| /* |
| * Copyright (c) 2025 Google LLC |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /* |
| * @file |
| * @brief WS2812 LED strip driver using a UART peripheral |
| * |
| * This driver uses a UART's asynchronous API to generate the precise, |
| * high-speed signal required by WS2812 and compatible LEDs. |
| * |
| * The driver encodes each WS2812 data bit ('1' or '0') into a multi-bit |
| * "symbol" (e.g., 110 for '1', 100 for '0'). It then employs a frame-aware |
| * packing strategy to transmit these symbols efficiently. |
| * |
| * Signal Inversion: |
| * The WS2812 protocol requires an idle-low signal. This is achieved by |
| * inverting the UART's TX output (requiring the "tx-invert" devicetree |
| * property). |
| * |
| * A standard UART frame: |
| * d0 d1 d2 d3 d4 d5 d6 |
| * ___ __ __ __ __ __ __ __ __ ... |
| * |__|__|__|__|__|__|__|__| |
| * Start Bit (low) ^ ^ Stop Bit (high) |
| * |
| * An inverted UART frame: |
| * d0 d1 d2 d3 d4 d5 d6 |
| * __ __ __ __ __ __ __ __ |
| * ___| |__|__|__|__|__|__|__|__ ... |
| * Start Bit (high) ^ ^ Stop Bit (low) |
| * |
| * Frame-Aware Packing: |
| * The driver reuses the UART's hardware-generated start and stop bits as part |
| * of the on-wire symbol. |
| * - The symbol's MSB ('1') maps to the inverted UART start bit. |
| * - The inner bits are packed into the UART data payload. |
| * - The symbol's LSB ('0') maps to the inverted UART stop bit. |
| * |
| * Configuration Constraint: |
| * This packing scheme imposes a constraint: the total number of bits in a |
| * UART frame (1 start + N data + 1 stop) must be an integer multiple of the |
| * symbol's length (`bits-per-symbol`). For example, if `data-bits` is set to 7, |
| * the 9-bit total frame size (1 + 7 + 1) is compatible with a `bits-per-symbol` |
| * of 3. |
| * |
| * Example: The WS2812 data stream `101` sent as symbols `110`, `100`, `110` |
| * and packed into one 9-bit UART frame (1 start + 7 data + 1 stop): |
| * d0 d1 d2 d3 d4 d5 d6 |
| * __ __ __ __ __ |
| * ___| |__| |__ __| |__ ... |
| * Start Bit (high) ^ ^ Stop Bit (low) |
| */ |
| |
| #define DT_DRV_COMPAT worldsemi_ws2812_uart |
| |
| #include <string.h> |
| #include <zephyr/device.h> |
| #include <zephyr/devicetree.h> |
| #include <zephyr/drivers/led_strip.h> |
| #include <zephyr/drivers/uart.h> |
| #include <zephyr/dt-bindings/led/led.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/sys/util.h> |
| |
| #define LOG_LEVEL CONFIG_LED_STRIP_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(ws2812_uart); |
| |
| /* Each color channel is represented by 8 bits. */ |
| #define BITS_PER_COLOR_CHANNEL 8 |
| |
| /* |
| * Helper macros to get UART frame configuration from the parent UART's devicetree node. |
| */ |
| #define DT_UART_NODE(inst) DT_INST_PARENT(inst) |
| #define DT_UART_DATA_BITS(inst) DT_PROP_OR(DT_UART_NODE(inst), data_bits, 8) |
| /* Only UART_CFG_STOP_BITS_1 or 1 is supported. Other values will fail the BUILD_ASSERT below. */ |
| #define DT_UART_STOP_BITS(inst) DT_ENUM_IDX_OR(DT_UART_NODE(inst), stop_bits, 1) |
| #define DT_UART_HAS_PARITY(inst) (DT_ENUM_IDX(DT_UART_NODE(inst), parity) != \ |
| UART_CFG_PARITY_NONE) |
| #define DT_UART_HAS_TX_INVERT(inst) (DT_PROP_OR(DT_UART_NODE(inst), tx_invert, 0) != 0) |
| |
| /* The total number of bits for one UART frame transmission (start + data + parity + stop). */ |
| #define UART_FRAME_BITS_FROM_DT(inst) \ |
| (1 + DT_UART_DATA_BITS(inst) + DT_UART_HAS_PARITY(inst) + DT_UART_STOP_BITS(inst)) |
| |
| /* Calculate the buffer size needed. */ |
| #define WS2812_UART_CALC_BUFSZ(num_px, num_colors, bits_symbol, bits_frame) \ |
| DIV_ROUND_UP((num_px) * (num_colors) * BITS_PER_COLOR_CHANNEL * (bits_symbol), \ |
| (bits_frame)) |
| |
| struct ws2812_uart_cfg { |
| const struct device *uart_dev; |
| uint8_t *px_buf; |
| uint16_t one_symbol; |
| uint16_t zero_symbol; |
| uint8_t bits_per_symbol; |
| uint8_t num_colors; |
| const uint8_t *color_mapping; |
| size_t length; |
| uint16_t reset_delay; |
| uint8_t uart_frame_bits; |
| }; |
| |
| struct ws2812_uart_data { |
| struct k_mutex lock; |
| struct k_sem tx_done_sem; |
| }; |
| |
| /* |
| * Serializes an 8-bit color value into the UART buffer. This function takes |
| * an 8-bit color value, expands each of its 8 bits into the appropriate symbol |
| * pattern, and packs the resulting stream into UART data payloads. |
| */ |
| static inline void ws2812_uart_ser(uint8_t color, const struct ws2812_uart_cfg *cfg, |
| uint8_t *frame_bit_pos, uint8_t **buf) |
| { |
| for (int i = BITS_PER_COLOR_CHANNEL - 1; i >= 0; i--) { |
| uint16_t pattern = (color & BIT(i)) ? cfg->one_symbol : cfg->zero_symbol; |
| |
| for (int p = cfg->bits_per_symbol - 1; p >= 0; p--) { |
| uint8_t pos = *frame_bit_pos; |
| /* Start and stop bits are always handled by hardware and skipped. */ |
| bool is_hw_bit = (pos == 0) || (pos == (cfg->uart_frame_bits - 1)); |
| |
| /* |
| * With an inverted signal, a high pulse ('1') is made by sending |
| * a low level ('0'). We clear the bit as the buffer is pre-filled. |
| */ |
| if (!is_hw_bit && (pattern & BIT(p))) { |
| /* Map frame position to data position (no start bit). */ |
| **buf &= ~BIT(pos - 1); |
| } |
| |
| (*frame_bit_pos)++; |
| if (*frame_bit_pos >= cfg->uart_frame_bits) { |
| (*buf)++; |
| *frame_bit_pos = 0; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Callback for UART ASYNC API events. |
| */ |
| static void ws2812_uart_callback(const struct device *dev, struct uart_event *evt, void *user_data) |
| { |
| struct k_sem *tx_done_sem = user_data; |
| |
| if (evt->type == UART_TX_DONE) { |
| k_sem_give(tx_done_sem); |
| } |
| } |
| |
| /* |
| * Latch current color values on strip and reset its state machines. |
| */ |
| static inline void ws2812_reset_delay(uint16_t delay) |
| { |
| k_usleep(delay); |
| } |
| |
| static int ws2812_strip_update_rgb(const struct device *dev, struct led_rgb *pixels, |
| size_t num_pixels) |
| { |
| const struct ws2812_uart_cfg *cfg = dev->config; |
| struct ws2812_uart_data *data = dev->data; |
| const size_t buf_len = WS2812_UART_CALC_BUFSZ(num_pixels, cfg->num_colors, |
| cfg->bits_per_symbol, cfg->uart_frame_bits); |
| uint8_t *px_buf = cfg->px_buf; |
| uint8_t *current_buf = px_buf; |
| uint8_t frame_bit_pos = 0; |
| int ret; |
| |
| /* Lock the driver to ensure thread-safe access to the buffer and UART */ |
| k_mutex_lock(&data->lock, K_FOREVER); |
| |
| /* memset to 0xFF is correct for inverted signal logic */ |
| memset(px_buf, 0xFF, buf_len); |
| |
| /* |
| * Convert pixel data into a packed bitstream for the UART. |
| * Each color bit is expanded into a pattern of `bits_per_symbol`. |
| */ |
| for (size_t i = 0; i < num_pixels; i++) { |
| for (uint8_t j = 0; j < cfg->num_colors; j++) { |
| uint8_t pixel_val; |
| |
| switch (cfg->color_mapping[j]) { |
| /* White channel is not supported by LED strip API. */ |
| case LED_COLOR_ID_WHITE: |
| pixel_val = 0; |
| break; |
| case LED_COLOR_ID_RED: |
| pixel_val = pixels[i].r; |
| break; |
| case LED_COLOR_ID_GREEN: |
| pixel_val = pixels[i].g; |
| break; |
| case LED_COLOR_ID_BLUE: |
| pixel_val = pixels[i].b; |
| break; |
| default: |
| LOG_ERR("Invalid color mapping"); |
| k_mutex_unlock(&data->lock); |
| return -EINVAL; |
| } |
| |
| ws2812_uart_ser(pixel_val, cfg, &frame_bit_pos, ¤t_buf); |
| } |
| } |
| |
| /* |
| * Start the non-blocking transfer. The uart_tx function will return |
| * immediately. The callback will signal completion via the semaphore. |
| */ |
| ret = uart_tx(cfg->uart_dev, px_buf, buf_len, SYS_FOREVER_US); |
| if (ret) { |
| k_mutex_unlock(&data->lock); |
| return ret; |
| } |
| |
| /* Wait for the transfer to complete. */ |
| k_sem_take(&data->tx_done_sem, K_FOREVER); |
| |
| /* Latch the data and reset the strip */ |
| ws2812_reset_delay(cfg->reset_delay); |
| k_mutex_unlock(&data->lock); |
| |
| return 0; |
| } |
| |
| static size_t ws2812_strip_length(const struct device *dev) |
| { |
| const struct ws2812_uart_cfg *cfg = dev->config; |
| |
| return cfg->length; |
| } |
| |
| static int ws2812_uart_init(const struct device *dev) |
| { |
| const struct ws2812_uart_cfg *cfg = dev->config; |
| struct ws2812_uart_data *data = dev->data; |
| int ret; |
| |
| if (!device_is_ready(cfg->uart_dev)) { |
| LOG_ERR("%s: UART device %s not ready", dev->name, cfg->uart_dev->name); |
| return -ENODEV; |
| } |
| |
| for (int i = 0; i < cfg->num_colors; i++) { |
| switch (cfg->color_mapping[i]) { |
| case LED_COLOR_ID_WHITE: |
| case LED_COLOR_ID_RED: |
| case LED_COLOR_ID_GREEN: |
| case LED_COLOR_ID_BLUE: |
| break; |
| default: |
| LOG_ERR("%s: invalid channel to color mapping.", dev->name); |
| return -EINVAL; |
| } |
| } |
| |
| k_mutex_init(&data->lock); |
| k_sem_init(&data->tx_done_sem, 0, 1); |
| |
| ret = uart_callback_set(cfg->uart_dev, ws2812_uart_callback, &data->tx_done_sem); |
| if (ret) { |
| LOG_ERR("Failed to set UART callback: %d", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct led_strip_driver_api ws2812_uart_api = { |
| .update_rgb = ws2812_strip_update_rgb, |
| .length = ws2812_strip_length, |
| }; |
| |
| #define WS2812_NUM_PIXELS(idx) (DT_INST_PROP(idx, chain_length)) |
| #define WS2812_NUM_COLORS(idx) (DT_INST_PROP_LEN(idx, color_mapping)) |
| #define WS2812_UART_BITS_PER_SYMBOL(idx) (DT_INST_PROP(idx, bits_per_symbol)) |
| #define WS2812_UART_BUFSZ(idx) \ |
| WS2812_UART_CALC_BUFSZ(WS2812_NUM_PIXELS(idx), WS2812_NUM_COLORS(idx), \ |
| WS2812_UART_BITS_PER_SYMBOL(idx), UART_FRAME_BITS_FROM_DT(idx)) |
| |
| #define WS2812_UART_CHECK(idx) \ |
| BUILD_ASSERT(!DT_UART_HAS_PARITY(idx), \ |
| "The UART peripheral must be configured with parity disabled."); \ |
| BUILD_ASSERT(DT_UART_STOP_BITS(idx) == 1, \ |
| "The UART peripheral's stop-bits property must be set to 1."); \ |
| BUILD_ASSERT(DT_UART_HAS_TX_INVERT(idx), \ |
| "The UART peripheral must be configured with tx-invert."); \ |
| BUILD_ASSERT((UART_FRAME_BITS_FROM_DT(idx) % WS2812_UART_BITS_PER_SYMBOL(idx)) == 0, \ |
| "Total UART frame bits must be a multiple of bits-per-symbol."); \ |
| BUILD_ASSERT(WS2812_UART_BITS_PER_SYMBOL(idx) <= 10, \ |
| "bits-per-symbol cannot be greater than 10."); \ |
| BUILD_ASSERT(WS2812_UART_BITS_PER_SYMBOL(idx) >= 3, \ |
| "bits-per-symbol must be at least 3."); \ |
| BUILD_ASSERT( \ |
| (DT_INST_PROP(idx, one_symbol) & BIT(WS2812_UART_BITS_PER_SYMBOL(idx) - 1)) && \ |
| (DT_INST_PROP(idx, zero_symbol) & \ |
| BIT(WS2812_UART_BITS_PER_SYMBOL(idx) - 1)), \ |
| "Symbol's MSB must be 1 (the start bit may be reused)."); \ |
| BUILD_ASSERT(!((DT_INST_PROP(idx, one_symbol) & BIT(0)) || \ |
| (DT_INST_PROP(idx, zero_symbol) & BIT(0))), \ |
| "Symbol's LSB must be 0 (the stop bit may be reused).") |
| |
| #define WS2812_UART_DEVICE(idx) \ |
| WS2812_UART_CHECK(idx); \ |
| static uint8_t ws2812_uart_##idx##_px_buf[WS2812_UART_BUFSZ(idx)]; \ |
| static struct ws2812_uart_data ws2812_uart_##idx##_data; \ |
| static const uint8_t ws2812_uart_##idx##_color_mapping[] = \ |
| DT_INST_PROP(idx, color_mapping); \ |
| static const struct ws2812_uart_cfg ws2812_uart_##idx##_cfg = { \ |
| .uart_dev = DEVICE_DT_GET(DT_INST_PARENT(idx)), \ |
| .px_buf = ws2812_uart_##idx##_px_buf, \ |
| .one_symbol = DT_INST_PROP(idx, one_symbol), \ |
| .zero_symbol = DT_INST_PROP(idx, zero_symbol), \ |
| .bits_per_symbol = WS2812_UART_BITS_PER_SYMBOL(idx), \ |
| .num_colors = WS2812_NUM_COLORS(idx), \ |
| .color_mapping = ws2812_uart_##idx##_color_mapping, \ |
| .length = WS2812_NUM_PIXELS(idx), \ |
| .reset_delay = DT_INST_PROP(idx, reset_delay), \ |
| .uart_frame_bits = UART_FRAME_BITS_FROM_DT(idx), \ |
| }; \ |
| DEVICE_DT_INST_DEFINE(idx, ws2812_uart_init, NULL, &ws2812_uart_##idx##_data, \ |
| &ws2812_uart_##idx##_cfg, POST_KERNEL, \ |
| CONFIG_LED_STRIP_INIT_PRIORITY, &ws2812_uart_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(WS2812_UART_DEVICE) |