blob: 67fc33fef31645081f7794dbdfee27d07bc07956 [file] [log] [blame]
/*
* Copyright 2017,2021,2023-2024 NXP
* Copyright (c) 2020 Softube
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kinetis_lpuart
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/irq.h>
#include <zephyr/kernel.h>
#include <zephyr/pm/policy.h>
#include <zephyr/drivers/pinctrl.h>
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/logging/log.h>
#include <fsl_lpuart.h>
#if CONFIG_NXP_LP_FLEXCOMM
#include <zephyr/drivers/mfd/nxp_lp_flexcomm.h>
#endif
LOG_MODULE_REGISTER(uart_mcux_lpuart, LOG_LEVEL_ERR);
#define PINCTRL_STATE_FLOWCONTROL PINCTRL_STATE_PRIV_START
#if defined(CONFIG_UART_ASYNC_API) && defined(CONFIG_UART_INTERRUPT_DRIVEN)
/* there are already going to be build errors, but at least this message will
* be the first error from this driver making the reason clear
*/
BUILD_ASSERT(IS_ENABLED(CONFIG_UART_EXCLUSIVE_API_CALLBACKS), ""
"LPUART must use exclusive api callbacks");
#endif
#ifdef CONFIG_UART_ASYNC_API
struct lpuart_dma_config {
const struct device *dma_dev;
const uint32_t dma_channel;
struct dma_config dma_cfg;
};
#endif /* CONFIG_UART_ASYNC_API */
struct mcux_lpuart_config {
LPUART_Type *base;
#ifdef CONFIG_NXP_LP_FLEXCOMM
const struct device *parent_dev;
#endif
const struct device *clock_dev;
const struct pinctrl_dev_config *pincfg;
clock_control_subsys_t clock_subsys;
uint32_t baud_rate;
uint8_t flow_ctrl;
uint8_t parity;
bool rs485_de_active_low;
bool loopback_en;
bool single_wire;
bool tx_invert;
bool rx_invert;
#ifdef CONFIG_UART_MCUX_LPUART_ISR_SUPPORT
void (*irq_config_func)(const struct device *dev);
#endif
#ifdef CONFIG_UART_ASYNC_API
const struct lpuart_dma_config rx_dma_config;
const struct lpuart_dma_config tx_dma_config;
#endif /* CONFIG_UART_ASYNC_API */
};
#ifdef CONFIG_UART_ASYNC_API
struct mcux_lpuart_rx_dma_params {
struct dma_block_config active_dma_block;
uint8_t *buf;
size_t buf_len;
size_t offset;
size_t counter;
struct k_work_delayable timeout_work;
size_t timeout_us;
};
struct mcux_lpuart_tx_dma_params {
struct dma_block_config active_dma_block;
const uint8_t *buf;
size_t buf_len;
struct k_work_delayable timeout_work;
size_t timeout_us;
};
struct mcux_lpuart_async_data {
const struct device *uart_dev;
struct mcux_lpuart_tx_dma_params tx_dma_params;
struct mcux_lpuart_rx_dma_params rx_dma_params;
uint8_t *next_rx_buffer;
size_t next_rx_buffer_len;
uart_callback_t user_callback;
void *user_data;
};
#endif
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
enum mcux_lpuart_api {
LPUART_NONE,
LPUART_IRQ_DRIVEN,
LPUART_ASYNC
};
#endif
struct mcux_lpuart_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
#ifdef CONFIG_PM
bool pm_state_lock_on;
bool tx_poll_stream_on;
bool tx_int_stream_on;
#endif /* CONFIG_PM */
#ifdef CONFIG_UART_ASYNC_API
struct mcux_lpuart_async_data async;
#endif
struct uart_config uart_config;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
enum mcux_lpuart_api api_type;
#endif
};
#ifdef CONFIG_PM
static void mcux_lpuart_pm_policy_state_lock_get(const struct device *dev)
{
struct mcux_lpuart_data *data = dev->data;
if (!data->pm_state_lock_on) {
data->pm_state_lock_on = true;
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
}
}
static void mcux_lpuart_pm_policy_state_lock_put(const struct device *dev)
{
struct mcux_lpuart_data *data = dev->data;
if (data->pm_state_lock_on) {
data->pm_state_lock_on = false;
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
}
}
#endif /* CONFIG_PM */
static int mcux_lpuart_poll_in(const struct device *dev, unsigned char *c)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t flags = LPUART_GetStatusFlags(config->base);
int ret = -1;
if (flags & kLPUART_RxDataRegFullFlag) {
*c = LPUART_ReadByte(config->base);
ret = 0;
}
return ret;
}
static void mcux_lpuart_poll_out(const struct device *dev, unsigned char c)
{
const struct mcux_lpuart_config *config = dev->config;
unsigned int key;
#ifdef CONFIG_PM
struct mcux_lpuart_data *data = dev->data;
#endif
while (!(LPUART_GetStatusFlags(config->base)
& LPUART_STAT_TDRE_MASK)) {
}
/* Lock interrupts while we send data */
key = irq_lock();
#ifdef CONFIG_PM
/*
* We must keep the part from entering lower power mode until the
* transmission completes. Set the power constraint, and enable
* the transmission complete interrupt so we know when transmission is
* completed.
*/
if (!data->tx_poll_stream_on && !data->tx_int_stream_on) {
data->tx_poll_stream_on = true;
mcux_lpuart_pm_policy_state_lock_get(dev);
/* Enable TC interrupt */
LPUART_EnableInterrupts(config->base,
kLPUART_TransmissionCompleteInterruptEnable);
}
#endif /* CONFIG_PM */
LPUART_WriteByte(config->base, c);
irq_unlock(key);
}
static int mcux_lpuart_err_check(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t flags = LPUART_GetStatusFlags(config->base);
int err = 0;
if (flags & kLPUART_RxOverrunFlag) {
err |= UART_ERROR_OVERRUN;
}
if (flags & kLPUART_ParityErrorFlag) {
err |= UART_ERROR_PARITY;
}
if (flags & kLPUART_FramingErrorFlag) {
err |= UART_ERROR_FRAMING;
}
if (flags & kLPUART_NoiseErrorFlag) {
err |= UART_ERROR_PARITY;
}
LPUART_ClearStatusFlags(config->base, kLPUART_RxOverrunFlag |
kLPUART_ParityErrorFlag |
kLPUART_FramingErrorFlag |
kLPUART_NoiseErrorFlag);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int mcux_lpuart_fifo_fill(const struct device *dev,
const uint8_t *tx_data,
int len)
{
const struct mcux_lpuart_config *config = dev->config;
int num_tx = 0U;
while ((len - num_tx > 0) &&
(LPUART_GetStatusFlags(config->base)
& LPUART_STAT_TDRE_MASK)) {
LPUART_WriteByte(config->base, tx_data[num_tx++]);
}
return num_tx;
}
static int mcux_lpuart_fifo_read(const struct device *dev, uint8_t *rx_data,
const int len)
{
const struct mcux_lpuart_config *config = dev->config;
int num_rx = 0U;
while ((len - num_rx > 0) &&
(LPUART_GetStatusFlags(config->base)
& kLPUART_RxDataRegFullFlag)) {
rx_data[num_rx++] = LPUART_ReadByte(config->base);
}
return num_rx;
}
static void mcux_lpuart_irq_tx_enable(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_TxDataRegEmptyInterruptEnable;
#ifdef CONFIG_PM
struct mcux_lpuart_data *data = dev->data;
unsigned int key;
#endif
#ifdef CONFIG_PM
key = irq_lock();
data->tx_poll_stream_on = false;
data->tx_int_stream_on = true;
/* Transmission complete interrupt no longer required */
LPUART_DisableInterrupts(config->base,
kLPUART_TransmissionCompleteInterruptEnable);
/* Do not allow system to sleep while UART tx is ongoing */
mcux_lpuart_pm_policy_state_lock_get(dev);
#endif
LPUART_EnableInterrupts(config->base, mask);
#ifdef CONFIG_PM
irq_unlock(key);
#endif
}
static void mcux_lpuart_irq_tx_disable(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_TxDataRegEmptyInterruptEnable;
#ifdef CONFIG_PM
struct mcux_lpuart_data *data = dev->data;
unsigned int key;
key = irq_lock();
#endif
LPUART_DisableInterrupts(config->base, mask);
#ifdef CONFIG_PM
data->tx_int_stream_on = false;
/*
* If transmission IRQ is no longer enabled,
* transmission is complete. Release pm constraint.
*/
mcux_lpuart_pm_policy_state_lock_put(dev);
irq_unlock(key);
#endif
}
static int mcux_lpuart_irq_tx_complete(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t flags = LPUART_GetStatusFlags(config->base);
return (flags & kLPUART_TransmissionCompleteFlag) != 0U;
}
static int mcux_lpuart_irq_tx_ready(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_TxDataRegEmptyInterruptEnable;
uint32_t flags = LPUART_GetStatusFlags(config->base);
return (LPUART_GetEnabledInterrupts(config->base) & mask)
&& (flags & LPUART_STAT_TDRE_MASK);
}
static void mcux_lpuart_irq_rx_enable(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_RxDataRegFullInterruptEnable;
LPUART_EnableInterrupts(config->base, mask);
}
static void mcux_lpuart_irq_rx_disable(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_RxDataRegFullInterruptEnable;
LPUART_DisableInterrupts(config->base, mask);
}
static int mcux_lpuart_irq_rx_full(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t flags = LPUART_GetStatusFlags(config->base);
return (flags & kLPUART_RxDataRegFullFlag) != 0U;
}
static int mcux_lpuart_irq_rx_pending(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_RxDataRegFullInterruptEnable;
return (LPUART_GetEnabledInterrupts(config->base) & mask)
&& mcux_lpuart_irq_rx_full(dev);
}
static void mcux_lpuart_irq_err_enable(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_NoiseErrorInterruptEnable |
kLPUART_FramingErrorInterruptEnable |
kLPUART_ParityErrorInterruptEnable;
LPUART_EnableInterrupts(config->base, mask);
}
static void mcux_lpuart_irq_err_disable(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
uint32_t mask = kLPUART_NoiseErrorInterruptEnable |
kLPUART_FramingErrorInterruptEnable |
kLPUART_ParityErrorInterruptEnable;
LPUART_DisableInterrupts(config->base, mask);
}
static int mcux_lpuart_irq_is_pending(const struct device *dev)
{
return (mcux_lpuart_irq_tx_ready(dev)
|| mcux_lpuart_irq_rx_pending(dev));
}
static int mcux_lpuart_irq_update(const struct device *dev)
{
return 1;
}
static void mcux_lpuart_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct mcux_lpuart_data *data = dev->data;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
if (data->api_type == LPUART_ASYNC) {
LOG_ERR("UART irq and async api are exclusive");
}
#endif
data->callback = cb;
data->cb_data = cb_data;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
data->async.user_callback = NULL;
data->async.user_data = NULL;
data->api_type = LPUART_IRQ_DRIVEN;
#endif
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
static inline void async_timer_start(struct k_work_delayable *work, size_t timeout_us)
{
if ((timeout_us != SYS_FOREVER_US) && (timeout_us != 0)) {
LOG_DBG("async timer started for %d us", timeout_us);
k_work_reschedule(work, K_USEC(timeout_us));
}
}
static void async_user_callback(const struct device *dev, struct uart_event *evt)
{
const struct mcux_lpuart_data *data = dev->data;
if (data->async.user_callback) {
data->async.user_callback(dev, evt, data->async.user_data);
}
}
static void async_evt_tx_done(struct device *dev)
{
struct mcux_lpuart_data *data = dev->data;
(void)k_work_cancel_delayable(&data->async.tx_dma_params.timeout_work);
LOG_DBG("TX done: %d", data->async.tx_dma_params.buf_len);
struct uart_event event = {
.type = UART_TX_DONE,
.data.tx.buf = data->async.tx_dma_params.buf,
.data.tx.len = data->async.tx_dma_params.buf_len
};
/* Reset TX Buffer */
data->async.tx_dma_params.buf = NULL;
data->async.tx_dma_params.buf_len = 0U;
async_user_callback(dev, &event);
}
static void async_evt_rx_rdy(const struct device *dev)
{
struct mcux_lpuart_data *data = dev->data;
struct mcux_lpuart_rx_dma_params *dma_params = &data->async.rx_dma_params;
struct uart_event event = {
.type = UART_RX_RDY,
.data.rx.buf = dma_params->buf,
.data.rx.len = dma_params->counter - dma_params->offset,
.data.rx.offset = dma_params->offset
};
LOG_DBG("RX Ready: (len: %d off: %d buf: %x)", event.data.rx.len, event.data.rx.offset,
(uint32_t)event.data.rx.buf);
/* Update the current pos for new data */
dma_params->offset = dma_params->counter;
/* Only send event for new data */
if (event.data.rx.len > 0) {
async_user_callback(dev, &event);
}
}
static void async_evt_rx_buf_request(const struct device *dev)
{
struct uart_event evt = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &evt);
}
static void async_evt_rx_buf_release(const struct device *dev)
{
struct mcux_lpuart_data *data = (struct mcux_lpuart_data *)dev->data;
struct uart_event evt = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->async.rx_dma_params.buf,
};
async_user_callback(dev, &evt);
data->async.rx_dma_params.buf = NULL;
data->async.rx_dma_params.buf_len = 0U;
data->async.rx_dma_params.offset = 0U;
data->async.rx_dma_params.counter = 0U;
}
static void mcux_lpuart_async_rx_flush(const struct device *dev)
{
struct dma_status status;
struct mcux_lpuart_data *data = dev->data;
const struct mcux_lpuart_config *config = dev->config;
const int get_status_result = dma_get_status(config->rx_dma_config.dma_dev,
config->rx_dma_config.dma_channel,
&status);
if (get_status_result == 0) {
const size_t rx_rcv_len = data->async.rx_dma_params.buf_len -
status.pending_length;
if (rx_rcv_len > data->async.rx_dma_params.counter && status.pending_length) {
data->async.rx_dma_params.counter = rx_rcv_len;
async_evt_rx_rdy(dev);
}
LPUART_ClearStatusFlags(config->base, kLPUART_RxOverrunFlag);
} else {
LOG_ERR("Error getting DMA status");
}
}
static int mcux_lpuart_rx_disable(const struct device *dev)
{
LOG_INF("Disabling UART RX DMA");
const struct mcux_lpuart_config *config = dev->config;
struct mcux_lpuart_data *data = (struct mcux_lpuart_data *)dev->data;
LPUART_Type *lpuart = config->base;
const unsigned int key = irq_lock();
LPUART_EnableRx(lpuart, false);
(void)k_work_cancel_delayable(&data->async.rx_dma_params.timeout_work);
LPUART_DisableInterrupts(lpuart, kLPUART_IdleLineInterruptEnable);
LPUART_ClearStatusFlags(lpuart, kLPUART_IdleLineFlag);
LPUART_EnableRxDMA(lpuart, false);
/* No active RX buffer, cannot disable */
if (!data->async.rx_dma_params.buf) {
LOG_ERR("No buffers to release from RX DMA!");
} else {
mcux_lpuart_async_rx_flush(dev);
async_evt_rx_buf_release(dev);
if (data->async.next_rx_buffer != NULL) {
data->async.rx_dma_params.buf = data->async.next_rx_buffer;
data->async.rx_dma_params.buf_len = data->async.next_rx_buffer_len;
data->async.next_rx_buffer = NULL;
data->async.next_rx_buffer_len = 0;
/* Release the next buffer as well */
async_evt_rx_buf_release(dev);
}
}
const int ret = dma_stop(config->rx_dma_config.dma_dev,
config->rx_dma_config.dma_channel);
if (ret != 0) {
LOG_ERR("Error stopping rx DMA. Reason: %x", ret);
}
LOG_DBG("RX: Disabled");
struct uart_event disabled_event = {
.type = UART_RX_DISABLED
};
async_user_callback(dev, &disabled_event);
irq_unlock(key);
return ret;
}
static void prepare_rx_dma_block_config(const struct device *dev)
{
struct mcux_lpuart_data *data = (struct mcux_lpuart_data *)dev->data;
const struct mcux_lpuart_config *config = dev->config;
LPUART_Type *lpuart = config->base;
struct mcux_lpuart_rx_dma_params *rx_dma_params = &data->async.rx_dma_params;
assert(rx_dma_params->buf != NULL);
assert(rx_dma_params->buf_len > 0);
struct dma_block_config *head_block_config = &rx_dma_params->active_dma_block;
head_block_config->dest_address = (uint32_t)rx_dma_params->buf;
head_block_config->source_address = LPUART_GetDataRegisterAddress(lpuart);
head_block_config->block_size = rx_dma_params->buf_len;
head_block_config->dest_scatter_en = true;
}
static int configure_and_start_rx_dma(
const struct mcux_lpuart_config *config, struct mcux_lpuart_data *data,
LPUART_Type *lpuart)
{
LOG_DBG("Configuring and Starting UART RX DMA");
int ret = dma_config(config->rx_dma_config.dma_dev,
config->rx_dma_config.dma_channel,
(struct dma_config *)&config->rx_dma_config.dma_cfg);
if (ret != 0) {
LOG_ERR("Failed to Configure RX DMA: err: %d", ret);
return ret;
}
ret = dma_start(config->rx_dma_config.dma_dev, config->rx_dma_config.dma_channel);
if (ret < 0) {
LOG_ERR("Failed to start DMA(Rx) Ch %d(%d)",
config->rx_dma_config.dma_channel,
ret);
}
LPUART_EnableRxDMA(lpuart, true);
return ret;
}
static int uart_mcux_lpuart_dma_replace_rx_buffer(const struct device *dev)
{
struct mcux_lpuart_data *data = (struct mcux_lpuart_data *)dev->data;
const struct mcux_lpuart_config *config = dev->config;
LPUART_Type *lpuart = config->base;
LOG_DBG("Replacing RX buffer, new length: %d", data->async.next_rx_buffer_len);
/* There must be a buffer to replace this one with */
assert(data->async.next_rx_buffer != NULL);
assert(data->async.next_rx_buffer_len != 0U);
const int success =
dma_reload(config->rx_dma_config.dma_dev, config->rx_dma_config.dma_channel,
LPUART_GetDataRegisterAddress(lpuart),
(uint32_t)data->async.next_rx_buffer, data->async.next_rx_buffer_len);
if (success != 0) {
LOG_ERR("Error %d reloading DMA with next RX buffer", success);
}
return success;
}
static void dma_callback(const struct device *dma_dev, void *callback_arg, uint32_t channel,
int dma_status)
{
struct device *dev = (struct device *)callback_arg;
const struct mcux_lpuart_config *config = dev->config;
LPUART_Type *lpuart = config->base;
struct mcux_lpuart_data *data = (struct mcux_lpuart_data *)dev->data;
LOG_DBG("DMA call back on channel %d", channel);
struct dma_status status;
const int get_status_result = dma_get_status(dma_dev, channel, &status);
if (get_status_result < 0) {
LOG_ERR("error on status get: %d", get_status_result);
} else {
LOG_DBG("DMA Status: b: %d dir: %d len_remain: %d", status.busy, status.dir,
status.pending_length);
}
if (dma_status < 0) {
LOG_ERR("Got error : %d", dma_status);
}
if (channel == config->tx_dma_config.dma_channel) {
LOG_DBG("TX Channel");
LPUART_EnableTxDMA(lpuart, false);
async_evt_tx_done(dev);
} else if (channel == config->rx_dma_config.dma_channel) {
LOG_DBG("RX Channel");
struct mcux_lpuart_rx_dma_params *rx_dma_params = &data->async.rx_dma_params;
/* The RX Event indicates DMA transfer is complete and full buffer is available. */
rx_dma_params->counter = rx_dma_params->buf_len;
LOG_DBG("Current Buf (%x) full, swapping to new buf: %x",
(uint32_t)rx_dma_params->buf,
(uint32_t)data->async.next_rx_buffer);
async_evt_rx_rdy(dev);
async_evt_rx_buf_release(dev);
/* Remember the buf so it can be released after it is done. */
rx_dma_params->buf = data->async.next_rx_buffer;
rx_dma_params->buf_len = data->async.next_rx_buffer_len;
data->async.next_rx_buffer = NULL;
data->async.next_rx_buffer_len = 0U;
/* A new buffer was available (and already loaded into the DMA engine) */
if (rx_dma_params->buf != NULL && rx_dma_params->buf_len > 0) {
/* Request the next buffer */
async_evt_rx_buf_request(dev);
} else {
/* Buffer full without valid next buffer, disable RX DMA */
LOG_INF("Disabled RX DMA, no valid next buffer ");
mcux_lpuart_rx_disable(dev);
}
} else {
LOG_ERR("Got unexpected DMA Channel: %d", channel);
}
}
static int mcux_lpuart_configure_async(const struct device *dev);
static int mcux_lpuart_callback_set(const struct device *dev, uart_callback_t callback,
void *user_data)
{
struct mcux_lpuart_data *data = dev->data;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
if (data->api_type == LPUART_IRQ_DRIVEN) {
LOG_ERR("UART irq and async api are exclusive");
return -ENOTSUP;
}
#endif
data->async.user_callback = callback;
data->async.user_data = user_data;
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
data->callback = NULL;
data->cb_data = NULL;
data->api_type = LPUART_ASYNC;
#endif
return mcux_lpuart_configure_async(dev);
}
static int mcux_lpuart_tx(const struct device *dev, const uint8_t *buf, size_t len,
int32_t timeout_us)
{
struct mcux_lpuart_data *data = dev->data;
const struct mcux_lpuart_config *config = dev->config;
LPUART_Type *lpuart = config->base;
unsigned int key = irq_lock();
/* Check for an ongiong transfer and abort if it is pending */
struct dma_status status;
const int get_status_result = dma_get_status(config->tx_dma_config.dma_dev,
config->tx_dma_config.dma_channel,
&status);
if (get_status_result < 0 || status.busy) {
irq_unlock(key);
LOG_ERR("Unable to submit UART DMA Transfer.");
return get_status_result < 0 ? get_status_result : -EBUSY;
}
int ret;
LPUART_EnableTxDMA(lpuart, false);
data->async.tx_dma_params.buf = buf;
data->async.tx_dma_params.buf_len = len;
data->async.tx_dma_params.active_dma_block.source_address = (uint32_t)buf;
data->async.tx_dma_params.active_dma_block.dest_address =
LPUART_GetDataRegisterAddress(lpuart);
data->async.tx_dma_params.active_dma_block.block_size = len;
data->async.tx_dma_params.active_dma_block.next_block = NULL;
ret = dma_config(config->tx_dma_config.dma_dev,
config->tx_dma_config.dma_channel,
(struct dma_config *)&config->tx_dma_config.dma_cfg);
if (ret == 0) {
LOG_DBG("Starting UART DMA TX Ch %u", config->tx_dma_config.dma_channel);
ret = dma_start(config->tx_dma_config.dma_dev,
config->tx_dma_config.dma_channel);
LPUART_EnableTxDMA(lpuart, true);
if (ret != 0) {
LOG_ERR("Failed to start DMA(Tx) Ch %d",
config->tx_dma_config.dma_channel);
}
async_timer_start(&data->async.tx_dma_params.timeout_work, timeout_us);
} else {
LOG_ERR("Error configuring UART DMA: %x", ret);
}
irq_unlock(key);
return ret;
}
static int mcux_lpuart_tx_abort(const struct device *dev)
{
struct mcux_lpuart_data *data = dev->data;
const struct mcux_lpuart_config *config = dev->config;
LPUART_Type *lpuart = config->base;
LPUART_EnableTxDMA(lpuart, false);
(void)k_work_cancel_delayable(&data->async.tx_dma_params.timeout_work);
struct dma_status status;
const int get_status_result = dma_get_status(config->tx_dma_config.dma_dev,
config->tx_dma_config.dma_channel,
&status);
if (get_status_result < 0) {
LOG_ERR("Error querying TX DMA Status during abort.");
}
const size_t bytes_transmitted = (get_status_result == 0) ?
data->async.tx_dma_params.buf_len - status.pending_length : 0;
const int ret = dma_stop(config->tx_dma_config.dma_dev, config->tx_dma_config.dma_channel);
if (ret == 0) {
struct uart_event tx_aborted_event = {
.type = UART_TX_ABORTED,
.data.tx.buf = data->async.tx_dma_params.buf,
.data.tx.len = bytes_transmitted
};
async_user_callback(dev, &tx_aborted_event);
}
return ret;
}
static int mcux_lpuart_rx_enable(const struct device *dev, uint8_t *buf, const size_t len,
const int32_t timeout_us)
{
LOG_DBG("Enabling UART RX DMA");
struct mcux_lpuart_data *data = dev->data;
const struct mcux_lpuart_config *config = dev->config;
LPUART_Type *lpuart = config->base;
struct mcux_lpuart_rx_dma_params *rx_dma_params = &data->async.rx_dma_params;
unsigned int key = irq_lock();
struct dma_status status;
const int get_status_result = dma_get_status(config->rx_dma_config.dma_dev,
config->rx_dma_config.dma_channel,
&status);
if (get_status_result < 0 || status.busy) {
LOG_ERR("Unable to start receive on UART.");
irq_unlock(key);
return get_status_result < 0 ? get_status_result : -EBUSY;
}
rx_dma_params->timeout_us = timeout_us;
rx_dma_params->buf = buf;
rx_dma_params->buf_len = len;
data->async.next_rx_buffer = NULL;
data->async.next_rx_buffer_len = 0U;
LPUART_EnableInterrupts(config->base, kLPUART_IdleLineInterruptEnable);
prepare_rx_dma_block_config(dev);
const int ret = configure_and_start_rx_dma(config, data, lpuart);
/* Request the next buffer for when this buffer is full for continuous reception */
async_evt_rx_buf_request(dev);
/* Clear these status flags as they can prevent the UART device from receiving data */
LPUART_ClearStatusFlags(config->base, kLPUART_RxOverrunFlag | kLPUART_ParityErrorFlag |
kLPUART_FramingErrorFlag |
kLPUART_NoiseErrorFlag);
LPUART_EnableRx(lpuart, true);
irq_unlock(key);
return ret;
}
static int mcux_lpuart_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
struct mcux_lpuart_data *data = dev->data;
unsigned int key;
key = irq_lock();
assert(data->async.next_rx_buffer == NULL);
assert(data->async.next_rx_buffer_len == 0);
data->async.next_rx_buffer = buf;
data->async.next_rx_buffer_len = len;
uart_mcux_lpuart_dma_replace_rx_buffer(dev);
irq_unlock(key);
return 0;
}
static void mcux_lpuart_async_rx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct mcux_lpuart_rx_dma_params *rx_params = CONTAINER_OF(dwork,
struct mcux_lpuart_rx_dma_params,
timeout_work);
struct mcux_lpuart_async_data *async_data = CONTAINER_OF(rx_params,
struct mcux_lpuart_async_data,
rx_dma_params);
const struct device *dev = async_data->uart_dev;
LOG_DBG("RX timeout");
mcux_lpuart_async_rx_flush(dev);
}
static void mcux_lpuart_async_tx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct mcux_lpuart_tx_dma_params *tx_params = CONTAINER_OF(dwork,
struct mcux_lpuart_tx_dma_params,
timeout_work);
struct mcux_lpuart_async_data *async_data = CONTAINER_OF(tx_params,
struct mcux_lpuart_async_data,
tx_dma_params);
const struct device *dev = async_data->uart_dev;
LOG_DBG("TX timeout");
(void)mcux_lpuart_tx_abort(dev);
}
#endif /* CONFIG_UART_ASYNC_API */
#if CONFIG_UART_MCUX_LPUART_ISR_SUPPORT
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static inline void mcux_lpuart_irq_driven_isr(const struct device *dev,
struct mcux_lpuart_data *data,
const struct mcux_lpuart_config *config,
const uint32_t status) {
if (data->callback) {
data->callback(dev, data->cb_data);
}
if (status & kLPUART_RxOverrunFlag) {
LPUART_ClearStatusFlags(config->base, kLPUART_RxOverrunFlag);
}
}
#endif
#ifdef CONFIG_UART_ASYNC_API
static inline void mcux_lpuart_async_isr(struct mcux_lpuart_data *data,
const struct mcux_lpuart_config *config,
const uint32_t status) {
if (status & kLPUART_IdleLineFlag) {
async_timer_start(&data->async.rx_dma_params.timeout_work,
data->async.rx_dma_params.timeout_us);
LPUART_ClearStatusFlags(config->base, kLPUART_IdleLineFlag);
}
if (status & kLPUART_RxOverrunFlag) {
LPUART_ClearStatusFlags(config->base, kLPUART_RxOverrunFlag);
}
}
#endif
static void mcux_lpuart_isr(const struct device *dev)
{
struct mcux_lpuart_data *data = dev->data;
const struct mcux_lpuart_config *config = dev->config;
const uint32_t status = LPUART_GetStatusFlags(config->base);
#if CONFIG_PM
if (status & kLPUART_TransmissionCompleteFlag) {
if (data->tx_poll_stream_on) {
/* Poll transmission complete. Allow system to sleep */
LPUART_DisableInterrupts(config->base,
kLPUART_TransmissionCompleteInterruptEnable);
data->tx_poll_stream_on = false;
mcux_lpuart_pm_policy_state_lock_put(dev);
}
}
#endif /* CONFIG_PM */
#if defined(CONFIG_UART_ASYNC_API) && defined(CONFIG_UART_INTERRUPT_DRIVEN)
if (data->api_type == LPUART_IRQ_DRIVEN) {
mcux_lpuart_irq_driven_isr(dev, data, config, status);
} else if (data->api_type == LPUART_ASYNC) {
mcux_lpuart_async_isr(data, config, status);
}
#elif defined(CONFIG_UART_INTERRUPT_DRIVEN)
mcux_lpuart_irq_driven_isr(dev, data, config, status);
#elif defined(CONFIG_UART_ASYNC_API)
mcux_lpuart_async_isr(data, config, status);
#endif /* API */
}
#endif /* CONFIG_UART_MCUX_LPUART_ISR_SUPPORT */
static int mcux_lpuart_configure_basic(const struct device *dev, const struct uart_config *cfg,
lpuart_config_t *uart_config)
{
/* Translate UART API enum to LPUART enum from HAL */
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
uart_config->parityMode = kLPUART_ParityDisabled;
break;
case UART_CFG_PARITY_ODD:
uart_config->parityMode = kLPUART_ParityOdd;
break;
case UART_CFG_PARITY_EVEN:
uart_config->parityMode = kLPUART_ParityEven;
break;
default:
return -ENOTSUP;
}
switch (cfg->data_bits) {
#if defined(FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT) && \
FSL_FEATURE_LPUART_HAS_7BIT_DATA_SUPPORT
case UART_CFG_DATA_BITS_7:
uart_config->dataBitsCount = kLPUART_SevenDataBits;
break;
#endif
case UART_CFG_DATA_BITS_8:
uart_config->dataBitsCount = kLPUART_EightDataBits;
break;
default:
return -ENOTSUP;
}
#if defined(FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT) && \
FSL_FEATURE_LPUART_HAS_STOP_BIT_CONFIG_SUPPORT
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uart_config->stopBitCount = kLPUART_OneStopBit;
break;
case UART_CFG_STOP_BITS_2:
uart_config->stopBitCount = kLPUART_TwoStopBit;
break;
default:
return -ENOTSUP;
}
#endif
#if defined(FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT) && \
FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
case UART_CFG_FLOW_CTRL_RS485:
uart_config->enableTxCTS = false;
uart_config->enableRxRTS = false;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
uart_config->enableTxCTS = true;
uart_config->enableRxRTS = true;
break;
default:
return -ENOTSUP;
}
#endif
uart_config->baudRate_Bps = cfg->baudrate;
uart_config->enableRx = true;
/* Tx will be enabled manually after set tx-rts */
uart_config->enableTx = false;
return 0;
}
#ifdef CONFIG_UART_ASYNC_API
static int mcux_lpuart_configure_async(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
struct mcux_lpuart_data *data = dev->data;
lpuart_config_t uart_config;
int ret;
LPUART_GetDefaultConfig(&uart_config);
ret = mcux_lpuart_configure_basic(dev, &data->uart_config, &uart_config);
if (ret) {
return ret;
}
uart_config.rxIdleType = kLPUART_IdleTypeStopBit;
uart_config.rxIdleConfig = kLPUART_IdleCharacter1;
data->async.next_rx_buffer = NULL;
data->async.next_rx_buffer_len = 0;
data->async.uart_dev = dev;
k_work_init_delayable(&data->async.rx_dma_params.timeout_work,
mcux_lpuart_async_rx_timeout);
k_work_init_delayable(&data->async.tx_dma_params.timeout_work,
mcux_lpuart_async_tx_timeout);
/* Disable the UART Receiver until the async API provides a buffer to
* receive into with rx_enable
*/
uart_config.enableRx = false;
/* Clearing the fifo of any junk received before the async rx enable was called */
while (LPUART_GetRxFifoCount(config->base) > 0) {
LPUART_ReadByte(config->base);
}
return 0;
}
#endif
static int mcux_lpuart_configure_init(const struct device *dev, const struct uart_config *cfg)
{
const struct mcux_lpuart_config *config = dev->config;
struct mcux_lpuart_data *data = dev->data;
lpuart_config_t uart_config;
uint32_t clock_freq;
int ret;
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LPUART_GetDefaultConfig(&uart_config);
ret = mcux_lpuart_configure_basic(dev, cfg, &uart_config);
if (ret) {
return ret;
}
LPUART_Init(config->base, &uart_config, clock_freq);
#if defined(FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT) && \
FSL_FEATURE_LPUART_HAS_MODEM_SUPPORT
if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485) {
/* Set the LPUART into RS485 mode (tx driver enable using RTS) */
config->base->MODIR |= LPUART_MODIR_TXRTSE(true);
if (!config->rs485_de_active_low) {
config->base->MODIR |= LPUART_MODIR_TXRTSPOL(1);
}
}
#endif
/* Now can enable tx */
config->base->CTRL |= LPUART_CTRL_TE(true);
if (config->loopback_en) {
/* Set the LPUART into loopback mode */
config->base->CTRL |= LPUART_CTRL_LOOPS_MASK;
config->base->CTRL &= ~LPUART_CTRL_RSRC_MASK;
} else if (config->single_wire) {
/* Enable the single wire / half-duplex mode, only possible when
* loopback is disabled. We need a critical section to prevent
* the UART firing an interrupt during mode switch
*/
unsigned int key = irq_lock();
config->base->CTRL |= (LPUART_CTRL_LOOPS_MASK | LPUART_CTRL_RSRC_MASK);
irq_unlock(key);
} else {
#ifdef LPUART_CTRL_TXINV
/* Only invert TX in full-duplex mode */
if (config->tx_invert) {
config->base->CTRL |= LPUART_CTRL_TXINV(1);
}
#endif
}
#ifdef LPUART_STAT_RXINV
if (config->rx_invert) {
config->base->STAT |= LPUART_STAT_RXINV(1);
}
#endif
/* update internal uart_config */
data->uart_config = *cfg;
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int mcux_lpuart_config_get(const struct device *dev, struct uart_config *cfg)
{
struct mcux_lpuart_data *data = dev->data;
*cfg = data->uart_config;
return 0;
}
static int mcux_lpuart_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct mcux_lpuart_config *config = dev->config;
/* Make sure that RSRC is de-asserted otherwise deinit will hang. */
config->base->CTRL &= ~LPUART_CTRL_RSRC_MASK;
/* disable LPUART */
LPUART_Deinit(config->base);
int ret = mcux_lpuart_configure_init(dev, cfg);
if (ret) {
return ret;
}
/* wait for hardware init */
k_sleep(K_MSEC(1));
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int mcux_lpuart_init(const struct device *dev)
{
const struct mcux_lpuart_config *config = dev->config;
struct mcux_lpuart_data *data = dev->data;
struct uart_config *uart_api_config = &data->uart_config;
int err;
uart_api_config->baudrate = config->baud_rate;
uart_api_config->parity = config->parity;
uart_api_config->stop_bits = UART_CFG_STOP_BITS_1;
uart_api_config->data_bits = UART_CFG_DATA_BITS_8;
uart_api_config->flow_ctrl = config->flow_ctrl;
/* set initial configuration */
mcux_lpuart_configure_init(dev, uart_api_config);
if (config->flow_ctrl) {
const struct pinctrl_state *state;
err = pinctrl_lookup_state(config->pincfg, PINCTRL_STATE_FLOWCONTROL, &state);
if (err < 0) {
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
}
} else {
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
}
if (err < 0) {
return err;
}
#ifdef CONFIG_UART_MCUX_LPUART_ISR_SUPPORT
#if CONFIG_NXP_LP_FLEXCOMM
/* When using LP Flexcomm driver, register the interrupt handler
* so we receive notification from the LP Flexcomm interrupt handler.
*/
nxp_lp_flexcomm_setirqhandler(config->parent_dev, dev,
LP_FLEXCOMM_PERIPH_LPUART, mcux_lpuart_isr);
#else
/* Interrupt is managed by this driver */
config->irq_config_func(dev);
#endif
#ifdef CONFIG_UART_EXCLUSIVE_API_CALLBACKS
data->api_type = LPUART_NONE;
#endif
#endif
#ifdef CONFIG_PM
data->pm_state_lock_on = false;
data->tx_poll_stream_on = false;
data->tx_int_stream_on = false;
#endif
return 0;
}
static const struct uart_driver_api mcux_lpuart_driver_api = {
.poll_in = mcux_lpuart_poll_in,
.poll_out = mcux_lpuart_poll_out,
.err_check = mcux_lpuart_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = mcux_lpuart_configure,
.config_get = mcux_lpuart_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = mcux_lpuart_fifo_fill,
.fifo_read = mcux_lpuart_fifo_read,
.irq_tx_enable = mcux_lpuart_irq_tx_enable,
.irq_tx_disable = mcux_lpuart_irq_tx_disable,
.irq_tx_complete = mcux_lpuart_irq_tx_complete,
.irq_tx_ready = mcux_lpuart_irq_tx_ready,
.irq_rx_enable = mcux_lpuart_irq_rx_enable,
.irq_rx_disable = mcux_lpuart_irq_rx_disable,
.irq_rx_ready = mcux_lpuart_irq_rx_full,
.irq_err_enable = mcux_lpuart_irq_err_enable,
.irq_err_disable = mcux_lpuart_irq_err_disable,
.irq_is_pending = mcux_lpuart_irq_is_pending,
.irq_update = mcux_lpuart_irq_update,
.irq_callback_set = mcux_lpuart_irq_callback_set,
#endif
#ifdef CONFIG_UART_ASYNC_API
.callback_set = mcux_lpuart_callback_set,
.tx = mcux_lpuart_tx,
.tx_abort = mcux_lpuart_tx_abort,
.rx_enable = mcux_lpuart_rx_enable,
.rx_buf_rsp = mcux_lpuart_rx_buf_rsp,
.rx_disable = mcux_lpuart_rx_disable,
#endif /* CONFIG_UART_ASYNC_API */
};
#ifdef CONFIG_UART_MCUX_LPUART_ISR_SUPPORT
#define MCUX_LPUART_IRQ_INSTALL(n, i) \
do { \
IRQ_CONNECT(DT_INST_IRQN_BY_IDX(n, i), \
DT_INST_IRQ_BY_IDX(n, i, priority), \
mcux_lpuart_isr, DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQ_BY_IDX(n, i, irq)); \
} while (false)
#define MCUX_LPUART_IRQ_INIT(n) .irq_config_func = mcux_lpuart_config_func_##n,
#define MCUX_LPUART_IRQ_DEFINE(n) \
static void mcux_lpuart_config_func_##n(const struct device *dev) \
{ \
IF_ENABLED(DT_INST_IRQ_HAS_IDX(n, 0), \
(MCUX_LPUART_IRQ_INSTALL(n, 0);)) \
\
IF_ENABLED(DT_INST_IRQ_HAS_IDX(n, 1), \
(MCUX_LPUART_IRQ_INSTALL(n, 1);)) \
}
#else
#define MCUX_LPUART_IRQ_INIT(n)
#define MCUX_LPUART_IRQ_DEFINE(n)
#endif /* CONFIG_UART_MCUX_LPUART_ISR_SUPPORT */
#ifdef CONFIG_UART_ASYNC_API
#define TX_DMA_CONFIG(id) \
.tx_dma_config = { \
.dma_dev = \
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx)), \
.dma_channel = \
DT_INST_DMAS_CELL_BY_NAME(id, tx, mux), \
.dma_cfg = { \
.source_burst_length = 1, \
.dest_burst_length = 1, \
.source_data_size = 1, \
.dest_data_size = 1, \
.complete_callback_en = 1, \
.error_callback_dis = 0, \
.block_count = 1, \
.head_block = \
&mcux_lpuart_##id##_data.async.tx_dma_params.active_dma_block, \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME( \
id, tx, source), \
.dma_callback = dma_callback, \
.user_data = (void *)DEVICE_DT_INST_GET(id) \
}, \
},
#define RX_DMA_CONFIG(id) \
.rx_dma_config = { \
.dma_dev = \
DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx)), \
.dma_channel = \
DT_INST_DMAS_CELL_BY_NAME(id, rx, mux), \
.dma_cfg = { \
.source_burst_length = 1, \
.dest_burst_length = 1, \
.source_data_size = 1, \
.dest_data_size = 1, \
.complete_callback_en = 1, \
.error_callback_dis = 0, \
.block_count = 1, \
.head_block = \
&mcux_lpuart_##id##_data.async.rx_dma_params.active_dma_block, \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_slot = DT_INST_DMAS_CELL_BY_NAME( \
id, rx, source), \
.dma_callback = dma_callback, \
.user_data = (void *)DEVICE_DT_INST_GET(id), \
.cyclic = 1, \
}, \
},
#else
#define RX_DMA_CONFIG(n)
#define TX_DMA_CONFIG(n)
#endif /* CONFIG_UART_ASYNC_API */
#define FLOW_CONTROL(n) \
DT_INST_PROP(n, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: DT_INST_PROP(n, nxp_rs485_mode)\
? UART_CFG_FLOW_CTRL_RS485 \
: UART_CFG_FLOW_CTRL_NONE
#ifdef CONFIG_NXP_LP_FLEXCOMM
#define PARENT_DEV(n) \
.parent_dev = DEVICE_DT_GET(DT_INST_PARENT(n)),
#else
#define PARENT_DEV(n)
#endif /* CONFIG_NXP_LP_FLEXCOMM */
#define LPUART_MCUX_DECLARE_CFG(n) \
static const struct mcux_lpuart_config mcux_lpuart_##n##_config = { \
.base = (LPUART_Type *) DT_INST_REG_ADDR(n), \
PARENT_DEV(n) \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.baud_rate = DT_INST_PROP(n, current_speed), \
.flow_ctrl = FLOW_CONTROL(n), \
.parity = DT_INST_ENUM_IDX_OR(n, parity, UART_CFG_PARITY_NONE), \
.rs485_de_active_low = DT_INST_PROP(n, nxp_rs485_de_active_low), \
.loopback_en = DT_INST_PROP(n, nxp_loopback), \
.single_wire = DT_INST_PROP(n, single_wire), \
.rx_invert = DT_INST_PROP(n, rx_invert), \
.tx_invert = DT_INST_PROP(n, tx_invert), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
MCUX_LPUART_IRQ_INIT(n) \
RX_DMA_CONFIG(n) \
TX_DMA_CONFIG(n) \
};
#define LPUART_MCUX_INIT(n) \
\
static struct mcux_lpuart_data mcux_lpuart_##n##_data; \
\
PINCTRL_DT_INST_DEFINE(n); \
MCUX_LPUART_IRQ_DEFINE(n) \
\
LPUART_MCUX_DECLARE_CFG(n) \
\
DEVICE_DT_INST_DEFINE(n, \
mcux_lpuart_init, \
NULL, \
&mcux_lpuart_##n##_data, \
&mcux_lpuart_##n##_config, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&mcux_lpuart_driver_api); \
DT_INST_FOREACH_STATUS_OKAY(LPUART_MCUX_INIT)