blob: 670adf52a96fc4ac154170b75f76f879e948d328 [file] [log] [blame]
/*
* Copyright (c) 2024-2025 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_qtmr_pwm
#include <errno.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/irq.h>
#include <fsl_qtmr.h>
#include <fsl_clock.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pwm_mcux_qtmr, CONFIG_PWM_LOG_LEVEL);
#define CHANNEL_COUNT TMR_CNTR_COUNT
struct pwm_mcux_qtmr_config {
TMR_Type *base;
uint32_t prescaler;
const struct pinctrl_dev_config *pincfg;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
#ifdef CONFIG_PWM_CAPTURE
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_PWM_CAPTURE */
};
#ifdef CONFIG_PWM_CAPTURE
struct pwm_mcux_qtmr_capture_data {
pwm_capture_callback_handler_t callback;
void *user_data;
uint32_t overflow_count;
uint32_t channel;
bool continuous : 1;
bool overflowed : 1;
bool pulse_capture: 1;
bool first_edge_captured : 1;
};
#endif /* CONFIG_PWM_CAPTURE */
struct pwm_mcux_qtmr_data {
struct k_mutex lock;
#ifdef CONFIG_PWM_CAPTURE
struct pwm_mcux_qtmr_capture_data capture;
#endif /* CONFIG_PWM_CAPTURE */
};
static int mcux_qtmr_pwm_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
struct pwm_mcux_qtmr_data *data = dev->data;
uint32_t highCount, lowCount;
uint16_t reg;
if (channel >= CHANNEL_COUNT) {
LOG_ERR("Invalid channel");
return -EINVAL;
}
/* Counter values to generate a PWM signal */
highCount = pulse_cycles;
lowCount = period_cycles - pulse_cycles;
if (highCount > 0U) {
highCount -= 1U;
}
if (lowCount > 0U) {
lowCount -= 1U;
}
if ((highCount > 0xFFFFU) || (lowCount > 0xFFFFU)) {
/* This should not be a 16-bit overflow value. If it is, change to a larger divider
* for clock source.
*/
return -EINVAL;
}
k_mutex_lock(&data->lock, K_FOREVER);
/* Set OFLAG pin for output mode and force out a low on the pin */
config->base->CHANNEL[channel].SCTRL |= (TMR_SCTRL_FORCE_MASK | TMR_SCTRL_OEN_MASK);
QTMR_StopTimer(config->base, channel);
/* Setup the compare registers for PWM output */
config->base->CHANNEL[channel].COMP1 = (uint16_t)lowCount;
config->base->CHANNEL[channel].COMP2 = (uint16_t)highCount;
/* Setup the pre-load registers for PWM output */
config->base->CHANNEL[channel].CMPLD1 = (uint16_t)lowCount;
config->base->CHANNEL[channel].CMPLD2 = (uint16_t)highCount;
reg = config->base->CHANNEL[channel].CSCTRL;
/* Setup the compare load control for COMP1 and COMP2.
* Load COMP1 when CSCTRL[TCF2] is asserted, load COMP2 when CSCTRL[TCF1] is asserted
*/
reg &= (uint16_t)(~(TMR_CSCTRL_CL1_MASK | TMR_CSCTRL_CL2_MASK));
reg |= (TMR_CSCTRL_CL1(kQTMR_LoadOnComp2) | TMR_CSCTRL_CL2(kQTMR_LoadOnComp1));
config->base->CHANNEL[channel].CSCTRL = reg;
reg = config->base->CHANNEL[channel].CTRL;
reg &= ~(uint16_t)TMR_CTRL_OUTMODE_MASK;
if (pulse_cycles == 0U) {
/* 0% duty cycle, clear OFLAG output on compare */
reg |= (TMR_CTRL_LENGTH_MASK | TMR_CTRL_OUTMODE(kQTMR_ClearOnCompare));
} else if (pulse_cycles == period_cycles) {
/* 100% duty cycle, set OFLAG output on compare */
reg |= (TMR_CTRL_LENGTH_MASK | TMR_CTRL_OUTMODE(kQTMR_SetOnCompare));
} else {
/* Toggle OFLAG output using alternating compare register */
reg |= (TMR_CTRL_LENGTH_MASK | TMR_CTRL_OUTMODE(kQTMR_ToggleOnAltCompareReg));
}
config->base->CHANNEL[channel].CTRL = reg;
QTMR_StartTimer(config->base, channel, kQTMR_PriSrcRiseEdge);
k_mutex_unlock(&data->lock);
return 0;
}
static int mcux_qtmr_pwm_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
uint32_t clock_freq;
if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_freq)) {
return -EINVAL;
}
*cycles = clock_freq / config->prescaler;
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
static inline bool mcux_qtmr_channel_is_active(const struct device *dev, uint32_t channel)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
return (config->base->CHANNEL[channel].CTRL & TMR_CTRL_CM_MASK) != 0U;
}
static int mcux_qtmr_configure_capture(const struct device *dev,
uint32_t channel, pwm_flags_t flags,
pwm_capture_callback_handler_t cb,
void *user_data)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
struct pwm_mcux_qtmr_data *data = dev->data;
bool inverted = (flags & PWM_POLARITY_MASK) == PWM_POLARITY_INVERTED;
if (channel >= CHANNEL_COUNT) {
LOG_ERR("invalid channel %d", channel);
return -EINVAL;
}
if (mcux_qtmr_channel_is_active(dev, channel)) {
LOG_ERR("pwm capture in progress");
return -EBUSY;
}
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No capture type specified");
return -EINVAL;
}
if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
LOG_ERR("Cannot capture both period and pulse width");
return -ENOTSUP;
}
data->capture.callback = cb;
data->capture.user_data = user_data;
data->capture.channel = channel;
data->capture.continuous =
(flags & PWM_CAPTURE_MODE_MASK) == PWM_CAPTURE_MODE_CONTINUOUS;
if (flags & PWM_CAPTURE_TYPE_PERIOD) {
data->capture.pulse_capture = false;
/* set reloadOnCapture to true to reload counter when capture event happends,
* so only second caputre value is needed when calculating ticks
*/
QTMR_SetupInputCapture(config->base,
(qtmr_channel_selection_t)channel,
(qtmr_input_source_t)channel,
inverted, true, kQTMR_RisingEdge);
} else {
data->capture.pulse_capture = true;
QTMR_SetupInputCapture(config->base,
(qtmr_channel_selection_t)channel,
(qtmr_input_source_t)channel,
inverted, true, kQTMR_RisingAndFallingEdge);
}
QTMR_EnableInterrupts(config->base, channel,
kQTMR_EdgeInterruptEnable | kQTMR_OverflowInterruptEnable);
return 0;
}
static int mcux_qtmr_enable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
struct pwm_mcux_qtmr_data *data = dev->data;
if (channel >= CHANNEL_COUNT) {
LOG_ERR("invalid channel %d", channel);
return -EINVAL;
}
if (!data->capture.callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
if (mcux_qtmr_channel_is_active(dev, channel)) {
LOG_ERR("PWM capture already enabled");
return -EBUSY;
}
data->capture.overflowed = false;
data->capture.first_edge_captured = false;
data->capture.overflow_count = 0;
QTMR_StartTimer(config->base, channel, kQTMR_PriSrcRiseEdge);
return 0;
}
static int mcux_qtmr_disable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
if (channel >= CHANNEL_COUNT) {
LOG_ERR("invalid channel %d", channel);
return -EINVAL;
}
QTMR_StopTimer(config->base, channel);
return 0;
}
static int mcux_qtmr_calc_ticks(uint32_t overflows, uint32_t capture,
uint32_t *result)
{
uint32_t pulse;
/* Calculate cycles from overflow counter */
if (u32_mul_overflow(overflows, 0xFFFFU, &pulse)) {
return -ERANGE;
}
/* Add pulse width */
if (u32_add_overflow(pulse, capture, &pulse)) {
return -ERANGE;
}
*result = pulse;
return 0;
}
static void mcux_qtmr_isr(const struct device *dev)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
struct pwm_mcux_qtmr_data *data = dev->data;
uint32_t ticks = 0;
uint32_t timeCapt = 0;
int err = 0;
uint32_t flags;
flags = QTMR_GetStatus(config->base, data->capture.channel);
QTMR_ClearStatusFlags(config->base, data->capture.channel, flags);
if ((flags & kQTMR_OverflowFlag) != 0U) {
data->capture.overflowed |= u32_add_overflow(1,
data->capture.overflow_count, &data->capture.overflow_count);
}
if ((flags & kQTMR_EdgeFlag) == 0U) {
return;
}
if (!data->capture.first_edge_captured) {
data->capture.first_edge_captured = true;
data->capture.overflow_count = 0;
data->capture.overflowed = false;
return;
}
if (data->capture.overflowed) {
err = -ERANGE;
} else {
/* calculate ticks from second capture */
timeCapt = config->base->CHANNEL[data->capture.channel].CAPT;
err = mcux_qtmr_calc_ticks(data->capture.overflow_count, timeCapt, &ticks);
}
if (data->capture.pulse_capture) {
data->capture.callback(dev, data->capture.channel,
0, ticks, err, data->capture.user_data);
} else {
data->capture.callback(dev, data->capture.channel,
ticks, 0, err, data->capture.user_data);
}
/* Prepare for next capture */
data->capture.overflowed = false;
data->capture.overflow_count = 0;
if (data->capture.continuous) {
if (data->capture.pulse_capture) {
data->capture.first_edge_captured = false;
} else {
/* No action required. In continuous period capture mode,
* first edge of next period captureis second edge of this
* capture (this edge)
*/
}
} else {
/* Stop timer and disable interrupts for single capture*/
data->capture.first_edge_captured = false;
QTMR_DisableInterrupts(config->base, data->capture.channel,
kQTMR_EdgeInterruptEnable | kQTMR_OverflowInterruptEnable);
QTMR_StopTimer(config->base, data->capture.channel);
}
}
#endif /* CONFIG_PWM_CAPTURE */
static int mcux_qtmr_pwm_init(const struct device *dev)
{
const struct pwm_mcux_qtmr_config *config = dev->config;
struct pwm_mcux_qtmr_data *data = dev->data;
qtmr_config_t qtmr_config;
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
k_mutex_init(&data->lock);
QTMR_GetDefaultConfig(&qtmr_config);
qtmr_config.primarySource = kQTMR_ClockDivide_1 + (31 - __builtin_clz(config->prescaler));
#ifdef CONFIG_PWM_CAPTURE
config->irq_config_func(dev);
qtmr_config.faultFilterCount = CONFIG_PWM_CAPTURE_MCUX_QTMR_FILTER_COUNT;
qtmr_config.faultFilterPeriod = CONFIG_PWM_CAPTURE_MCUX_QTMR_FILTER_PERIOD;
#endif /* CONFIG_PWM_CAPTURE */
for (int i = 0; i < CHANNEL_COUNT; i++) {
QTMR_Init(config->base, i, &qtmr_config);
}
return 0;
}
static DEVICE_API(pwm, pwm_mcux_qtmr_driver_api) = {
.set_cycles = mcux_qtmr_pwm_set_cycles,
.get_cycles_per_sec = mcux_qtmr_pwm_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = mcux_qtmr_configure_capture,
.enable_capture = mcux_qtmr_enable_capture,
.disable_capture = mcux_qtmr_disable_capture,
#endif
};
#ifdef CONFIG_PWM_CAPTURE
#define QTMR_CONFIG_FUNC(n) \
static void mcux_qtmr_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_qtmr_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
#define QTMR_CFG_CAPTURE_INIT(n) \
.irq_config_func = mcux_qtmr_config_func_##n
#define QTMR_INIT_CFG(n) QTMR_DECLARE_CFG(n, QTMR_CFG_CAPTURE_INIT(n))
#else /* !CONFIG_PWM_CAPTURE */
#define QTMR_CONFIG_FUNC(n)
#define QTMR_CFG_CAPTURE_INIT
#define QTMR_INIT_CFG(n) QTMR_DECLARE_CFG(n, QTMR_CFG_CAPTURE_INIT)
#endif /* !CONFIG_PWM_CAPTURE */
#define QTMR_DECLARE_CFG(n, CAPTURE_INIT) \
static const struct pwm_mcux_qtmr_config pwm_mcux_qtmr_config_##n = { \
.base = (TMR_Type *)DT_INST_REG_ADDR(n), \
.prescaler = DT_INST_PROP(n, prescaler), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
CAPTURE_INIT \
}
#define QTMR_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static const struct pwm_mcux_qtmr_config pwm_mcux_qtmr_config_##n; \
static struct pwm_mcux_qtmr_data pwm_mcux_qtmr_data_##n; \
DEVICE_DT_INST_DEFINE(n, &mcux_qtmr_pwm_init, NULL, \
&pwm_mcux_qtmr_data_##n, \
&pwm_mcux_qtmr_config_##n, \
POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&pwm_mcux_qtmr_driver_api); \
QTMR_CONFIG_FUNC(n) \
QTMR_INIT_CFG(n);
DT_INST_FOREACH_STATUS_OKAY(QTMR_DEVICE)