blob: 599d2eb23c7f05626fe241c89947cca08e86e4f1 [file] [log] [blame]
/* adc_qmsi.c - QMSI ADC Sensor Subsystem driver */
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <init.h>
#include <kernel.h>
#include <string.h>
#include <stdlib.h>
#include <board.h>
#include <adc.h>
#include <arch/cpu.h>
#include <atomic.h>
#include "qm_ss_isr.h"
#include "qm_ss_adc.h"
#include "ss_clk.h"
enum {
ADC_STATE_IDLE,
ADC_STATE_BUSY,
ADC_STATE_ERROR
};
struct adc_info {
atomic_t state;
struct k_sem device_sync_sem;
struct k_sem sem;
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
u32_t device_power_state;
qm_ss_adc_context_t adc_ctx;
#endif
};
static void adc_config_irq(void);
static qm_ss_adc_config_t cfg;
#if (CONFIG_ADC_QMSI_INTERRUPT)
static void complete_callback(void *data, int error, qm_ss_adc_status_t status,
qm_ss_adc_cb_source_t source)
{
ARG_UNUSED(status);
ARG_UNUSED(source);
struct device *dev = data;
struct adc_info *info = dev->driver_data;
if (info) {
if (error) {
info->state = ADC_STATE_ERROR;
}
k_sem_give(&info->device_sync_sem);
}
}
#endif
static void adc_lock(struct adc_info *data)
{
k_sem_take(&data->sem, K_FOREVER);
data->state = ADC_STATE_BUSY;
}
static void adc_unlock(struct adc_info *data)
{
k_sem_give(&data->sem);
data->state = ADC_STATE_IDLE;
}
#if (CONFIG_ADC_QMSI_CALIBRATION)
static void adc_qmsi_ss_enable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
qm_ss_adc_set_mode(QM_SS_ADC_0, QM_SS_ADC_MODE_NORM_CAL);
qm_ss_adc_calibrate(QM_SS_ADC_0);
adc_unlock(info);
}
#else
static void adc_qmsi_ss_enable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
qm_ss_adc_set_mode(QM_SS_ADC_0, QM_SS_ADC_MODE_NORM_NO_CAL);
adc_unlock(info);
}
#endif /* CONFIG_ADC_QMSI_CALIBRATION */
static void adc_qmsi_ss_disable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
/* Go to deep sleep */
qm_ss_adc_set_mode(QM_SS_ADC_0, QM_SS_ADC_MODE_DEEP_PWR_DOWN);
adc_unlock(info);
}
#if (CONFIG_ADC_QMSI_POLL)
static int adc_qmsi_ss_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
int i, ret = 0;
qm_ss_adc_xfer_t xfer;
qm_ss_adc_status_t status;
struct adc_info *info = dev->driver_data;
for (i = 0; i < seq_tbl->num_entries; i++) {
xfer.ch = (qm_ss_adc_channel_t *)&seq_tbl->entries[i].channel_id;
/* Just one channel at the time using the Zephyr sequence table
*/
xfer.ch_len = 1;
xfer.samples = (qm_ss_adc_sample_t *)seq_tbl->entries[i].buffer;
/* buffer length (bytes) the number of samples, the QMSI Driver
* does not allow more than QM_ADC_FIFO_LEN samples at the time
* in polling mode, if that happens, the qm_adc_convert api will
* return with an error
*/
xfer.samples_len =
(seq_tbl->entries[i].buffer_length)/sizeof(qm_ss_adc_sample_t);
xfer.callback = NULL;
xfer.callback_data = NULL;
cfg.window = seq_tbl->entries[i].sampling_delay;
adc_lock(info);
if (qm_ss_adc_set_config(QM_SS_ADC_0, &cfg) != 0) {
ret = -EINVAL;
adc_unlock(info);
break;
}
/* Run the conversion, here the function will poll for the
* samples. The function will constantly read the status
* register to check if the number of samples required has been
* captured
*/
if (qm_ss_adc_convert(QM_SS_ADC_0, &xfer, &status) != 0) {
ret = -EIO;
adc_unlock(info);
break;
}
/* Successful Analog to Digital conversion */
adc_unlock(info);
}
return ret;
}
#else
static int adc_qmsi_ss_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
int i, ret = 0;
qm_ss_adc_xfer_t xfer;
struct adc_info *info = dev->driver_data;
for (i = 0; i < seq_tbl->num_entries; i++) {
xfer.ch = (qm_ss_adc_channel_t *)&seq_tbl->entries[i].channel_id;
/* Just one channel at the time using the Zephyr sequence table */
xfer.ch_len = 1;
xfer.samples =
(qm_ss_adc_sample_t *)seq_tbl->entries[i].buffer;
xfer.samples_len =
(seq_tbl->entries[i].buffer_length)/sizeof(qm_ss_adc_sample_t);
xfer.callback = complete_callback;
xfer.callback_data = dev;
cfg.window = seq_tbl->entries[i].sampling_delay;
adc_lock(info);
if (qm_ss_adc_set_config(QM_SS_ADC_0, &cfg) != 0) {
ret = -EINVAL;
adc_unlock(info);
break;
}
/* This is the interrupt driven API, will generate and interrupt and
* call the complete_callback function once the samples have been
* obtained
*/
if (qm_ss_adc_irq_convert(QM_SS_ADC_0, &xfer) != 0) {
ret = -EIO;
adc_unlock(info);
break;
}
/* Wait for the interrupt to finish */
k_sem_take(&info->device_sync_sem, K_FOREVER);
if (info->state == ADC_STATE_ERROR) {
ret = -EIO;
adc_unlock(info);
break;
}
/* Successful Analog to Digital conversion */
adc_unlock(info);
}
return ret;
}
#endif /* CONFIG_ADC_QMSI_POLL */
static void adc_qmsi_ss_rx_isr(void *arg)
{
ARG_UNUSED(arg);
qm_ss_adc_0_isr(NULL);
}
static void adc_qmsi_ss_err_isr(void *arg)
{
ARG_UNUSED(arg);
qm_ss_adc_0_error_isr(NULL);
}
static const struct adc_driver_api api_funcs = {
.enable = adc_qmsi_ss_enable,
.disable = adc_qmsi_ss_disable,
.read = adc_qmsi_ss_read,
};
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static void adc_qmsi_ss_set_power_state(struct device *dev,
u32_t power_state)
{
struct adc_info *context = dev->driver_data;
context->device_power_state = power_state;
}
static u32_t adc_qmsi_ss_get_power_state(struct device *dev)
{
struct adc_info *context = dev->driver_data;
return context->device_power_state;
}
static int adc_qmsi_ss_suspend_device(struct device *dev)
{
struct adc_info *context = dev->driver_data;
qm_ss_adc_save_context(QM_SS_ADC_0, &context->adc_ctx);
adc_qmsi_ss_set_power_state(dev, DEVICE_PM_SUSPEND_STATE);
return 0;
}
static int adc_qmsi_ss_resume_device_from_suspend(struct device *dev)
{
struct adc_info *context = dev->driver_data;
qm_ss_adc_restore_context(QM_SS_ADC_0, &context->adc_ctx);
adc_qmsi_ss_set_power_state(dev, DEVICE_PM_ACTIVE_STATE);
return 0;
}
static int adc_qmsi_ss_device_ctrl(struct device *dev, u32_t ctrl_command,
void *context)
{
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
if (*((u32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
return adc_qmsi_ss_suspend_device(dev);
} else if (*((u32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
return adc_qmsi_ss_resume_device_from_suspend(dev);
}
} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
*((u32_t *)context) = adc_qmsi_ss_get_power_state(dev);
}
return 0;
}
#else
#define adc_qmsi_ss_set_power_state(...)
#endif /* CONFIG_DEVICE_POWER_MANAGEMENT */
static int adc_qmsi_ss_init(struct device *dev)
{
struct adc_info *info = dev->driver_data;
/* Set up config */
/* Clock cycles between the start of each sample */
cfg.window = CONFIG_ADC_QMSI_SERIAL_DELAY;
cfg.resolution = CONFIG_ADC_QMSI_SAMPLE_WIDTH;
qm_ss_adc_set_config(QM_SS_ADC_0, &cfg);
ss_clk_adc_enable();
ss_clk_adc_set_div(CONFIG_ADC_QMSI_CLOCK_RATIO);
k_sem_init(&info->device_sync_sem, 0, UINT_MAX);
k_sem_init(&info->sem, 1, UINT_MAX);
info->state = ADC_STATE_IDLE;
adc_config_irq();
adc_qmsi_ss_set_power_state(dev, DEVICE_PM_ACTIVE_STATE);
return 0;
}
static struct adc_info adc_info_dev;
DEVICE_DEFINE(adc_qmsi_ss, CONFIG_ADC_0_NAME, &adc_qmsi_ss_init,
adc_qmsi_ss_device_ctrl, &adc_info_dev, NULL, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &api_funcs);
static void adc_config_irq(void)
{
u32_t *scss_intmask;
IRQ_CONNECT(IRQ_ADC_IRQ, CONFIG_ADC_0_IRQ_PRI,
adc_qmsi_ss_rx_isr, DEVICE_GET(adc_qmsi_ss), 0);
irq_enable(IRQ_ADC_IRQ);
IRQ_CONNECT(IRQ_ADC_ERR, CONFIG_ADC_0_IRQ_PRI,
adc_qmsi_ss_err_isr, DEVICE_GET(adc_qmsi_ss), 0);
irq_enable(IRQ_ADC_ERR);
scss_intmask =
(u32_t *)&QM_INTERRUPT_ROUTER->ss_adc_0_error_int_mask;
*scss_intmask &= ~BIT(8);
scss_intmask = (u32_t *)&QM_INTERRUPT_ROUTER->ss_adc_0_int_mask;
*scss_intmask &= ~BIT(8);
}