
static void disable_irq(IRQn_Type irq)
{
/* Disable interrupts. */
if (irq >= 0) {
R_BSP_IrqDisable(irq);
R_FSP_IsrContextSet(irq, NULL);
}
}
static int pwm_ra8_configure_capture(const struct device *dev, uint32_t pin, pwm_flags_t flags,
pwm_capture_callback_handler_t cb, void *user_data)
{
struct pwm_ra8_data *data = dev->data;
if (pin != GPT_IO_PIN_GTIOCA) {
LOG_ERR("Feature only support for gtioca");
return -EINVAL;
}
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No PWWM capture type specified");
return -EINVAL;
}
if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
LOG_ERR("Cannot capture both period and pulse width");
return -ENOTSUP;
}
if (data->capture.is_busy) {
LOG_ERR("Capture already active on this pin");
return -EBUSY;
}
if (flags & PWM_CAPTURE_TYPE_PERIOD) {
data->capture.is_pulse_capture = false;
if (flags & PWM_POLARITY_INVERTED) {
data->extend_cfg.start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
data->extend_cfg.capture_a_source = data->extend_cfg.start_source;
} else {
data->extend_cfg.start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
data->extend_cfg.capture_a_source = data->extend_cfg.start_source;
}
} else {
data->capture.is_pulse_capture = true;
if (flags & PWM_POLARITY_INVERTED) {
data->extend_cfg.start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
data->extend_cfg.capture_a_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
} else {
data->extend_cfg.start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
data->extend_cfg.capture_a_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
}
}
data->capture.callback = cb;
data->capture.user_data = user_data;
data->capture.continuous = flags & PWM_CAPTURE_MODE_CONTINUOUS;
if (data->capture.continuous) {
data->extend_cfg.stop_source = data->extend_cfg.capture_a_source;
data->extend_cfg.clear_source = data->extend_cfg.start_source;
} else {
data->extend_cfg.stop_source = (gpt_source_t)(GPT_SOURCE_NONE);
data->extend_cfg.clear_source = (gpt_source_t)(GPT_SOURCE_NONE);
}
return 0;
}
static int pwm_ra8_enable_capture(const struct device *dev, uint32_t pin)
{
struct pwm_ra8_data *data = dev->data;
fsp_err_t err;
if (pin != GPT_IO_PIN_GTIOCA) {
LOG_ERR("Feature only support for gtioca");
return -EINVAL;
}
if (data->capture.is_busy) {
LOG_ERR("Capture already active on this pin");
return -EBUSY;
}
if (!data->capture.callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
data->capture.is_busy = true;
/* Enable capture source */
err = R_GPT_Enable(&data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Enable interruption */
enable_irq(data->fsp_cfg.cycle_end_irq, data->fsp_cfg.cycle_end_irq, &data->fsp_ctrl);
enable_irq(data->extend_cfg.capture_a_irq, data->extend_cfg.capture_a_ipl, &data->fsp_ctrl);
R_ICU->IELSR[data->fsp_cfg.cycle_end_irq] = (elc_event_t)data->overflow_event;
R_ICU->IELSR[data->extend_cfg.capture_a_irq] = (elc_event_t)data->capture_a_event;
return 0;
}
static int pwm_ra8_disable_capture(const struct device *dev, uint32_t pin)
{
struct pwm_ra8_data *data = dev->data;
fsp_err_t err;
if (pin != GPT_IO_PIN_GTIOCA) {
LOG_ERR("Feature only support for gtioca");
return -EINVAL;
}
data->capture.is_busy = false;
/* Disable interruption */
disable_irq(data->fsp_cfg.cycle_end_irq);
disable_irq(data->extend_cfg.capture_a_irq);
R_ICU->IELSR[data->fsp_cfg.cycle_end_irq] = (elc_event_t)ELC_EVENT_NONE;
R_ICU->IELSR[data->extend_cfg.capture_a_irq] = (elc_event_t)ELC_EVENT_NONE;
/* Disable capture source */
err = R_GPT_Disable(&data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Stop timer */
err = R_GPT_Stop(&data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Clear timer */
err = R_GPT_Reset(&data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
return 0;
}
static void fsp_callback(timer_callback_args_t *p_args)
{
const struct device *dev = p_args->p_context;
struct pwm_ra8_data *data = dev->data;
timer_info_t info;
(void)R_GPT_InfoGet(&data->fsp_ctrl, &info);
uint64_t period = info.period_counts;
/* The maximum period is one more than the maximum 16,32-bit number, but will be reflected
* as 0
*/
if (period == 0U) {
if (data->fsp_ctrl.variant == TIMER_VARIANT_16_BIT) {
period = UINT16_MAX + 1U;
} else {
period = UINT32_MAX + 1U;
}
}
/* Capture event */
if (p_args->event == TIMER_EVENT_CAPTURE_A) {
if (p_args->capture != 0U) {
if (data->capture.is_pulse_capture == true) {
data->capture.pulse =
(data->capture.overflows * period) + p_args->capture;
data->capture.callback(dev, GPT_IO_PIN_GTIOCA, 0,
data->capture.pulse, 0,
data->capture.user_data);
} else {
data->capture.period =
(data->capture.overflows * period) + p_args->capture;
data->capture.callback(dev, GPT_IO_PIN_GTIOCA, data->capture.period,
0, 0, data->capture.user_data);
}
data->capture.overflows = 0U;
/* Disable capture in single mode */
if (data->capture.continuous == false) {
pwm_ra8_disable_capture(dev, GPT_IO_PIN_GTIOCA);
}
}
} else if (p_args->event == TIMER_EVENT_CYCLE_END) {
data->capture.overflows++;
} else {
data->capture.callback(dev, GPT_IO_PIN_GTIOCA, 0, 0, -ECANCELED,
data->capture.user_data);
}
}
#endif /* CONFIG_PWM_CAPTURE */
static const struct pwm_driver_api pwm_ra8_driver_api = {
.get_cycles_per_sec = pwm_ra8_get_cycles_per_sec,
.set_cycles = pwm_ra8_set_cycles,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = pwm_ra8_configure_capture,
.enable_capture = pwm_ra8_enable_capture,
.disable_capture = pwm_ra8_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
static int pwm_ra8_init(const struct device *dev)
{
struct pwm_ra8_data *data = dev->data;
const struct pwm_ra8_config *cfg = dev->config;
int err;
if (!device_is_ready(cfg->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
err = clock_control_on(cfg->clock_dev, (clock_control_subsys_t)&cfg->clock_subsys);
if (err < 0) {
LOG_ERR("Could not initialize clock (%d)", err);
return err;
}
err = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
LOG_ERR("Failed to configure pins for PWM (%d)", err);
return err;
}
#if defined(CONFIG_PWM_CAPTURE)
data->fsp_cfg.p_callback = fsp_callback;
data->fsp_cfg.p_context = dev;
#endif /* defined(CONFIG_PWM_CAPTURE) */
data->fsp_cfg.p_extend = &data->extend_cfg;
err = R_GPT_Open(&data->fsp_ctrl, &data->fsp_cfg);
if (err != FSP_SUCCESS) {
return -EIO;
}
return 0;
}
#define _ELC_EVENT_GPT_CAPTURE_COMPARE_A(channel) ELC_EVENT_GPT##channel##_CAPTURE_COMPARE_A
#define _ELC_EVENT_GPT_COUNTER_OVERFLOW(channel) ELC_EVENT_GPT##channel##_COUNTER_OVERFLOW
#define ELC_EVENT_GPT_CAPTURE_COMPARE_A(channel) _ELC_EVENT_GPT_CAPTURE_COMPARE_A(channel)
#define ELC_EVENT_GPT_COUNTER_OVERFLOW(channel) _ELC_EVENT_GPT_COUNTER_OVERFLOW(channel)
#ifdef CONFIG_PWM_CAPTURE
#define PWM_RA_IRQ_CONFIG_INIT(index) \
do { \
\
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, gtioca, irq), \
DT_INST_IRQ_BY_NAME(index, gtioca, priority), \
gpt_capture_compare_a_isr, NULL, 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, overflow, irq), \
DT_INST_IRQ_BY_NAME(index, overflow, priority), \
gpt_counter_overflow_isr, NULL, 0); \
} while (0)
#else
#define PWM_RA_IRQ_CONFIG_INIT(index)
#endif /* CONFIG_PWM_CAPTURE */
#define PWM_RA8_INIT(index) \
PINCTRL_DT_INST_DEFINE(index); \
static const gpt_extended_cfg_t g_timer1_extend_##index = { \
.gtioca = \
{ \
.output_enabled = false, \
.stop_level = GPT_PIN_LEVEL_LOW, \
}, \
.gtiocb = \
{ \
.output_enabled = false, \
.stop_level = GPT_PIN_LEVEL_LOW, \
}, \
.start_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.stop_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.clear_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.count_up_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.count_down_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.capture_a_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.capture_b_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.capture_a_ipl = DT_INST_IRQ_BY_NAME(index, gtioca, priority), \
.capture_b_ipl = BSP_IRQ_DISABLED, \
.capture_a_irq = DT_INST_IRQ_BY_NAME(index, gtioca, irq), \
.capture_b_irq = FSP_INVALID_VECTOR, \
.capture_filter_gtioca = GPT_CAPTURE_FILTER_NONE, \
.capture_filter_gtiocb = GPT_CAPTURE_FILTER_NONE, \
.p_pwm_cfg = NULL, \
.gtior_setting.gtior = (0x0U), \
}; \
static struct pwm_ra8_data pwm_ra8_data_##index = { \
.fsp_cfg = \
{ \
.mode = TIMER_MODE_PWM, \
.source_div = DT_INST_PROP(index, divider), \
.channel = DT_INST_PROP(index, channel), \
.cycle_end_ipl = DT_INST_IRQ_BY_NAME(index, overflow, priority), \
.cycle_end_irq = DT_INST_IRQ_BY_NAME(index, overflow, irq), \
}, \
.extend_cfg = g_timer1_extend_##index, \
.capture_a_event = ELC_EVENT_GPT_CAPTURE_COMPARE_A(DT_INST_PROP(index, channel)), \
.overflow_event = ELC_EVENT_GPT_COUNTER_OVERFLOW(DT_INST_PROP(index, channel)), \
}; \
static const struct pwm_ra8_config pwm_ra8_config_##index = { \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(index)), \
.clock_subsys = { \
.mstp = (uint32_t)DT_INST_CLOCKS_CELL_BY_IDX(index, 0, mstp), \
.stop_bit = DT_INST_CLOCKS_CELL_BY_IDX(index, 0, stop_bit), \
}}; \
static int pwm_ra8_init_##index(const struct device *dev) \
{ \
PWM_RA_IRQ_CONFIG_INIT(index); \
int err = pwm_ra8_init(dev); \
if (err != 0) { \
return err; \
} \
return 0; \
} \
DEVICE_DT_INST_DEFINE(index, pwm_ra8_init_##index, NULL, &pwm_ra8_data_##index, \
&pwm_ra8_config_##index, POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&pwm_ra8_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PWM_RA8_INIT);