| /* |
| * Copyright (c) 2021 Microchip Technology Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT microchip_xec_pcr |
| |
| #include <soc.h> |
| #include <zephyr/arch/cpu.h> |
| #include <cmsis_core.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/clock_control/mchp_xec_clock_control.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/dt-bindings/clock/mchp_xec_pcr.h> |
| #include <zephyr/irq.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/sys/barrier.h> |
| LOG_MODULE_REGISTER(clock_control_xec, LOG_LEVEL_ERR); |
| |
| #define CLK32K_SIL_OSC_DELAY 256 |
| #define CLK32K_PLL_LOCK_WAIT (16 * 1024) |
| #define CLK32K_PIN_WAIT 4096 |
| #define CLK32K_XTAL_WAIT (16 * 1024) |
| #define CLK32K_XTAL_MON_WAIT (64 * 1024) |
| #define XEC_CC_DFLT_PLL_LOCK_WAIT_MS 30 |
| |
| /* |
| * Counter checks: |
| * 32KHz period counter minimum for pass/fail: 16-bit |
| * 32KHz period counter maximum for pass/fail: 16-bit |
| * 32KHz duty cycle variation max for pass/fail: 16-bit |
| * 32KHz valid count minimum: 8-bit |
| * |
| * 32768 Hz period is 30.518 us |
| * HW count resolution is 48 MHz. |
| * One 32KHz clock pulse = 1464.84 48 MHz counts. |
| */ |
| #define CNT32K_TMIN 1435 |
| #define CNT32K_TMAX 1495 |
| #define CNT32K_DUTY_MAX 132 |
| #define CNT32K_VAL_MIN 4 |
| |
| #define DEST_PLL 0 |
| #define DEST_PERIPH 1 |
| |
| #define CLK32K_FLAG_CRYSTAL_SE BIT(0) |
| #define CLK32K_FLAG_PIN_FB_CRYSTAL BIT(1) |
| |
| #define PCR_PERIPH_RESET_SPIN 8u |
| |
| #define XEC_CC_XTAL_EN_DELAY_MS_DFLT 300u |
| #define HIBTIMER_MS_TO_CNT(x) ((uint32_t)(x) * 33U) |
| |
| #define HIBTIMER_10_MS 328u |
| #define HIBTIMER_300_MS 9830u |
| |
| enum pll_clk32k_src { |
| PLL_CLK32K_SRC_SO = MCHP_XEC_PLL_CLK32K_SRC_SIL_OSC, |
| PLL_CLK32K_SRC_XTAL = MCHP_XEC_PLL_CLK32K_SRC_XTAL, |
| PLL_CLK32K_SRC_PIN = MCHP_XEC_PLL_CLK32K_SRC_PIN, |
| PLL_CLK32K_SRC_MAX, |
| }; |
| |
| enum periph_clk32k_src { |
| PERIPH_CLK32K_SRC_SO_SO = MCHP_XEC_PERIPH_CLK32K_SRC_SO_SO, |
| PERIPH_CLK32K_SRC_XTAL_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_XTAL_XTAL, |
| PERIPH_CLK32K_SRC_PIN_SO = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_SO, |
| PERIPH_CLK32K_SRC_PIN_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_XTAL, |
| PERIPH_CLK32K_SRC_MAX |
| }; |
| |
| enum clk32k_dest { CLK32K_DEST_PLL = 0, CLK32K_DEST_PERIPH, CLK32K_DEST_MAX }; |
| |
| /* PCR hardware registers for MEC15xx and MEC172x */ |
| #define XEC_CC_PCR_MAX_SCR 5 |
| |
| struct pcr_hw_regs { |
| volatile uint32_t SYS_SLP_CTRL; |
| volatile uint32_t PROC_CLK_CTRL; |
| volatile uint32_t SLOW_CLK_CTRL; |
| volatile uint32_t OSC_ID; |
| volatile uint32_t PWR_RST_STS; |
| volatile uint32_t PWR_RST_CTRL; |
| volatile uint32_t SYS_RST; |
| volatile uint32_t TURBO_CLK; /* MEC172x only */ |
| volatile uint32_t TEST20; |
| uint32_t RSVD1[3]; |
| volatile uint32_t SLP_EN[XEC_CC_PCR_MAX_SCR]; |
| uint32_t RSVD2[3]; |
| volatile uint32_t CLK_REQ[XEC_CC_PCR_MAX_SCR]; |
| uint32_t RSVD3[3]; |
| volatile uint32_t RST_EN[5]; |
| volatile uint32_t RST_EN_LOCK; |
| /* all registers below are MEC172x only */ |
| volatile uint32_t VBAT_SRST; |
| volatile uint32_t CLK32K_SRC_VTR; |
| volatile uint32_t TEST90; |
| uint32_t RSVD4[(0x00c0 - 0x0094) / 4]; |
| volatile uint32_t CNT32K_PER; |
| volatile uint32_t CNT32K_PULSE_HI; |
| volatile uint32_t CNT32K_PER_MIN; |
| volatile uint32_t CNT32K_PER_MAX; |
| volatile uint32_t CNT32K_DV; |
| volatile uint32_t CNT32K_DV_MAX; |
| volatile uint32_t CNT32K_VALID; |
| volatile uint32_t CNT32K_VALID_MIN; |
| volatile uint32_t CNT32K_CTRL; |
| volatile uint32_t CLK32K_MON_ISTS; |
| volatile uint32_t CLK32K_MON_IEN; |
| }; |
| |
| #define XEC_CC_PCR_RST_EN_UNLOCK 0xa6382d4cu |
| #define XEC_CC_PCR_RST_EN_LOCK 0xa6382d4du |
| |
| #define XEC_CC_PCR_OSC_ID_PLL_LOCK BIT(8) |
| #define XEC_CC_PCR_TURBO_CLK_96M BIT(2) |
| |
| #define XEC_CC_PCR_CLK32K_SRC_MSK 0x3u |
| #define XEC_CC_PCR_CLK32K_SRC_SIL 0u |
| #define XEC_CC_PCR_CLK32K_SRC_XTAL 1 |
| #define XEC_CC_PCR_CLK32K_SRC_PIN 2 |
| #define XEC_CC_PCR_CLK32K_SRC_OFF 3 |
| |
| #ifdef CONFIG_SOC_SERIES_MEC15XX |
| #define XEC_CC_PCR3_CRYPTO_MASK (BIT(26) | BIT(27) | BIT(28)) |
| #else |
| #define XEC_CC_PCR3_CRYPTO_MASK BIT(26) |
| #endif |
| |
| /* VBAT powered hardware registers related to clock configuration */ |
| struct vbatr_hw_regs { |
| volatile uint32_t PFRS; |
| uint32_t RSVD1[1]; |
| volatile uint32_t CLK32_SRC; |
| uint32_t RSVD2[2]; |
| volatile uint32_t CLK32_TRIM; |
| uint32_t RSVD3[1]; |
| volatile uint32_t CLK32_TRIM_CTRL; |
| }; |
| |
| /* MEC152x VBAT CLK32_SRC register defines */ |
| #define XEC_CC15_VBATR_USE_SIL_OSC 0u |
| #define XEC_CC15_VBATR_USE_32KIN_PIN BIT(1) |
| #define XEC_CC15_VBATR_USE_PAR_CRYSTAL BIT(2) |
| #define XEC_CC15_VBATR_USE_SE_CRYSTAL (BIT(2) | BIT(3)) |
| |
| /* MEC150x special requirements */ |
| #define XEC_CC15_GCFG_DID_DEV_ID_MEC150x 0x0020U |
| #define XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR 0x06U |
| |
| |
| /* MEC172x VBAT CLK32_SRC register defines */ |
| #define XEC_CC_VBATR_CS_SO_EN BIT(0) /* enable and start silicon OSC */ |
| #define XEC_CC_VBATR_CS_XTAL_EN BIT(8) /* enable & start external crystal */ |
| #define XEC_CC_VBATR_CS_XTAL_SE BIT(9) /* crystal XTAL2 used as 32KHz input */ |
| #define XEC_CC_VBATR_CS_XTAL_DHC BIT(10) /* disable high XTAL startup current */ |
| #define XEC_CC_VBATR_CS_XTAL_CNTR_MSK 0x1800u /* XTAL amplifier gain control */ |
| #define XEC_CC_VBATR_CS_XTAL_CNTR_DG 0x0800u |
| #define XEC_CC_VBATR_CS_XTAL_CNTR_RG 0x1000u |
| #define XEC_CC_VBATR_CS_XTAL_CNTR_MG 0x1800u |
| /* MEC172x Select source of peripheral 32KHz clock */ |
| #define XEC_CC_VBATR_CS_PCS_POS 16 |
| #define XEC_CC_VBATR_CS_PCS_MSK0 0x3u |
| #define XEC_CC_VBATR_CS_PCS_MSK 0x30000u |
| #define XEC_CC_VBATR_CS_PCS_VTR_VBAT_SO 0u /* VTR & VBAT use silicon OSC */ |
| #define XEC_CC_VBATR_CS_PCS_VTR_VBAT_XTAL 0x10000u /* VTR & VBAT use crystal */ |
| #define XEC_CC_VBATR_CS_PCS_VTR_PIN_SO 0x20000u /* VTR 32KHZ_IN, VBAT silicon OSC */ |
| #define XEC_CC_VBATR_CS_PCS_VTR_PIN_XTAL 0x30000u /* VTR 32KHZ_IN, VBAT XTAL */ |
| #define XEC_CC_VBATR_CS_DI32_VTR_OFF BIT(18) /* disable silicon OSC when VTR off */ |
| |
| enum vbr_clk32k_src { |
| VBR_CLK32K_SRC_SO_SO = 0, |
| VBR_CLK32K_SRC_XTAL_XTAL, |
| VBR_CLK32K_SRC_PIN_SO, |
| VBR_CLK32K_SRC_PIN_XTAL, |
| VBR_CLK32K_SRC_MAX, |
| }; |
| |
| /* GIRQ23 hardware registers */ |
| #define XEC_CC_HTMR_0_GIRQ23_POS 16 |
| |
| /* Driver config */ |
| struct xec_pcr_config { |
| uintptr_t pcr_base; |
| uintptr_t vbr_base; |
| const struct pinctrl_dev_config *pcfg; |
| uint16_t xtal_enable_delay_ms; |
| uint16_t pll_lock_timeout_ms; |
| uint16_t period_min; /* mix and max 32KHz period range */ |
| uint16_t period_max; /* monitor values in units of 48MHz (20.8 ns) */ |
| uint8_t core_clk_div; /* Cortex-M4 clock divider (CPU and NVIC) */ |
| uint8_t xtal_se; /* External 32KHz square wave on XTAL2 pin */ |
| uint8_t max_dc_va; /* 32KHz monitor maximum duty cycle variation */ |
| uint8_t min_valid; /* minimum number of valid consecutive 32KHz pulses */ |
| enum pll_clk32k_src pll_src; |
| enum periph_clk32k_src periph_src; |
| uint8_t clkmon_bypass; |
| uint8_t dis_internal_osc; |
| }; |
| |
| /* |
| * Make sure PCR sleep enables are clear except for crypto |
| * which do not have internal clock gating. |
| */ |
| static void pcr_slp_init(struct pcr_hw_regs *pcr) |
| { |
| pcr->SYS_SLP_CTRL = 0U; |
| SCB->SCR &= ~BIT(2); |
| |
| for (int i = 0; i < XEC_CC_PCR_MAX_SCR; i++) { |
| pcr->SLP_EN[i] = 0U; |
| } |
| |
| pcr->SLP_EN[3] = XEC_CC_PCR3_CRYPTO_MASK; |
| } |
| |
| /* MEC172x: |
| * Check if PLL is locked with timeout provided by a peripheral clock domain |
| * timer. We assume peripheral domain is still using internal silicon OSC as |
| * its reference clock. Available peripheral timers using 32KHz are: |
| * RTOS timer, hibernation timers, RTC, and week timer. We will use hibernation |
| * timer 0 in 30.5 us tick mode. Maximum internal is 2 seconds. |
| * A timer count value of 0 is interpreted as no timeout. |
| * We use the hibernation timer GIRQ interrupt status bit instead of reading |
| * the timer's count register due to race condition of HW taking at least |
| * one 32KHz cycle to move pre-load into count register. |
| * MEC15xx: |
| * Hibernation timer is using the chosen 32KHz source. If the external 32KHz source |
| * has a ramp up time, we make not get an accurate delay. This may only occur for |
| * the parallel crystal. |
| */ |
| static int pll_wait_lock_periph(struct pcr_hw_regs *const pcr, uint16_t ms) |
| { |
| struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0)); |
| struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23)); |
| uint32_t hcount = HIBTIMER_MS_TO_CNT(ms); |
| int rc = 0; |
| |
| htmr0->PRLD = 0; /* disable */ |
| htmr0->CTRL = 0; /* 30.5 us units */ |
| girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
| htmr0->PRLD = hcount; |
| while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) { |
| if (hcount) { |
| if (girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) { |
| rc = -ETIMEDOUT; |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int periph_clk_src_using_pin(enum periph_clk32k_src src) |
| { |
| switch (src) { |
| case PERIPH_CLK32K_SRC_PIN_SO: |
| case PERIPH_CLK32K_SRC_PIN_XTAL: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| #ifdef CONFIG_SOC_SERIES_MEC15XX |
| /* MEC15xx uses the same 32KHz source for both PLL and Peripheral 32K clock domains. |
| * We ignore the peripheral clock source. |
| * If XTAL is selected (parallel) or single-ended the external 32KHz MUST stay on |
| * even when when VTR goes off. |
| * If PIN(32KHZ_IN pin) as the external source, hardware can auto-switch to internal |
| * silicon OSC if the signal on the 32KHZ_PIN goes away. |
| * We ignore th |
| */ |
| static int soc_clk32_init(const struct device *dev, |
| enum pll_clk32k_src pll_clk_src, |
| enum periph_clk32k_src periph_clk_src, |
| uint32_t flags) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
| uint32_t cken = 0U; |
| int rc = 0; |
| |
| if (MCHP_DEVICE_ID() == XEC_CC15_GCFG_DID_DEV_ID_MEC150x) { |
| if (MCHP_REVISION_ID() == MCHP_GCFG_REV_B0) { |
| vbr->CLK32_TRIM_CTRL = XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR; |
| } |
| } |
| |
| switch (pll_clk_src) { |
| case PLL_CLK32K_SRC_SO: |
| cken = XEC_CC15_VBATR_USE_SIL_OSC; |
| break; |
| case PLL_CLK32K_SRC_XTAL: |
| if (flags & CLK32K_FLAG_CRYSTAL_SE) { |
| cken = XEC_CC15_VBATR_USE_SE_CRYSTAL; |
| } else { |
| cken = XEC_CC15_VBATR_USE_PAR_CRYSTAL; |
| } |
| break; |
| case PLL_CLK32K_SRC_PIN: /* 32KHZ_IN pin falls back to Silicon OSC */ |
| cken = XEC_CC15_VBATR_USE_32KIN_PIN; |
| break; |
| default: /* do not touch HW */ |
| return -EINVAL; |
| } |
| |
| if ((vbr->CLK32_SRC & 0xffU) != cken) { |
| vbr->CLK32_SRC = cken; |
| } |
| |
| rc = pll_wait_lock_periph(pcr, devcfg->xtal_enable_delay_ms); |
| |
| return rc; |
| } |
| #else |
| |
| static int periph_clk_src_using_si(enum periph_clk32k_src src) |
| { |
| switch (src) { |
| case PERIPH_CLK32K_SRC_SO_SO: |
| case PERIPH_CLK32K_SRC_PIN_SO: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int periph_clk_src_using_xtal(enum periph_clk32k_src src) |
| { |
| switch (src) { |
| case PERIPH_CLK32K_SRC_XTAL_XTAL: |
| case PERIPH_CLK32K_SRC_PIN_XTAL: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static bool is_sil_osc_enabled(struct vbatr_hw_regs *vbr) |
| { |
| if (vbr->CLK32_SRC & XEC_CC_VBATR_CS_SO_EN) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void enable_sil_osc(struct vbatr_hw_regs *vbr) |
| { |
| vbr->CLK32_SRC |= XEC_CC_VBATR_CS_SO_EN; |
| } |
| |
| /* In early Zephyr initialization we don't have timer services. Also, the SoC |
| * may be running on its ring oscillator (+/- 50% accuracy). Configuring the |
| * SoC's clock subsystem requires wait/delays. We implement a simple delay |
| * by writing to a read-only hardware register in the PCR block. |
| */ |
| static uint32_t spin_delay(struct pcr_hw_regs *pcr, uint32_t cnt) |
| { |
| uint32_t n; |
| |
| for (n = 0U; n < cnt; n++) { |
| pcr->OSC_ID = n; |
| } |
| |
| return n; |
| } |
| |
| /* |
| * This routine checks if the PLL is locked to its input source. Minimum lock |
| * time is 3.3 ms. Lock time can be larger when the source is an external |
| * crystal. Crystal cold start times may vary greatly based on many factors. |
| * Crystals do not like being power cycled. |
| */ |
| static int pll_wait_lock(struct pcr_hw_regs *const pcr, uint32_t wait_cnt) |
| { |
| while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) { |
| if (wait_cnt == 0) { |
| return -ETIMEDOUT; |
| } |
| --wait_cnt; |
| } |
| |
| return 0; |
| } |
| |
| /* caller has enabled internal silicon 32 KHz oscillator */ |
| static void hib_timer_delay(uint32_t hib_timer_count) |
| { |
| struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0)); |
| struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23)); |
| uint32_t hcnt; |
| |
| while (hib_timer_count) { |
| |
| hcnt = hib_timer_count; |
| if (hcnt > UINT16_MAX) { |
| hcnt -= UINT16_MAX; |
| } |
| |
| htmr0->PRLD = 0; /* disable */ |
| while (htmr0->PRLD != 0) { |
| ; |
| } |
| htmr0->CTRL = 0; /* 32k time base */ |
| /* clear hibernation timer 0 status */ |
| girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
| htmr0->PRLD = hib_timer_count; |
| if (hib_timer_count == 0) { |
| return; |
| } |
| |
| while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) { |
| ; |
| } |
| |
| htmr0->PRLD = 0; /* disable */ |
| while (htmr0->PRLD != 0) { |
| ; |
| } |
| girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
| |
| hib_timer_count -= hcnt; |
| } |
| } |
| |
| /* Turn off crystal when we are not using it */ |
| static int disable_32k_crystal(const struct device *dev) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
| uint32_t vbcs = vbr->CLK32_SRC; |
| |
| vbcs &= ~(XEC_CC_VBATR_CS_XTAL_EN | XEC_CC_VBATR_CS_XTAL_SE | XEC_CC_VBATR_CS_XTAL_DHC); |
| vbr->CLK32_SRC = vbcs; |
| |
| return 0; |
| } |
| |
| /* |
| * Start external 32 KHz crystal. |
| * Assumes peripheral clocks source is Silicon OSC. |
| * If current configuration matches desired crystal configuration do nothing. |
| * NOTE: Crystal requires ~300 ms to stabilize. |
| */ |
| static int enable_32k_crystal(const struct device *dev, uint32_t flags) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
| uint32_t vbcs = vbr->CLK32_SRC; |
| uint32_t cfg = MCHP_VBATR_CS_XTAL_EN; |
| |
| if (flags & CLK32K_FLAG_CRYSTAL_SE) { |
| cfg |= MCHP_VBATR_CS_XTAL_SE; |
| } |
| |
| if ((vbcs & cfg) == cfg) { |
| return 0; |
| } |
| |
| /* Configure crystal connection before enabling the crystal. */ |
| vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_SE | MCHP_VBATR_CS_XTAL_DHC | |
| MCHP_VBATR_CS_XTAL_CNTR_MSK); |
| if (flags & CLK32K_FLAG_CRYSTAL_SE) { |
| vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_SE; |
| } |
| |
| /* Set crystal gain */ |
| vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_CNTR_DG; |
| |
| /* enable crystal */ |
| vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_EN; |
| /* wait for crystal stabilization */ |
| hib_timer_delay(HIBTIMER_MS_TO_CNT(devcfg->xtal_enable_delay_ms)); |
| /* turn off crystal high startup current */ |
| vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_DHC; |
| |
| return 0; |
| } |
| |
| /* |
| * Use PCR clock monitor hardware to test crystal output. |
| * Requires crystal to have stabilized after enable. |
| * When enabled the clock monitor hardware measures high/low, edges, and |
| * duty cycle and compares to programmed limits. |
| */ |
| static int check_32k_crystal(const struct device *dev) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0)); |
| struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23)); |
| uint32_t status = 0; |
| int rc = 0; |
| |
| htmr0->PRLD = 0; |
| htmr0->CTRL = 0; |
| girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
| |
| pcr->CNT32K_CTRL = 0U; |
| pcr->CLK32K_MON_IEN = 0U; |
| pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK; |
| |
| pcr->CNT32K_PER_MIN = devcfg->period_min; |
| pcr->CNT32K_PER_MAX = devcfg->period_max; |
| pcr->CNT32K_DV_MAX = devcfg->max_dc_va; |
| pcr->CNT32K_VALID_MIN = devcfg->min_valid; |
| |
| pcr->CNT32K_CTRL = |
| MCHP_PCR_CLK32M_CTRL_PER_EN | MCHP_PCR_CLK32M_CTRL_DC_EN | |
| MCHP_PCR_CLK32M_CTRL_VAL_EN | MCHP_PCR_CLK32M_CTRL_CLR_CNT; |
| |
| rc = -ETIMEDOUT; |
| htmr0->PRLD = HIBTIMER_10_MS; |
| status = pcr->CLK32K_MON_ISTS; |
| |
| while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) { |
| if (status == (MCHP_PCR_CLK32M_ISTS_PULSE_RDY | |
| MCHP_PCR_CLK32M_ISTS_PASS_PER | |
| MCHP_PCR_CLK32M_ISTS_PASS_DC | |
| MCHP_PCR_CLK32M_ISTS_VALID)) { |
| rc = 0; |
| break; |
| } |
| |
| if (status & (MCHP_PCR_CLK32M_ISTS_FAIL | |
| MCHP_PCR_CLK32M_ISTS_STALL)) { |
| rc = -EBUSY; |
| break; |
| } |
| |
| status = pcr->CLK32K_MON_ISTS; |
| } |
| |
| pcr->CNT32K_CTRL = 0u; |
| htmr0->PRLD = 0; |
| girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
| |
| return rc; |
| } |
| |
| /* |
| * Set the clock source for either PLL or Peripheral-32K clock domain. |
| * The source must be a stable 32 KHz input: internal silicon oscillator, |
| * external crystal dual-ended crystal, 50% duty cycle waveform on XTAL2 only, |
| * or a 50% duty cycles waveform on the 32KHZ_PIN. |
| * NOTE: 32KHZ_PIN is an alternate function of a chip specific GPIO. |
| * Signal on 32KHZ_PIN may go off when VTR rail go down. MEC172x can automatically |
| * switch to silicon OSC or XTAL. At this time we do not support fall back to XTAL |
| * when using 32KHZ_PIN. |
| * !!! IMPORTANT !!! Fall back from 32KHZ_PIN to SO/XTAL is only for the Peripheral |
| * Clock domain. If the PLL is configured to use 32KHZ_PIN as its source then the |
| * PLL will shutdown and the PLL clock domain should switch to the ring oscillator. |
| * This means the PLL clock domain clock will not longer be accurate and may cause |
| * FW malfunction(s). |
| */ |
| |
| static void connect_pll_32k(const struct device *dev, enum pll_clk32k_src src, uint32_t flags) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| uint32_t pcr_clk_sel; |
| |
| switch (src) { |
| case PLL_CLK32K_SRC_XTAL: |
| pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_XTAL; |
| break; |
| case PLL_CLK32K_SRC_PIN: |
| pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_PIN; |
| break; |
| default: /* default to silicon OSC */ |
| pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_SILOSC; |
| break; |
| } |
| |
| pcr->CLK32K_SRC_VTR = pcr_clk_sel; |
| } |
| |
| static void connect_periph_32k(const struct device *dev, enum periph_clk32k_src src, uint32_t flags) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
| uint32_t vbr_clk_sel = vbr->CLK32_SRC & ~(MCHP_VBATR_CS_PCS_MSK); |
| |
| switch (src) { |
| case PERIPH_CLK32K_SRC_XTAL_XTAL: |
| vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_XTAL; |
| break; |
| case PERIPH_CLK32K_SRC_PIN_SO: |
| vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_SO; |
| break; |
| case PERIPH_CLK32K_SRC_PIN_XTAL: |
| vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_XTAL; |
| break; |
| default: /* default to silicon OSC for VTR/VBAT */ |
| vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_SO; |
| break; |
| } |
| |
| vbr->CLK32_SRC = vbr_clk_sel; |
| } |
| |
| /* two bit field in PCR VTR 32KHz source register */ |
| enum pll_clk32k_src get_pll_32k_source(const struct device *dev) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| enum pll_clk32k_src src = PLL_CLK32K_SRC_MAX; |
| |
| switch (pcr->CLK32K_SRC_VTR & XEC_CC_PCR_CLK32K_SRC_MSK) { |
| case XEC_CC_PCR_CLK32K_SRC_SIL: |
| src = PLL_CLK32K_SRC_SO; |
| break; |
| case XEC_CC_PCR_CLK32K_SRC_XTAL: |
| src = PLL_CLK32K_SRC_XTAL; |
| break; |
| case XEC_CC_PCR_CLK32K_SRC_PIN: |
| src = PLL_CLK32K_SRC_PIN; |
| break; |
| default: |
| src = PLL_CLK32K_SRC_MAX; |
| break; |
| } |
| |
| return src; |
| } |
| |
| /* two bit field in VBAT source 32KHz register */ |
| enum periph_clk32k_src get_periph_32k_source(const struct device *dev) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
| enum periph_clk32k_src src = PERIPH_CLK32K_SRC_MAX; |
| uint32_t temp; |
| |
| temp = (vbr->CLK32_SRC & XEC_CC_VBATR_CS_PCS_MSK) >> XEC_CC_VBATR_CS_PCS_POS; |
| if (temp == VBR_CLK32K_SRC_SO_SO) { |
| src = PERIPH_CLK32K_SRC_SO_SO; |
| } else if (temp == VBR_CLK32K_SRC_XTAL_XTAL) { |
| src = PERIPH_CLK32K_SRC_XTAL_XTAL; |
| } else if (temp == VBR_CLK32K_SRC_PIN_SO) { |
| src = PERIPH_CLK32K_SRC_PIN_SO; |
| } else { |
| src = PERIPH_CLK32K_SRC_PIN_XTAL; |
| } |
| |
| return src; |
| } |
| |
| /* |
| * MEC172x has two 32 KHz clock domains |
| * PLL domain: 32 KHz clock input for PLL to produce 96 MHz and 48 MHz clocks |
| * Peripheral domain: 32 KHz clock for subset of peripherals. |
| * Each domain 32 KHz clock input can be from one of the following sources: |
| * Internal Silicon oscillator: +/- 2% |
| * External Crystal connected as parallel or single ended |
| * External 32KHZ_PIN 50% duty cycle waveform with fall back to either |
| * Silicon OSC or crystal when 32KHZ_PIN signal goes away or VTR power rail |
| * goes off. |
| * At chip reset the PLL is held in reset and the +/- 50% ring oscillator is |
| * the main clock. |
| * If no VBAT reset occurs the VBAT 32 KHz source register maintains its state. |
| */ |
| static int soc_clk32_init(const struct device *dev, |
| enum pll_clk32k_src pll_src, |
| enum periph_clk32k_src periph_src, |
| uint32_t flags) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
| int rc = 0; |
| |
| /* disable PCR 32K monitor and clear counters */ |
| pcr->CNT32K_CTRL = MCHP_PCR_CLK32M_CTRL_CLR_CNT; |
| pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK; |
| pcr->CLK32K_MON_IEN = 0; |
| |
| if (!is_sil_osc_enabled(vbr)) { |
| enable_sil_osc(vbr); |
| spin_delay(pcr, CLK32K_SIL_OSC_DELAY); |
| } |
| |
| /* Default to 32KHz Silicon OSC for PLL and peripherals */ |
| connect_pll_32k(dev, PLL_CLK32K_SRC_SO, 0); |
| connect_periph_32k(dev, PERIPH_CLK32K_SRC_SO_SO, 0); |
| |
| rc = pll_wait_lock(pcr, CLK32K_PLL_LOCK_WAIT); |
| if (rc) { |
| LOG_ERR("XEC clock control: MEC172x lock timeout for internal 32K OSC"); |
| return rc; |
| } |
| |
| /* If crystal input required, enable and check. Single-ended 32KHz square wave |
| * on XTAL pin is also handled here. |
| */ |
| if ((pll_src == PLL_CLK32K_SRC_XTAL) || periph_clk_src_using_xtal(periph_src)) { |
| enable_32k_crystal(dev, flags); |
| if (!devcfg->clkmon_bypass) { |
| rc = check_32k_crystal(dev); |
| if (rc) { |
| /* disable crystal */ |
| vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_EN); |
| LOG_ERR("XEC clock control: MEC172x XTAL check failed: %d", rc); |
| return rc; |
| } |
| } |
| } else { |
| disable_32k_crystal(dev); |
| } |
| |
| /* Do PLL first so we can use a peripheral timer still on silicon OSC */ |
| if (pll_src != PLL_CLK32K_SRC_SO) { |
| connect_pll_32k(dev, pll_src, flags); |
| rc = pll_wait_lock_periph(pcr, devcfg->pll_lock_timeout_ms); |
| } |
| |
| if (periph_src != PERIPH_CLK32K_SRC_SO_SO) { |
| connect_periph_32k(dev, periph_src, flags); |
| } |
| |
| /* Configuration requests disabling internal silicon OSC. */ |
| if (devcfg->dis_internal_osc) { |
| if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO) |
| && !periph_clk_src_using_si(get_periph_32k_source(dev))) { |
| vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN); |
| } |
| } |
| |
| /* Configuration requests disabling internal silicon OSC. */ |
| if (devcfg->dis_internal_osc) { |
| if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO) |
| && !periph_clk_src_using_si(get_periph_32k_source(dev))) { |
| vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN); |
| } |
| } |
| |
| return rc; |
| } |
| #endif |
| |
| /* |
| * MEC172x Errata document DS80000913C |
| * Programming the PCR clock divider that divides the clock input to the ARM |
| * Cortex-M4 may cause a clock glitch. The recommended work-around is to |
| * issue four NOP instruction before and after the write to the PCR processor |
| * clock control register. The final four NOP instructions are followed by |
| * data and instruction barriers to flush the Cortex-M4's pipeline. |
| * NOTE: Zephyr provides inline functions for Cortex-Mx NOP but not for |
| * data and instruction barrier instructions. Caller's should only invoke this |
| * function with interrupts locked. |
| */ |
| static void xec_clock_control_core_clock_divider_set(uint8_t clkdiv) |
| { |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
| |
| arch_nop(); |
| arch_nop(); |
| arch_nop(); |
| arch_nop(); |
| pcr->PROC_CLK_CTRL = (uint32_t)clkdiv; |
| arch_nop(); |
| arch_nop(); |
| arch_nop(); |
| arch_nop(); |
| barrier_dsync_fence_full(); |
| barrier_isync_fence_full(); |
| } |
| |
| /* |
| * PCR peripheral sleep enable allows the clocks to a specific peripheral to |
| * be gated off if the peripheral is not requesting a clock. |
| * slp_idx = zero based index into 32-bit PCR sleep enable registers. |
| * slp_pos = bit position in the register |
| * slp_en if non-zero set the bit else clear the bit |
| */ |
| int z_mchp_xec_pcr_periph_sleep(uint8_t slp_idx, uint8_t slp_pos, |
| uint8_t slp_en) |
| { |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
| |
| if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) { |
| return -EINVAL; |
| } |
| |
| if (slp_en) { |
| pcr->SLP_EN[slp_idx] |= BIT(slp_pos); |
| } else { |
| pcr->SLP_EN[slp_idx] &= ~BIT(slp_pos); |
| } |
| |
| return 0; |
| } |
| |
| /* Most peripherals have a write only reset bit in the PCR reset enable registers. |
| * The layout of these registers is identical to the PCR sleep enable registers. |
| * Reset enables are protected by a lock register. |
| */ |
| int z_mchp_xec_pcr_periph_reset(uint8_t slp_idx, uint8_t slp_pos) |
| { |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
| |
| if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) { |
| return -EINVAL; |
| } |
| |
| uint32_t lock = irq_lock(); |
| |
| pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_UNLOCK; |
| pcr->RST_EN[slp_idx] = BIT(slp_pos); |
| pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_LOCK; |
| |
| irq_unlock(lock); |
| |
| return 0; |
| } |
| |
| /* clock control driver API implementation */ |
| |
| static int xec_cc_on(const struct device *dev, |
| clock_control_subsys_t sub_system, |
| bool turn_on) |
| { |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
| struct mchp_xec_pcr_clk_ctrl *cc = (struct mchp_xec_pcr_clk_ctrl *)sub_system; |
| uint16_t pcr_idx = 0; |
| uint16_t bitpos = 0; |
| |
| if (!cc) { |
| return -EINVAL; |
| } |
| |
| switch (MCHP_XEC_CLK_SRC_GET(cc->pcr_info)) { |
| case MCHP_XEC_PCR_CLK_CORE: |
| case MCHP_XEC_PCR_CLK_BUS: |
| break; |
| case MCHP_XEC_PCR_CLK_CPU: |
| if (cc->pcr_info & MCHP_XEC_CLK_CPU_MASK) { |
| uint32_t lock = irq_lock(); |
| |
| xec_clock_control_core_clock_divider_set( |
| cc->pcr_info & MCHP_XEC_CLK_CPU_MASK); |
| |
| irq_unlock(lock); |
| } else { |
| return -EINVAL; |
| } |
| break; |
| case MCHP_XEC_PCR_CLK_PERIPH: |
| case MCHP_XEC_PCR_CLK_PERIPH_FAST: |
| pcr_idx = MCHP_XEC_PCR_SCR_GET_IDX(cc->pcr_info); |
| bitpos = MCHP_XEC_PCR_SCR_GET_BITPOS(cc->pcr_info); |
| |
| if (pcr_idx >= MCHP_MAX_PCR_SCR_REGS) { |
| return -EINVAL; |
| } |
| |
| if (turn_on) { |
| pcr->SLP_EN[pcr_idx] &= ~BIT(bitpos); |
| } else { |
| pcr->SLP_EN[pcr_idx] |= BIT(bitpos); |
| } |
| break; |
| case MCHP_XEC_PCR_CLK_PERIPH_SLOW: |
| if (turn_on) { |
| pcr->SLOW_CLK_CTRL = |
| cc->pcr_info & MCHP_XEC_CLK_SLOW_MASK; |
| } else { |
| pcr->SLOW_CLK_CTRL = 0; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Turn on requested clock source. |
| * Core, CPU, and Bus clocks are always on except in deep sleep state. |
| * Peripheral clocks can be gated off if the peripheral's PCR sleep enable |
| * is set and the peripheral indicates it does not need a clock by clearing |
| * its PCR CLOCK_REQ read-only status. |
| * Peripheral slow clock my be turned on by writing a non-zero divider value |
| * to its PCR control register. |
| */ |
| static int xec_clock_control_on(const struct device *dev, |
| clock_control_subsys_t sub_system) |
| { |
| return xec_cc_on(dev, sub_system, true); |
| } |
| |
| /* |
| * Turn off clock source. |
| * Core, CPU, and Bus clocks are always on except in deep sleep when PLL is |
| * turned off. Exception is 32 KHz clock. |
| * Peripheral clocks are gated off when the peripheral's sleep enable is set |
| * and the peripheral indicates is no longer needs a clock by de-asserting |
| * its read-only PCR CLOCK_REQ bit. |
| * Peripheral slow clock can be turned off by writing 0 to its control register. |
| */ |
| static inline int xec_clock_control_off(const struct device *dev, |
| clock_control_subsys_t sub_system) |
| { |
| return xec_cc_on(dev, sub_system, false); |
| } |
| |
| /* MEC172x and future SoC's implement a turbo clock mode where |
| * ARM Core, QMSPI, and PK use turbo clock. All other peripherals |
| * use AHB clock or the slow clock. |
| */ |
| static uint32_t get_turbo_clock(const struct device *dev) |
| { |
| #ifdef CONFIG_SOC_SERIES_MEC15XX |
| ARG_UNUSED(dev); |
| |
| return MHZ(48); |
| #else |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| |
| if (pcr->TURBO_CLK & XEC_CC_PCR_TURBO_CLK_96M) { |
| return MHZ(96); |
| } |
| |
| return MHZ(48); |
| #endif |
| } |
| |
| /* |
| * MEC172x clock subsystem: |
| * Two main clock domains: PLL and Peripheral-32K. Each domain's 32 KHz source |
| * can be selected from one of three inputs: |
| * internal silicon OSC +/- 2% accuracy |
| * external crystal connected parallel or single ended |
| * external 32 KHz 50% duty cycle waveform on 32KHZ_IN pin. |
| * PLL domain supplies 96 MHz, 48 MHz, and other high speed clocks to all |
| * peripherals except those in the Peripheral-32K clock domain. The slow clock |
| * is derived from the 48 MHz produced by the PLL. |
| * ARM Cortex-M4 core input: 96MHz |
| * AHB clock input: 48 MHz |
| * Fast AHB peripherals: 96 MHz internal and 48 MHz AHB interface. |
| * Slow clock peripherals: PWM, TACH, PROCHOT |
| * Peripheral-32K domain peripherals: |
| * WDT, RTC, RTOS timer, hibernation timers, week timer |
| * |
| * Peripherals using both PLL and 32K clock domains: |
| * BBLED, RPMFAN |
| */ |
| static int xec_clock_control_get_subsys_rate(const struct device *dev, |
| clock_control_subsys_t sub_system, |
| uint32_t *rate) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| uint32_t bus = (uint32_t)sub_system; |
| uint32_t temp = 0; |
| uint32_t ahb_clock = MHZ(48); |
| uint32_t turbo_clock = get_turbo_clock(dev); |
| |
| switch (bus) { |
| case MCHP_XEC_PCR_CLK_CORE: |
| case MCHP_XEC_PCR_CLK_PERIPH_FAST: |
| *rate = turbo_clock; |
| break; |
| case MCHP_XEC_PCR_CLK_CPU: |
| /* if PCR PROC_CLK_CTRL is 0 the chip is not running */ |
| *rate = turbo_clock / pcr->PROC_CLK_CTRL; |
| break; |
| case MCHP_XEC_PCR_CLK_BUS: |
| case MCHP_XEC_PCR_CLK_PERIPH: |
| *rate = ahb_clock; |
| break; |
| case MCHP_XEC_PCR_CLK_PERIPH_SLOW: |
| temp = pcr->SLOW_CLK_CTRL; |
| if (temp) { |
| *rate = ahb_clock / temp; |
| } else { |
| *rate = 0; /* slow clock off */ |
| } |
| break; |
| default: |
| *rate = 0; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_PM) |
| void mchp_xec_clk_ctrl_sys_sleep_enable(bool is_deep) |
| { |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
| uint32_t sys_sleep_mode = MCHP_PCR_SYS_SLP_CTRL_SLP_ALL; |
| |
| if (is_deep) { |
| sys_sleep_mode |= MCHP_PCR_SYS_SLP_CTRL_SLP_HEAVY; |
| } |
| |
| SCB->SCR |= BIT(2); |
| pcr->SYS_SLP_CTRL = sys_sleep_mode; |
| } |
| |
| void mchp_xec_clk_ctrl_sys_sleep_disable(void) |
| { |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
| pcr->SYS_SLP_CTRL = 0; |
| SCB->SCR &= ~BIT(2); |
| } |
| #endif |
| |
| /* Clock controller driver registration */ |
| static const struct clock_control_driver_api xec_clock_control_api = { |
| .on = xec_clock_control_on, |
| .off = xec_clock_control_off, |
| .get_rate = xec_clock_control_get_subsys_rate, |
| }; |
| |
| static int xec_clock_control_init(const struct device *dev) |
| { |
| const struct xec_pcr_config * const devcfg = dev->config; |
| struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
| enum pll_clk32k_src pll_clk_src = devcfg->pll_src; |
| enum periph_clk32k_src periph_clk_src = devcfg->periph_src; |
| uint32_t clk_flags = 0U; |
| int rc = 0; |
| |
| if (devcfg->xtal_se) { |
| clk_flags |= CLK32K_FLAG_CRYSTAL_SE; |
| } |
| |
| pcr_slp_init(pcr); |
| |
| rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if ((pll_clk_src == PLL_CLK32K_SRC_PIN) || periph_clk_src_using_pin(periph_clk_src)) { |
| if (rc) { |
| LOG_ERR("XEC clock control: PINCTRL apply error %d", rc); |
| pll_clk_src = PLL_CLK32K_SRC_SO; |
| periph_clk_src = PERIPH_CLK32K_SRC_SO_SO; |
| clk_flags = 0U; |
| } |
| } |
| |
| /* sleep used as debug */ |
| rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); |
| if ((rc != 0) && (rc != -ENOENT)) { |
| LOG_ERR("XEC clock control: PINCTRL debug apply error %d", rc); |
| } |
| |
| rc = soc_clk32_init(dev, pll_clk_src, periph_clk_src, clk_flags); |
| if (rc) { |
| LOG_ERR("XEC clock control: init error %d", rc); |
| } |
| |
| xec_clock_control_core_clock_divider_set(devcfg->core_clk_div); |
| |
| return rc; |
| } |
| |
| #define XEC_PLL_32K_SRC(i) \ |
| (enum pll_clk32k_src)DT_INST_PROP_OR(i, pll_32k_src, PLL_CLK32K_SRC_SO) |
| |
| #define XEC_PERIPH_32K_SRC(i) \ |
| (enum periph_clk32k_src)DT_INST_PROP_OR(0, periph_32k_src, PERIPH_CLK32K_SRC_SO_SO) |
| |
| PINCTRL_DT_INST_DEFINE(0); |
| |
| const struct xec_pcr_config pcr_xec_config = { |
| .pcr_base = DT_INST_REG_ADDR_BY_IDX(0, 0), |
| .vbr_base = DT_INST_REG_ADDR_BY_IDX(0, 1), |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), |
| .xtal_enable_delay_ms = |
| (uint16_t)DT_INST_PROP_OR(0, xtal_enable_delay_ms, XEC_CC_XTAL_EN_DELAY_MS_DFLT), |
| .pll_lock_timeout_ms = |
| (uint16_t)DT_INST_PROP_OR(0, pll_lock_timeout_ms, XEC_CC_DFLT_PLL_LOCK_WAIT_MS), |
| .period_min = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_min, CNT32K_TMIN), |
| .period_max = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_max, CNT32K_TMAX), |
| .core_clk_div = (uint8_t)DT_INST_PROP_OR(0, core_clk_div, CONFIG_SOC_MEC_PROC_CLK_DIV), |
| .xtal_se = (uint8_t)DT_INST_PROP_OR(0, xtal_single_ended, 0), |
| .max_dc_va = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_duty_cycle_var_max, CNT32K_DUTY_MAX), |
| .min_valid = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_valid_min, CNT32K_VAL_MIN), |
| .pll_src = XEC_PLL_32K_SRC(0), |
| .periph_src = XEC_PERIPH_32K_SRC(0), |
| .clkmon_bypass = (uint8_t)DT_INST_PROP_OR(0, clkmon_bypass, 0), |
| .dis_internal_osc = (uint8_t)DT_INST_PROP_OR(0, internal_osc_disable, 0), |
| }; |
| |
| DEVICE_DT_INST_DEFINE(0, |
| &xec_clock_control_init, |
| NULL, |
| NULL, &pcr_xec_config, |
| PRE_KERNEL_1, |
| CONFIG_CLOCK_CONTROL_INIT_PRIORITY, |
| &xec_clock_control_api); |