blob: ad66487b743ace427e773c25b6ed73851b590388 [file] [log] [blame]
/*
* Copyright (c) 2011-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Intel Local APIC timer driver
*
* This module implements a kernel device driver for the Intel local APIC
* timer device. It provides the standard "system clock driver" interfaces for
* use with P6 (PentiumPro, II, III) and P7 (Pentium4) family processors.
* The local APIC timer contains a 32-bit programmable down counter that
* generates an interrupt for use by the local processor when it reaches zero.
* The time base is derived from the processor's bus clock, divided by a value
* specified in the divide configuration register. After reset, the timer is
* initialized to zero.
*
* Typically, the local APIC timer operates in periodic mode. That is, after
* its down counter reaches zero and triggers a timer interrupt, it is reset
* to its initial value and the down counting continues.
*
* If the TICKLESS_IDLE kernel configuration option is enabled, the timer may
* be programmed to wake the system in N >= TICKLESS_IDLE_THRESH ticks. The
* kernel invokes _timer_idle_enter() to program the down counter in one-shot
* mode to trigger an interrupt in N ticks. When the timer expires or when
* another interrupt is detected, the kernel's interrupt stub invokes
* _timer_idle_exit() to leave the tickless idle state.
*
* @internal
* Factors that increase the driver's complexity:
*
* 1. As the down-counter is a 32-bit value, the number of ticks for which the
* system can be in tickless idle is limited to 'max_system_ticks'; This
* corresponds to 'cycles_per_max_ticks' (as the timer is programmed in cycles).
*
* 2. When the request to enter tickless arrives, any remaining cycles until
* the next tick must be accounted for to maintain accuracy.
*
* 3. The act of entering tickless idle may potentially straddle a tick
* boundary. Thus the number of remaining cycles to the next tick read from
* the down counter is suspect as it could occur before or after the tick
* boundary (thus before or after the counter is reset). If the tick is
* straddled, the following will occur:
* a. Enter tickless idle in one-shot mode
* b. Immediately leave tickless idle
* c. Process the tick event in the _timer_int_handler() and revert
* to periodic mode.
* d. Re-run the scheduler and possibly re-enter tickless idle
*
* 4. Tickless idle may be prematurely aborted due to a straddled tick. See
* previous factor.
*
* 5. Tickless idle may be prematurely aborted due to a non-timer interrupt.
* Its handler may make a thread ready to run, so any elapsed ticks
* must be accounted for and the timer must also expire at the end of the
* next logical tick so _timer_int_handler() can put it back in periodic mode.
* This can only be distinguished from the previous factor by the execution of
* _timer_int_handler().
*
* 6. Tickless idle may end naturally. The down counter should be zero in
* this case. However, some targets do not implement the local APIC timer
* correctly and the down-counter continues to decrement.
* @endinternal
*/
#include <kernel.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <arch/x86/irq_controller.h>
#include <power.h>
#include <device.h>
#include <board.h>
#include <kernel_structs.h>
/* Local APIC Timer Bits */
#define LOAPIC_TIMER_DIVBY_2 0x0 /* Divide by 2 */
#define LOAPIC_TIMER_DIVBY_4 0x1 /* Divide by 4 */
#define LOAPIC_TIMER_DIVBY_8 0x2 /* Divide by 8 */
#define LOAPIC_TIMER_DIVBY_16 0x3 /* Divide by 16 */
#define LOAPIC_TIMER_DIVBY_32 0x8 /* Divide by 32 */
#define LOAPIC_TIMER_DIVBY_64 0x9 /* Divide by 64 */
#define LOAPIC_TIMER_DIVBY_128 0xa /* Divide by 128 */
#define LOAPIC_TIMER_DIVBY_1 0xb /* Divide by 1 */
#define LOAPIC_TIMER_DIVBY_MASK 0xf /* mask bits */
#define LOAPIC_TIMER_PERIODIC 0x00020000 /* Timer Mode: Periodic */
/* Helpful macros and inlines for programming timer.
* We support both standard LOAPIC, and MVIC which has a similar
* interface
*/
#if defined(CONFIG_LOAPIC)
#define _REG_TIMER ((volatile u32_t *) \
(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER))
#define _REG_TIMER_ICR ((volatile u32_t *) \
(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER_ICR))
#define _REG_TIMER_CCR ((volatile u32_t *) \
(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER_CCR))
#define _REG_TIMER_CFG ((volatile u32_t *) \
(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER_CONFIG))
#define TIMER_IRQ CONFIG_LOAPIC_TIMER_IRQ
#define TIMER_IRQ_PRIORITY CONFIG_LOAPIC_TIMER_IRQ_PRIORITY
#elif defined(CONFIG_MVIC)
#define _REG_TIMER ((volatile u32_t *)MVIC_LVTTIMER)
#define _REG_TIMER_ICR ((volatile u32_t *)MVIC_ICR)
#define _REG_TIMER_CCR ((volatile u32_t *)MVIC_CCR)
/* MVIC has no TIMER_CFG register */
#define TIMER_IRQ CONFIG_MVIC_TIMER_IRQ
#define TIMER_IRQ_PRIORITY -1
#endif
#if defined(CONFIG_TICKLESS_IDLE)
#define TIMER_MODE_ONE_SHOT 0
#define TIMER_MODE_PERIODIC 1
#else /* !CONFIG_TICKLESS_IDLE */
#define tickless_idle_init() \
do {/* nothing */ \
} while (0)
#endif /* !CONFIG_TICKLESS_IDLE */
#if defined(CONFIG_TICKLESS_IDLE)
extern s32_t _sys_idle_elapsed_ticks;
#endif /* CONFIG_TICKLESS_IDLE */
/* computed counter 0 initial count value */
static u32_t __noinit cycles_per_tick;
#if defined(CONFIG_TICKLESS_IDLE)
static u32_t programmed_cycles;
static u32_t programmed_full_ticks;
static u32_t __noinit max_system_ticks;
static u32_t __noinit cycles_per_max_ticks;
#ifndef CONFIG_TICKLESS_KERNEL
static bool timer_known_to_have_expired;
static unsigned char timer_mode = TIMER_MODE_PERIODIC;
#endif
#endif /* CONFIG_TICKLESS_IDLE */
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static u32_t loapic_timer_device_power_state;
static u32_t reg_timer_save;
#ifndef CONFIG_MVIC
static u32_t reg_timer_cfg_save;
#endif
#endif
#ifdef CONFIG_JAILHOUSE_X2APIC
void _jailhouse_eoi(void)
{
write_x2apic(LOAPIC_EOI >> 4, 0);
}
#endif
/**
*
* @brief Set the timer for periodic mode
*
* This routine sets the timer for periodic mode.
*
* @return N/A
*/
static inline void periodic_mode_set(void)
{
#ifndef CONFIG_JAILHOUSE_X2APIC
*_REG_TIMER |= LOAPIC_TIMER_PERIODIC;
#else
write_x2apic(LOAPIC_TIMER >> 4,
read_x2apic(LOAPIC_TIMER >> 4) | LOAPIC_TIMER_PERIODIC);
#endif
}
/**
*
* @brief Set the initial count register
*
* This routine sets value from which the timer will count down.
* Note that setting the value to zero stops the timer.
*
* @param count Count from which timer is to count down
* @return N/A
*/
static inline void initial_count_register_set(u32_t count)
{
#ifndef CONFIG_JAILHOUSE_X2APIC
*_REG_TIMER_ICR = count;
#else
write_x2apic(LOAPIC_TIMER_ICR >> 4, count);
#endif
}
#if defined(CONFIG_TICKLESS_IDLE)
/**
*
* @brief Set the timer for one shot mode
*
* This routine sets the timer for one shot mode.
*
* @return N/A
*/
static inline void one_shot_mode_set(void)
{
*_REG_TIMER &= ~LOAPIC_TIMER_PERIODIC;
}
#endif /* CONFIG_TICKLESS_IDLE */
/**
*
* @brief Set the rate at which the timer is decremented
*
* This routine sets rate at which the timer is decremented to match the
* external bus frequency.
* This is not supported with MVIC, only real LOAPIC.
*
* @return N/A
*/
#ifndef CONFIG_MVIC
static inline void divide_configuration_register_set(void)
{
#ifndef CONFIG_JAILHOUSE_X2APIC
*_REG_TIMER_CFG = (*_REG_TIMER_CFG & ~0xf) | LOAPIC_TIMER_DIVBY_1;
#else
write_x2apic(LOAPIC_TIMER_CONFIG >> 4,
(read_x2apic(LOAPIC_TIMER_CONFIG >> 4) & ~0xf)
| LOAPIC_TIMER_DIVBY_1);
#endif
}
#endif
/**
*
* @brief Get the value from the current count register
*
* This routine gets the value from the timer's current count register. This
* value is the 'time' remaining to decrement before the timer triggers an
* interrupt.
*
* @return N/A
*/
static inline u32_t current_count_register_get(void)
{
#ifndef CONFIG_JAILHOUSE_X2APIC
return *_REG_TIMER_CCR;
#else
return read_x2apic(LOAPIC_TIMER_CCR >> 4);
#endif
}
#if defined(CONFIG_TICKLESS_IDLE)
/**
*
* @brief Get the value from the initial count register
*
* This routine gets the value from the initial count register.
*
* @return N/A
*/
static inline u32_t initial_count_register_get(void)
{
return *_REG_TIMER_ICR;
}
#endif /* CONFIG_TICKLESS_IDLE */
#ifdef CONFIG_TICKLESS_KERNEL
static inline void program_max_cycles(void)
{
programmed_cycles = cycles_per_max_ticks;
initial_count_register_set(programmed_cycles);
}
#endif
void _timer_int_handler(void *unused /* parameter is not used */
)
{
#ifdef CONFIG_EXECUTION_BENCHMARKING
__asm__ __volatile__ (
"pushl %eax\n\t"
"pushl %edx\n\t"
"rdtsc\n\t"
"mov %eax, __start_tick_time\n\t"
"mov %edx, __start_tick_time+4\n\t"
"pop %edx\n\t"
"pop %eax\n\t");
#endif
ARG_UNUSED(unused);
#if defined(CONFIG_TICKLESS_KERNEL)
if (!programmed_full_ticks) {
if (_sys_clock_always_on) {
_sys_clock_tick_count = _get_elapsed_clock_time();
program_max_cycles();
}
return;
}
u32_t cycles = current_count_register_get();
if ((cycles > 0) && (cycles < programmed_cycles)) {
/* stale interrupt */
return;
}
_sys_idle_elapsed_ticks = programmed_full_ticks;
/*
* Clear programmed ticks before announcing elapsed time so
* that recursive calls to _update_elapsed_time() will not
* announce already consumed elapsed time
*/
programmed_full_ticks = 0;
_sys_clock_tick_announce();
/* _sys_clock_tick_announce() could cause new programming */
if (!programmed_full_ticks && _sys_clock_always_on) {
_sys_clock_tick_count = _get_elapsed_clock_time();
program_max_cycles();
}
#else
#ifdef CONFIG_TICKLESS_IDLE
if (timer_mode == TIMER_MODE_ONE_SHOT) {
if (!timer_known_to_have_expired) {
u32_t cycles;
/*
* The timer fired unexpectedly. This is due to one of two cases:
* 1. Entering tickless idle straddled a tick.
* 2. Leaving tickless idle straddled the final tick.
* Due to the timer reprogramming in _timer_idle_exit(), case #2
* can be handled as a fall-through.
*
* NOTE: Although the cycle count is supposed to stop decrementing
* once it hits zero in one-shot mode, not all targets implement
* this properly (and continue to decrement). Thus, we have to
* perform a second comparison to check for wrap-around.
*/
cycles = current_count_register_get();
if ((cycles > 0) && (cycles < programmed_cycles)) {
/* Case 1 */
_sys_idle_elapsed_ticks = 0;
}
}
/* Return the timer to periodic mode */
initial_count_register_set(cycles_per_tick - 1);
periodic_mode_set();
timer_known_to_have_expired = false;
timer_mode = TIMER_MODE_PERIODIC;
}
_sys_clock_final_tick_announce();
#else
_sys_clock_tick_announce();
#endif /*CONFIG_TICKLESS_IDLE*/
#endif
#ifdef CONFIG_EXECUTION_BENCHMARKING
__asm__ __volatile__ (
"pushl %eax\n\t"
"pushl %edx\n\t"
"rdtsc\n\t"
"mov %eax, __end_tick_time\n\t"
"mov %edx, __end_tick_time+4\n\t"
"pop %edx\n\t"
"pop %eax\n\t");
#endif /* CONFIG_EXECUTION_BENCHMARKING */
}
#ifdef CONFIG_TICKLESS_KERNEL
u32_t _get_program_time(void)
{
return programmed_full_ticks;
}
u32_t _get_remaining_program_time(void)
{
if (programmed_full_ticks == 0) {
return 0;
}
return current_count_register_get() / cycles_per_tick;
}
u32_t _get_elapsed_program_time(void)
{
if (programmed_full_ticks == 0) {
return 0;
}
return programmed_full_ticks -
(current_count_register_get() / cycles_per_tick);
}
void _set_time(u32_t time)
{
if (!time) {
programmed_full_ticks = 0;
return;
}
programmed_full_ticks =
time > max_system_ticks ? max_system_ticks : time;
_sys_clock_tick_count = _get_elapsed_clock_time();
programmed_cycles = programmed_full_ticks * cycles_per_tick;
initial_count_register_set(programmed_cycles);
}
void _enable_sys_clock(void)
{
if (!programmed_full_ticks) {
program_max_cycles();
}
}
u64_t _get_elapsed_clock_time(void)
{
u64_t elapsed;
elapsed = _sys_clock_tick_count;
if (programmed_cycles) {
elapsed +=
(programmed_cycles -
current_count_register_get()) / cycles_per_tick;
}
return elapsed;
}
#endif
#if defined(CONFIG_TICKLESS_IDLE)
/**
*
* @brief Initialize the tickless idle feature
*
* This routine initializes the tickless idle feature. Note that the maximum
* number of ticks that can elapse during a "tickless idle" is limited by
* <cycles_per_tick>. The larger the value (the lower the tick frequency),
* the fewer elapsed ticks during a "tickless idle". Conversely, the smaller
* the value (the higher the tick frequency), the more elapsed ticks during a
* "tickless idle".
*
* @return N/A
*/
static void tickless_idle_init(void)
{
/*
* Calculate the maximum number of system ticks less one. This
* guarantees that an overflow will not occur when any remaining
* cycles are added to <cycles_per_max_ticks> when calculating
* <programmed_cycles>.
*/
max_system_ticks = (0xffffffff / cycles_per_tick) - 1;
cycles_per_max_ticks = max_system_ticks * cycles_per_tick;
}
/**
*
* @brief Place system timer into idle state
*
* Re-program the timer to enter into the idle state for the given number of
* ticks. It is placed into one shot mode where it will fire in the number of
* ticks supplied or the maximum number of ticks that can be programmed into
* hardware. A value of -1 means infinite number of ticks.
*
* @return N/A
*/
void _timer_idle_enter(s32_t ticks /* system ticks */
)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (ticks != K_FOREVER) {
/* Need to reprogram only if current program is smaller */
if (ticks > programmed_full_ticks) {
_set_time(ticks);
}
} else {
programmed_full_ticks = 0;
programmed_cycles = 0;
initial_count_register_set(0); /* 0 disables timer */
}
#else
u32_t cycles;
/*
* Although interrupts are disabled, the LOAPIC timer is still counting
* down. Take a snapshot of current count register to get the number of
* cycles remaining in the timer before it signals an interrupt and apply
* that towards the one-shot calculation to maintain accuracy.
*
* NOTE: If entering tickless idle straddles a tick, 'programmed_cycles'
* and 'programmmed_full_ticks' may be incorrect as we do not know which
* side of the tick the snapshot occurred. This is not a problem as the
* values will be corrected once the straddling is detected.
*/
cycles = current_count_register_get();
if ((ticks == K_FOREVER) || (ticks > max_system_ticks)) {
/*
* The number of cycles until the timer must fire next might not fit
* in the 32-bit counter register. To work around this, program
* the counter to fire in the maximum number of ticks (plus any
* remaining cycles).
*/
programmed_full_ticks = max_system_ticks;
programmed_cycles = cycles + cycles_per_max_ticks;
} else {
programmed_full_ticks = ticks - 1;
programmed_cycles = cycles + (programmed_full_ticks * cycles_per_tick);
}
/* Set timer to one-shot mode */
initial_count_register_set(programmed_cycles);
one_shot_mode_set();
timer_mode = TIMER_MODE_ONE_SHOT;
#endif
}
/**
*
* @brief Handling of tickless idle when interrupted
*
* The routine is responsible for taking the timer out of idle mode and
* generating an interrupt at the next tick interval.
*
* Note that in this routine, _sys_idle_elapsed_ticks must be zero because the
* ticker has done its work and consumed all the ticks. This has to be true
* otherwise idle mode wouldn't have been entered in the first place.
*
* @return N/A
*/
void _timer_idle_exit(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (!programmed_full_ticks && _sys_clock_always_on) {
program_max_cycles();
}
#else
u32_t remaining_cycles;
u32_t remaining_full_ticks;
/*
* Interrupts are locked and idling has ceased. The cause of the cessation
* is unknown. It may be due to one of three cases.
* 1. The timer, which was previously placed into one-shot mode has
* counted down to zero and signaled an interrupt.
* 2. A non-timer interrupt occurred. Note that the LOAPIC timer will
* still continue to decrement and may yet signal an interrupt.
* 3. The LOAPIC timer signaled an interrupt while the timer was being
* programmed for one-shot mode.
*
* NOTE: Although the cycle count is supposed to stop decrementing once it
* hits zero in one-shot mode, not all targets implement this properly
* (and continue to decrement). Thus a second comparison is required to
* check for wrap-around.
*/
remaining_cycles = current_count_register_get();
if ((remaining_cycles == 0) ||
(remaining_cycles >= programmed_cycles)) {
/*
* The timer has expired. The handler _timer_int_handler() is
* guaranteed to execute. Track the number of elapsed ticks. The
* handler _timer_int_handler() will account for the final tick.
*/
_sys_idle_elapsed_ticks = programmed_full_ticks;
/*
* Announce elapsed ticks to the kernel. Note we are guaranteed
* that the timer ISR will execute before the tick event is serviced.
* (The timer ISR reprograms the timer for the next tick.)
*/
_sys_clock_tick_announce();
timer_known_to_have_expired = true;
return;
}
timer_known_to_have_expired = false;
/*
* Either a non-timer interrupt occurred, or we straddled a tick when
* entering tickless idle. It is impossible to determine which occurred
* at this point. Regardless of the cause, ensure that the timer will
* expire at the end of the next tick in case the ISR makes any threads
* ready to run.
*
* NOTE #1: In the case of a straddled tick, the '_sys_idle_elapsed_ticks'
* calculation below may result in either 0 or 1. If 1, then this may
* result in a harmless extra call to _sys_clock_tick_announce().
*
* NOTE #2: In the case of a straddled tick, it is assumed that when the
* timer is reprogrammed, it will be reprogrammed with a cycle count
* sufficiently close to one tick that the timer will not expire before
* _timer_int_handler() is executed.
*/
remaining_full_ticks = remaining_cycles / cycles_per_tick;
_sys_idle_elapsed_ticks = programmed_full_ticks - remaining_full_ticks;
if (_sys_idle_elapsed_ticks > 0) {
_sys_clock_tick_announce();
}
if (remaining_full_ticks > 0) {
/*
* Re-program the timer (still in one-shot mode) to fire at the end of
* the tick, being careful to not program zero thus stopping the timer.
*/
programmed_cycles = 1 + ((remaining_cycles - 1) % cycles_per_tick);
initial_count_register_set(programmed_cycles);
}
#endif
}
#endif /* CONFIG_TICKLESS_IDLE */
/**
*
* @brief Initialize and enable the system clock
*
* This routine is used to program the timer to deliver interrupts at the
* rate specified via the 'sys_clock_us_per_tick' global variable.
*
* @return 0
*/
int _sys_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
/* determine the timer counter value (in timer clock cycles/system tick)
*/
cycles_per_tick = sys_clock_hw_cycles_per_tick;
tickless_idle_init();
#ifndef CONFIG_MVIC
divide_configuration_register_set();
#endif
initial_count_register_set(cycles_per_tick - 1);
#ifdef CONFIG_TICKLESS_KERNEL
one_shot_mode_set();
#else
periodic_mode_set();
#endif
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
loapic_timer_device_power_state = DEVICE_PM_ACTIVE_STATE;
#endif
IRQ_CONNECT(TIMER_IRQ, TIMER_IRQ_PRIORITY, _timer_int_handler, 0, 0);
/* Everything has been configured. It is now safe to enable the
* interrupt
*/
irq_enable(TIMER_IRQ);
return 0;
}
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static int sys_clock_suspend(struct device *dev)
{
ARG_UNUSED(dev);
reg_timer_save = *_REG_TIMER;
#ifndef CONFIG_MVIC
reg_timer_cfg_save = *_REG_TIMER_CFG;
#endif
loapic_timer_device_power_state = DEVICE_PM_SUSPEND_STATE;
return 0;
}
static int sys_clock_resume(struct device *dev)
{
ARG_UNUSED(dev);
*_REG_TIMER = reg_timer_save;
#ifndef CONFIG_MVIC
*_REG_TIMER_CFG = reg_timer_cfg_save;
#endif
/*
* It is difficult to accurately know the time spent in DS.
* We can use TSC or RTC but that will create a dependency
* on those components. Other issue is about what to do
* with pending timers. Following are some options :-
*
* 1) Expire all timers based on time spent found using some
* source like TSC
* 2) Expire all timers anyway
* 3) Expire only the timer at the top
* 4) Contine from where the timer left
*
* 1 and 2 require change to how timers are handled. 4 may not
* give a good user experience. After waiting for a long period
* in DS, the system would appear dead if it waits again.
*
* Current implementation uses option 3. The top most timer is
* expired. Following code will set the counter to a low number
* so it would immediately expire and generate timer interrupt
* which will process the top most timer. Note that timer IC
* cannot be set to 0. Setting it to 0 will stop the timer.
*/
initial_count_register_set(1);
loapic_timer_device_power_state = DEVICE_PM_ACTIVE_STATE;
return 0;
}
/*
* Implements the driver control management functionality
* the *context may include IN data or/and OUT data
*/
int sys_clock_device_ctrl(struct device *port, u32_t ctrl_command,
void *context)
{
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
if (*((u32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
return sys_clock_suspend(port);
} else if (*((u32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
return sys_clock_resume(port);
}
} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
*((u32_t *)context) = loapic_timer_device_power_state;
return 0;
}
return 0;
}
#endif
/**
*
* @brief Read the platform's timer hardware
*
* This routine returns the current time in terms of timer hardware clock
* cycles. We use the x86 TSC as the LOAPIC timer can't be used as a periodic
* system clock and a timestamp source at the same time.
*
* @return up counter of elapsed clock cycles
*/
u32_t _timer_cycle_get_32(void)
{
#if CONFIG_TSC_CYCLES_PER_SEC != 0
u64_t tsc;
/* 64-bit math to avoid overflows */
tsc = _tsc_read() * (u64_t)sys_clock_hw_cycles_per_sec /
(u64_t) CONFIG_TSC_CYCLES_PER_SEC;
return (u32_t)tsc;
#else
/* TSC runs same as the bus speed, nothing to do but return the TSC
* value
*/
return _do_read_cpu_timestamp32();
#endif
}
#if defined(CONFIG_SYSTEM_CLOCK_DISABLE)
/**
*
* @brief Stop announcing ticks into the kernel
*
* This routine simply disables the LOAPIC counter such that interrupts are no
* longer delivered.
*
* @return N/A
*/
void sys_clock_disable(void)
{
unsigned int key; /* interrupt lock level */
key = irq_lock();
irq_disable(TIMER_IRQ);
initial_count_register_set(0);
irq_unlock(key);
}
#endif /* CONFIG_SYSTEM_CLOCK_DISABLE */