| /* |
| * Copyright (c) 2017 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| |
| #include <zephyr/kernel.h> |
| #include <string.h> |
| #include <zephyr/sys/math_extras.h> |
| #include <zephyr/sys/rb.h> |
| #include <zephyr/kernel_structs.h> |
| #include <zephyr/sys/sys_io.h> |
| #include <ksched.h> |
| #include <zephyr/syscall.h> |
| #include <zephyr/internal/syscall_handler.h> |
| #include <zephyr/device.h> |
| #include <zephyr/init.h> |
| #include <stdbool.h> |
| #include <zephyr/app_memory/app_memdomain.h> |
| #include <zephyr/sys/libc-hooks.h> |
| #include <zephyr/sys/mutex.h> |
| #include <inttypes.h> |
| #include <zephyr/linker/linker-defs.h> |
| |
| #ifdef Z_LIBC_PARTITION_EXISTS |
| K_APPMEM_PARTITION_DEFINE(z_libc_partition); |
| #endif /* Z_LIBC_PARTITION_EXISTS */ |
| |
| /* TODO: Find a better place to put this. Since we pull the entire |
| * lib..__modules__crypto__mbedtls.a globals into app shared memory |
| * section, we can't put this in zephyr_init.c of the mbedtls module. |
| */ |
| #ifdef CONFIG_MBEDTLS |
| K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition); |
| #endif /* CONFIG_MBEDTLS */ |
| |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); |
| |
| /* The originally synchronization strategy made heavy use of recursive |
| * irq_locking, which ports poorly to spinlocks which are |
| * non-recursive. Rather than try to redesign as part of |
| * spinlockification, this uses multiple locks to preserve the |
| * original semantics exactly. The locks are named for the data they |
| * protect where possible, or just for the code that uses them where |
| * not. |
| */ |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| static struct k_spinlock lists_lock; /* kobj dlist */ |
| static struct k_spinlock objfree_lock; /* k_object_free */ |
| |
| #ifdef CONFIG_GEN_PRIV_STACKS |
| /* On ARM & ARC MPU we may have two different alignment requirement |
| * when dynamically allocating thread stacks, one for the privileged |
| * stack and other for the user stack, so we need to account the |
| * worst alignment scenario and reserve space for that. |
| */ |
| #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU) |
| #define STACK_ELEMENT_DATA_SIZE(size) \ |
| (sizeof(struct z_stack_data) + CONFIG_PRIVILEGED_STACK_SIZE + \ |
| Z_THREAD_STACK_OBJ_ALIGN(size) + K_THREAD_STACK_LEN(size)) |
| #else |
| #define STACK_ELEMENT_DATA_SIZE(size) (sizeof(struct z_stack_data) + \ |
| K_THREAD_STACK_LEN(size)) |
| #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU */ |
| #else |
| #define STACK_ELEMENT_DATA_SIZE(size) K_THREAD_STACK_LEN(size) |
| #endif /* CONFIG_GEN_PRIV_STACKS */ |
| |
| #endif /* CONFIG_DYNAMIC_OBJECTS */ |
| static struct k_spinlock obj_lock; /* kobj struct data */ |
| |
| #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8) |
| |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| extern uint8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES]; |
| #endif /* CONFIG_DYNAMIC_OBJECTS */ |
| |
| static void clear_perms_cb(struct k_object *ko, void *ctx_ptr); |
| |
| const char *otype_to_str(enum k_objects otype) |
| { |
| const char *ret; |
| /* -fdata-sections doesn't work right except in very very recent |
| * GCC and these literal strings would appear in the binary even if |
| * otype_to_str was omitted by the linker |
| */ |
| #ifdef CONFIG_LOG |
| switch (otype) { |
| /* otype-to-str.h is generated automatically during build by |
| * gen_kobject_list.py |
| */ |
| case K_OBJ_ANY: |
| ret = "generic"; |
| break; |
| #include <zephyr/otype-to-str.h> |
| default: |
| ret = "?"; |
| break; |
| } |
| #else |
| ARG_UNUSED(otype); |
| ret = NULL; |
| #endif /* CONFIG_LOG */ |
| return ret; |
| } |
| |
| struct perm_ctx { |
| int parent_id; |
| int child_id; |
| struct k_thread *parent; |
| }; |
| |
| #ifdef CONFIG_GEN_PRIV_STACKS |
| /* See write_gperf_table() in scripts/build/gen_kobject_list.py. The privilege |
| * mode stacks are allocated as an array. The base of the array is |
| * aligned to Z_PRIVILEGE_STACK_ALIGN, and all members must be as well. |
| */ |
| uint8_t *z_priv_stack_find(k_thread_stack_t *stack) |
| { |
| struct k_object *obj = k_object_find(stack); |
| |
| __ASSERT(obj != NULL, "stack object not found"); |
| __ASSERT(obj->type == K_OBJ_THREAD_STACK_ELEMENT, |
| "bad stack object"); |
| |
| return obj->data.stack_data->priv; |
| } |
| #endif /* CONFIG_GEN_PRIV_STACKS */ |
| |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| |
| /* |
| * Note that dyn_obj->data is where the kernel object resides |
| * so it is the one that actually needs to be aligned. |
| * Due to the need to get the the fields inside struct dyn_obj |
| * from kernel object pointers (i.e. from data[]), the offset |
| * from data[] needs to be fixed at build time. Therefore, |
| * data[] is declared with __aligned(), such that when dyn_obj |
| * is allocated with alignment, data[] is also aligned. |
| * Due to this requirement, data[] needs to be aligned with |
| * the maximum alignment needed for all kernel objects |
| * (hence the following DYN_OBJ_DATA_ALIGN). |
| */ |
| #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT |
| #define DYN_OBJ_DATA_ALIGN_K_THREAD (ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT) |
| #else |
| #define DYN_OBJ_DATA_ALIGN_K_THREAD (sizeof(void *)) |
| #endif /* ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT */ |
| |
| #ifdef CONFIG_DYNAMIC_THREAD_STACK_SIZE |
| #ifndef CONFIG_MPU_STACK_GUARD |
| #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \ |
| Z_THREAD_STACK_OBJ_ALIGN(CONFIG_PRIVILEGED_STACK_SIZE) |
| #else |
| #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \ |
| Z_THREAD_STACK_OBJ_ALIGN(CONFIG_DYNAMIC_THREAD_STACK_SIZE) |
| #endif /* !CONFIG_MPU_STACK_GUARD */ |
| #else |
| #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \ |
| Z_THREAD_STACK_OBJ_ALIGN(ARCH_STACK_PTR_ALIGN) |
| #endif /* CONFIG_DYNAMIC_THREAD_STACK_SIZE */ |
| |
| #define DYN_OBJ_DATA_ALIGN \ |
| MAX(DYN_OBJ_DATA_ALIGN_K_THREAD, (sizeof(void *))) |
| |
| struct dyn_obj { |
| struct k_object kobj; |
| sys_dnode_t dobj_list; |
| |
| /* The object itself */ |
| void *data; |
| }; |
| |
| extern struct k_object *z_object_gperf_find(const void *obj); |
| extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func, |
| void *context); |
| |
| /* |
| * Linked list of allocated kernel objects, for iteration over all allocated |
| * objects (and potentially deleting them during iteration). |
| */ |
| static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list); |
| |
| /* |
| * TODO: Write some hash table code that will replace obj_list. |
| */ |
| |
| static size_t obj_size_get(enum k_objects otype) |
| { |
| size_t ret; |
| |
| switch (otype) { |
| #include <zephyr/otype-to-size.h> |
| default: |
| ret = sizeof(const struct device); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static size_t obj_align_get(enum k_objects otype) |
| { |
| size_t ret; |
| |
| switch (otype) { |
| case K_OBJ_THREAD: |
| #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT |
| ret = ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT; |
| #else |
| ret = __alignof(struct dyn_obj); |
| #endif /* ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT */ |
| break; |
| default: |
| ret = __alignof(struct dyn_obj); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static struct dyn_obj *dyn_object_find(const void *obj) |
| { |
| struct dyn_obj *node; |
| k_spinlock_key_t key; |
| |
| /* For any dynamically allocated kernel object, the object |
| * pointer is just a member of the containing struct dyn_obj, |
| * so just a little arithmetic is necessary to locate the |
| * corresponding struct rbnode |
| */ |
| key = k_spin_lock(&lists_lock); |
| |
| SYS_DLIST_FOR_EACH_CONTAINER(&obj_list, node, dobj_list) { |
| if (node->kobj.name == obj) { |
| goto end; |
| } |
| } |
| |
| /* No object found */ |
| node = NULL; |
| |
| end: |
| k_spin_unlock(&lists_lock, key); |
| |
| return node; |
| } |
| |
| /** |
| * @internal |
| * |
| * @brief Allocate a new thread index for a new thread. |
| * |
| * This finds an unused thread index that can be assigned to a new |
| * thread. If too many threads have been allocated, the kernel will |
| * run out of indexes and this function will fail. |
| * |
| * Note that if an unused index is found, that index will be marked as |
| * used after return of this function. |
| * |
| * @param tidx The new thread index if successful |
| * |
| * @return true if successful, false if failed |
| **/ |
| static bool thread_idx_alloc(uintptr_t *tidx) |
| { |
| int i; |
| int idx; |
| int base; |
| |
| base = 0; |
| for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { |
| idx = find_lsb_set(_thread_idx_map[i]); |
| |
| if (idx != 0) { |
| *tidx = base + (idx - 1); |
| |
| /* Clear the bit. We already know the array index, |
| * and the bit to be cleared. |
| */ |
| _thread_idx_map[i] &= ~(BIT(idx - 1)); |
| |
| /* Clear permission from all objects */ |
| k_object_wordlist_foreach(clear_perms_cb, |
| (void *)*tidx); |
| |
| return true; |
| } |
| |
| base += 8; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * @internal |
| * |
| * @brief Free a thread index. |
| * |
| * This frees a thread index so it can be used by another |
| * thread. |
| * |
| * @param tidx The thread index to be freed |
| **/ |
| static void thread_idx_free(uintptr_t tidx) |
| { |
| /* To prevent leaked permission when index is recycled */ |
| k_object_wordlist_foreach(clear_perms_cb, (void *)tidx); |
| |
| /* Figure out which bits to set in _thread_idx_map[] and set it. */ |
| int base = tidx / NUM_BITS(_thread_idx_map[0]); |
| int offset = tidx % NUM_BITS(_thread_idx_map[0]); |
| |
| _thread_idx_map[base] |= BIT(offset); |
| } |
| |
| static struct k_object *dynamic_object_create(enum k_objects otype, size_t align, |
| size_t size) |
| { |
| struct dyn_obj *dyn; |
| |
| dyn = z_thread_aligned_alloc(align, sizeof(struct dyn_obj)); |
| if (dyn == NULL) { |
| return NULL; |
| } |
| |
| if (otype == K_OBJ_THREAD_STACK_ELEMENT) { |
| size_t adjusted_size; |
| |
| if (size == 0) { |
| k_free(dyn); |
| return NULL; |
| } |
| |
| adjusted_size = STACK_ELEMENT_DATA_SIZE(size); |
| dyn->data = z_thread_aligned_alloc(DYN_OBJ_DATA_ALIGN_K_THREAD_STACK, |
| adjusted_size); |
| if (dyn->data == NULL) { |
| k_free(dyn); |
| return NULL; |
| } |
| |
| #ifdef CONFIG_GEN_PRIV_STACKS |
| struct z_stack_data *stack_data = (struct z_stack_data *) |
| ((uint8_t *)dyn->data + adjusted_size - sizeof(*stack_data)); |
| stack_data->priv = (uint8_t *)dyn->data; |
| stack_data->size = adjusted_size; |
| dyn->kobj.data.stack_data = stack_data; |
| #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU) |
| dyn->kobj.name = (void *)ROUND_UP( |
| ((uint8_t *)dyn->data + CONFIG_PRIVILEGED_STACK_SIZE), |
| Z_THREAD_STACK_OBJ_ALIGN(size)); |
| #else |
| dyn->kobj.name = dyn->data; |
| #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU */ |
| #else |
| dyn->kobj.name = dyn->data; |
| dyn->kobj.data.stack_size = adjusted_size; |
| #endif /* CONFIG_GEN_PRIV_STACKS */ |
| } else { |
| dyn->data = z_thread_aligned_alloc(align, obj_size_get(otype) + size); |
| if (dyn->data == NULL) { |
| k_free(dyn->data); |
| return NULL; |
| } |
| dyn->kobj.name = dyn->data; |
| } |
| |
| dyn->kobj.type = otype; |
| dyn->kobj.flags = 0; |
| (void)memset(dyn->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES); |
| |
| k_spinlock_key_t key = k_spin_lock(&lists_lock); |
| |
| sys_dlist_append(&obj_list, &dyn->dobj_list); |
| k_spin_unlock(&lists_lock, key); |
| |
| return &dyn->kobj; |
| } |
| |
| struct k_object *k_object_create_dynamic_aligned(size_t align, size_t size) |
| { |
| struct k_object *obj = dynamic_object_create(K_OBJ_ANY, align, size); |
| |
| if (obj == NULL) { |
| LOG_ERR("could not allocate kernel object, out of memory"); |
| } |
| |
| return obj; |
| } |
| |
| static void *z_object_alloc(enum k_objects otype, size_t size) |
| { |
| struct k_object *zo; |
| uintptr_t tidx = 0; |
| |
| if ((otype <= K_OBJ_ANY) || (otype >= K_OBJ_LAST)) { |
| LOG_ERR("bad object type %d requested", otype); |
| return NULL; |
| } |
| |
| switch (otype) { |
| case K_OBJ_THREAD: |
| if (!thread_idx_alloc(&tidx)) { |
| LOG_ERR("out of free thread indexes"); |
| return NULL; |
| } |
| break; |
| /* The following are currently not allowed at all */ |
| case K_OBJ_FUTEX: /* Lives in user memory */ |
| case K_OBJ_SYS_MUTEX: /* Lives in user memory */ |
| case K_OBJ_NET_SOCKET: /* Indeterminate size */ |
| LOG_ERR("forbidden object type '%s' requested", |
| otype_to_str(otype)); |
| return NULL; |
| default: |
| /* Remainder within bounds are permitted */ |
| break; |
| } |
| |
| zo = dynamic_object_create(otype, obj_align_get(otype), size); |
| if (zo == NULL) { |
| if (otype == K_OBJ_THREAD) { |
| thread_idx_free(tidx); |
| } |
| return NULL; |
| } |
| |
| if (otype == K_OBJ_THREAD) { |
| zo->data.thread_id = tidx; |
| } |
| |
| /* The allocating thread implicitly gets permission on kernel objects |
| * that it allocates |
| */ |
| k_thread_perms_set(zo, _current); |
| |
| /* Activates reference counting logic for automatic disposal when |
| * all permissions have been revoked |
| */ |
| zo->flags |= K_OBJ_FLAG_ALLOC; |
| |
| return zo->name; |
| } |
| |
| void *z_impl_k_object_alloc(enum k_objects otype) |
| { |
| return z_object_alloc(otype, 0); |
| } |
| |
| void *z_impl_k_object_alloc_size(enum k_objects otype, size_t size) |
| { |
| return z_object_alloc(otype, size); |
| } |
| |
| void k_object_free(void *obj) |
| { |
| struct dyn_obj *dyn; |
| |
| /* This function is intentionally not exposed to user mode. |
| * There's currently no robust way to track that an object isn't |
| * being used by some other thread |
| */ |
| |
| k_spinlock_key_t key = k_spin_lock(&objfree_lock); |
| |
| dyn = dyn_object_find(obj); |
| if (dyn != NULL) { |
| sys_dlist_remove(&dyn->dobj_list); |
| |
| if (dyn->kobj.type == K_OBJ_THREAD) { |
| thread_idx_free(dyn->kobj.data.thread_id); |
| } |
| } |
| k_spin_unlock(&objfree_lock, key); |
| |
| if (dyn != NULL) { |
| k_free(dyn->data); |
| k_free(dyn); |
| } |
| } |
| |
| struct k_object *k_object_find(const void *obj) |
| { |
| struct k_object *ret; |
| |
| ret = z_object_gperf_find(obj); |
| |
| if (ret == NULL) { |
| struct dyn_obj *dyn; |
| |
| /* The cast to pointer-to-non-const violates MISRA |
| * 11.8 but is justified since we know dynamic objects |
| * were not declared with a const qualifier. |
| */ |
| dyn = dyn_object_find(obj); |
| if (dyn != NULL) { |
| ret = &dyn->kobj; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void k_object_wordlist_foreach(_wordlist_cb_func_t func, void *context) |
| { |
| struct dyn_obj *obj, *next; |
| |
| z_object_gperf_wordlist_foreach(func, context); |
| |
| k_spinlock_key_t key = k_spin_lock(&lists_lock); |
| |
| SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, dobj_list) { |
| func(&obj->kobj, context); |
| } |
| k_spin_unlock(&lists_lock, key); |
| } |
| #endif /* CONFIG_DYNAMIC_OBJECTS */ |
| |
| static unsigned int thread_index_get(struct k_thread *thread) |
| { |
| struct k_object *ko; |
| |
| ko = k_object_find(thread); |
| |
| if (ko == NULL) { |
| return -1; |
| } |
| |
| return ko->data.thread_id; |
| } |
| |
| static void unref_check(struct k_object *ko, uintptr_t index) |
| { |
| k_spinlock_key_t key = k_spin_lock(&obj_lock); |
| |
| sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); |
| |
| #ifdef CONFIG_DYNAMIC_OBJECTS |
| if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) { |
| /* skip unref check for static kernel object */ |
| goto out; |
| } |
| |
| void *vko = ko; |
| |
| struct dyn_obj *dyn = CONTAINER_OF(vko, struct dyn_obj, kobj); |
| |
| __ASSERT(IS_PTR_ALIGNED(dyn, struct dyn_obj), "unaligned z_object"); |
| |
| for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) { |
| if (ko->perms[i] != 0U) { |
| goto out; |
| } |
| } |
| |
| /* This object has no more references. Some objects may have |
| * dynamically allocated resources, require cleanup, or need to be |
| * marked as uninitialized when all references are gone. What |
| * specifically needs to happen depends on the object type. |
| */ |
| switch (ko->type) { |
| #ifdef CONFIG_PIPES |
| case K_OBJ_PIPE: |
| k_pipe_cleanup((struct k_pipe *)ko->name); |
| break; |
| #endif /* CONFIG_PIPES */ |
| case K_OBJ_MSGQ: |
| k_msgq_cleanup((struct k_msgq *)ko->name); |
| break; |
| case K_OBJ_STACK: |
| k_stack_cleanup((struct k_stack *)ko->name); |
| break; |
| default: |
| /* Nothing to do */ |
| break; |
| } |
| |
| sys_dlist_remove(&dyn->dobj_list); |
| k_free(dyn->data); |
| k_free(dyn); |
| out: |
| #endif /* CONFIG_DYNAMIC_OBJECTS */ |
| k_spin_unlock(&obj_lock, key); |
| } |
| |
| static void wordlist_cb(struct k_object *ko, void *ctx_ptr) |
| { |
| struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr; |
| |
| if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) && |
| ((struct k_thread *)ko->name != ctx->parent)) { |
| sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id); |
| } |
| } |
| |
| void k_thread_perms_inherit(struct k_thread *parent, struct k_thread *child) |
| { |
| struct perm_ctx ctx = { |
| thread_index_get(parent), |
| thread_index_get(child), |
| parent |
| }; |
| |
| if ((ctx.parent_id != -1) && (ctx.child_id != -1)) { |
| k_object_wordlist_foreach(wordlist_cb, &ctx); |
| } |
| } |
| |
| void k_thread_perms_set(struct k_object *ko, struct k_thread *thread) |
| { |
| int index = thread_index_get(thread); |
| |
| if (index != -1) { |
| sys_bitfield_set_bit((mem_addr_t)&ko->perms, index); |
| } |
| } |
| |
| void k_thread_perms_clear(struct k_object *ko, struct k_thread *thread) |
| { |
| int index = thread_index_get(thread); |
| |
| if (index != -1) { |
| sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index); |
| unref_check(ko, index); |
| } |
| } |
| |
| static void clear_perms_cb(struct k_object *ko, void *ctx_ptr) |
| { |
| uintptr_t id = (uintptr_t)ctx_ptr; |
| |
| unref_check(ko, id); |
| } |
| |
| void k_thread_perms_all_clear(struct k_thread *thread) |
| { |
| uintptr_t index = thread_index_get(thread); |
| |
| if ((int)index != -1) { |
| k_object_wordlist_foreach(clear_perms_cb, (void *)index); |
| } |
| } |
| |
| static int thread_perms_test(struct k_object *ko) |
| { |
| int index; |
| |
| if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) { |
| return 1; |
| } |
| |
| index = thread_index_get(_current); |
| if (index != -1) { |
| return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index); |
| } |
| return 0; |
| } |
| |
| static void dump_permission_error(struct k_object *ko) |
| { |
| int index = thread_index_get(_current); |
| LOG_ERR("thread %p (%d) does not have permission on %s %p", |
| _current, index, |
| otype_to_str(ko->type), ko->name); |
| LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap"); |
| } |
| |
| void k_object_dump_error(int retval, const void *obj, struct k_object *ko, |
| enum k_objects otype) |
| { |
| switch (retval) { |
| case -EBADF: |
| LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype)); |
| if (ko == NULL) { |
| LOG_ERR("address is not a known kernel object"); |
| } else { |
| LOG_ERR("address is actually a %s", |
| otype_to_str(ko->type)); |
| } |
| break; |
| case -EPERM: |
| dump_permission_error(ko); |
| break; |
| case -EINVAL: |
| LOG_ERR("%p used before initialization", obj); |
| break; |
| case -EADDRINUSE: |
| LOG_ERR("%p %s in use", obj, otype_to_str(otype)); |
| break; |
| default: |
| /* Not handled error */ |
| break; |
| } |
| } |
| |
| void z_impl_k_object_access_grant(const void *object, struct k_thread *thread) |
| { |
| struct k_object *ko = k_object_find(object); |
| |
| if (ko != NULL) { |
| k_thread_perms_set(ko, thread); |
| } |
| } |
| |
| void k_object_access_revoke(const void *object, struct k_thread *thread) |
| { |
| struct k_object *ko = k_object_find(object); |
| |
| if (ko != NULL) { |
| k_thread_perms_clear(ko, thread); |
| } |
| } |
| |
| void z_impl_k_object_release(const void *object) |
| { |
| k_object_access_revoke(object, _current); |
| } |
| |
| void k_object_access_all_grant(const void *object) |
| { |
| struct k_object *ko = k_object_find(object); |
| |
| if (ko != NULL) { |
| ko->flags |= K_OBJ_FLAG_PUBLIC; |
| } |
| } |
| |
| int k_object_validate(struct k_object *ko, enum k_objects otype, |
| enum _obj_init_check init) |
| { |
| if (unlikely((ko == NULL) || |
| ((otype != K_OBJ_ANY) && (ko->type != otype)))) { |
| return -EBADF; |
| } |
| |
| /* Manipulation of any kernel objects by a user thread requires that |
| * thread be granted access first, even for uninitialized objects |
| */ |
| if (unlikely(thread_perms_test(ko) == 0)) { |
| return -EPERM; |
| } |
| |
| /* Initialization state checks. _OBJ_INIT_ANY, we don't care */ |
| if (likely(init == _OBJ_INIT_TRUE)) { |
| /* Object MUST be initialized */ |
| if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) { |
| return -EINVAL; |
| } |
| } else if (init == _OBJ_INIT_FALSE) { /* _OBJ_INIT_FALSE case */ |
| /* Object MUST NOT be initialized */ |
| if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) { |
| return -EADDRINUSE; |
| } |
| } else { |
| /* _OBJ_INIT_ANY */ |
| } |
| |
| return 0; |
| } |
| |
| void k_object_init(const void *obj) |
| { |
| struct k_object *ko; |
| |
| /* By the time we get here, if the caller was from userspace, all the |
| * necessary checks have been done in k_object_validate(), which takes |
| * place before the object is initialized. |
| * |
| * This function runs after the object has been initialized and |
| * finalizes it |
| */ |
| |
| ko = k_object_find(obj); |
| if (ko == NULL) { |
| /* Supervisor threads can ignore rules about kernel objects |
| * and may declare them on stacks, etc. Such objects will never |
| * be usable from userspace, but we shouldn't explode. |
| */ |
| return; |
| } |
| |
| /* Allows non-initialization system calls to be made on this object */ |
| ko->flags |= K_OBJ_FLAG_INITIALIZED; |
| } |
| |
| void k_object_recycle(const void *obj) |
| { |
| struct k_object *ko = k_object_find(obj); |
| |
| if (ko != NULL) { |
| (void)memset(ko->perms, 0, sizeof(ko->perms)); |
| k_thread_perms_set(ko, _current); |
| ko->flags |= K_OBJ_FLAG_INITIALIZED; |
| } |
| } |
| |
| void k_object_uninit(const void *obj) |
| { |
| struct k_object *ko; |
| |
| /* See comments in k_object_init() */ |
| ko = k_object_find(obj); |
| if (ko == NULL) { |
| return; |
| } |
| |
| ko->flags &= ~K_OBJ_FLAG_INITIALIZED; |
| } |
| |
| /* |
| * Copy to/from helper functions used in syscall handlers |
| */ |
| void *k_usermode_alloc_from_copy(const void *src, size_t size) |
| { |
| void *dst = NULL; |
| |
| /* Does the caller in user mode have access to read this memory? */ |
| if (K_SYSCALL_MEMORY_READ(src, size)) { |
| goto out_err; |
| } |
| |
| dst = z_thread_malloc(size); |
| if (dst == NULL) { |
| LOG_ERR("out of thread resource pool memory (%zu)", size); |
| goto out_err; |
| } |
| |
| (void)memcpy(dst, src, size); |
| out_err: |
| return dst; |
| } |
| |
| static int user_copy(void *dst, const void *src, size_t size, bool to_user) |
| { |
| int ret = EFAULT; |
| |
| /* Does the caller in user mode have access to this memory? */ |
| if (to_user ? K_SYSCALL_MEMORY_WRITE(dst, size) : |
| K_SYSCALL_MEMORY_READ(src, size)) { |
| goto out_err; |
| } |
| |
| (void)memcpy(dst, src, size); |
| ret = 0; |
| out_err: |
| return ret; |
| } |
| |
| int k_usermode_from_copy(void *dst, const void *src, size_t size) |
| { |
| return user_copy(dst, src, size, false); |
| } |
| |
| int k_usermode_to_copy(void *dst, const void *src, size_t size) |
| { |
| return user_copy(dst, src, size, true); |
| } |
| |
| char *k_usermode_string_alloc_copy(const char *src, size_t maxlen) |
| { |
| size_t actual_len; |
| int err; |
| char *ret = NULL; |
| |
| actual_len = k_usermode_string_nlen(src, maxlen, &err); |
| if (err != 0) { |
| goto out; |
| } |
| if (actual_len == maxlen) { |
| /* Not NULL terminated */ |
| LOG_ERR("string too long %p (%zu)", src, actual_len); |
| goto out; |
| } |
| if (size_add_overflow(actual_len, 1, &actual_len)) { |
| LOG_ERR("overflow"); |
| goto out; |
| } |
| |
| ret = k_usermode_alloc_from_copy(src, actual_len); |
| |
| /* Someone may have modified the source string during the above |
| * checks. Ensure what we actually copied is still terminated |
| * properly. |
| */ |
| if (ret != NULL) { |
| ret[actual_len - 1U] = '\0'; |
| } |
| out: |
| return ret; |
| } |
| |
| int k_usermode_string_copy(char *dst, const char *src, size_t maxlen) |
| { |
| size_t actual_len; |
| int ret, err; |
| |
| actual_len = k_usermode_string_nlen(src, maxlen, &err); |
| if (err != 0) { |
| ret = EFAULT; |
| goto out; |
| } |
| if (actual_len == maxlen) { |
| /* Not NULL terminated */ |
| LOG_ERR("string too long %p (%zu)", src, actual_len); |
| ret = EINVAL; |
| goto out; |
| } |
| if (size_add_overflow(actual_len, 1, &actual_len)) { |
| LOG_ERR("overflow"); |
| ret = EINVAL; |
| goto out; |
| } |
| |
| ret = k_usermode_from_copy(dst, src, actual_len); |
| |
| /* See comment above in k_usermode_string_alloc_copy() */ |
| dst[actual_len - 1] = '\0'; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Application memory region initialization |
| */ |
| |
| extern char __app_shmem_regions_start[]; |
| extern char __app_shmem_regions_end[]; |
| |
| static int app_shmem_bss_zero(void) |
| { |
| struct z_app_region *region, *end; |
| |
| |
| end = (struct z_app_region *)&__app_shmem_regions_end[0]; |
| region = (struct z_app_region *)&__app_shmem_regions_start[0]; |
| |
| for ( ; region < end; region++) { |
| #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT) |
| /* When BSS sections are not present at boot, we need to wait for |
| * paging mechanism to be initialized before we can zero out BSS. |
| */ |
| extern bool z_sys_post_kernel; |
| bool do_clear = z_sys_post_kernel; |
| |
| /* During pre-kernel init, z_sys_post_kernel == false, but |
| * with pinned rodata region, so clear. Otherwise skip. |
| * In post-kernel init, z_sys_post_kernel == true, |
| * skip those in pinned rodata region as they have already |
| * been cleared and possibly already in use. Otherwise clear. |
| */ |
| if (((uint8_t *)region->bss_start >= (uint8_t *)_app_smem_pinned_start) && |
| ((uint8_t *)region->bss_start < (uint8_t *)_app_smem_pinned_end)) { |
| do_clear = !do_clear; |
| } |
| |
| if (do_clear) |
| #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */ |
| { |
| (void)memset(region->bss_start, 0, region->bss_size); |
| } |
| } |
| |
| return 0; |
| } |
| |
| SYS_INIT_NAMED(app_shmem_bss_zero_pre, app_shmem_bss_zero, |
| PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); |
| |
| #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT) |
| /* When BSS sections are not present at boot, we need to wait for |
| * paging mechanism to be initialized before we can zero out BSS. |
| */ |
| SYS_INIT_NAMED(app_shmem_bss_zero_post, app_shmem_bss_zero, |
| POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); |
| #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */ |
| |
| /* |
| * Default handlers if otherwise unimplemented |
| */ |
| |
| static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2, |
| uintptr_t arg3, uintptr_t arg4, |
| uintptr_t arg5, uintptr_t arg6, |
| void *ssf) |
| { |
| ARG_UNUSED(arg2); |
| ARG_UNUSED(arg3); |
| ARG_UNUSED(arg4); |
| ARG_UNUSED(arg5); |
| ARG_UNUSED(arg6); |
| |
| LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id); |
| arch_syscall_oops(ssf); |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| |
| static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2, |
| uintptr_t arg3, uintptr_t arg4, |
| uintptr_t arg5, uintptr_t arg6, void *ssf) |
| { |
| ARG_UNUSED(arg1); |
| ARG_UNUSED(arg2); |
| ARG_UNUSED(arg3); |
| ARG_UNUSED(arg4); |
| ARG_UNUSED(arg5); |
| ARG_UNUSED(arg6); |
| |
| LOG_ERR("Unimplemented system call"); |
| arch_syscall_oops(ssf); |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| |
| #include <zephyr/syscall_dispatch.c> |