blob: f84fcba9d59b70d789f2f868e802eda7847bf6b0 [file] [log] [blame]
/* bmc150_magn.c - Driver for Bosch BMC150 magnetometer sensor */
/*
* Copyright (c) 2016 Intel Corporation
*
* This code is based on bmm050.c from:
* https://github.com/BoschSensortec/BMM050_driver
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT bosch_bmc150_magn
#include <zephyr/drivers/sensor.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/logging/log.h>
#include "bmc150_magn.h"
LOG_MODULE_REGISTER(BMC150_MAGN, CONFIG_SENSOR_LOG_LEVEL);
static const struct {
int freq;
uint8_t reg_val;
} bmc150_magn_samp_freq_table[] = { {2, 0x01},
{6, 0x02},
{8, 0x03},
{10, 0x00},
{15, 0x04},
{20, 0x05},
{25, 0x06},
{30, 0x07} };
static const struct bmc150_magn_preset {
uint8_t rep_xy;
uint8_t rep_z;
uint8_t odr;
} bmc150_magn_presets_table[] = {
[LOW_POWER_PRESET] = {3, 3, 10},
[REGULAR_PRESET] = {9, 15, 10},
[ENHANCED_REGULAR_PRESET] = {15, 27, 10},
[HIGH_ACCURACY_PRESET] = {47, 83, 20}
};
static int bmc150_magn_set_power_mode(const struct device *dev,
enum bmc150_magn_power_modes mode,
int state)
{
const struct bmc150_magn_config *config = dev->config;
switch (mode) {
case BMC150_MAGN_POWER_MODE_SUSPEND:
if (i2c_reg_update_byte_dt(&config->i2c,
BMC150_MAGN_REG_POWER,
BMC150_MAGN_MASK_POWER_CTL,
!state) < 0) {
return -EIO;
}
k_busy_wait(USEC_PER_MSEC * 5U);
return 0;
case BMC150_MAGN_POWER_MODE_SLEEP:
return i2c_reg_update_byte_dt(&config->i2c,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_OPMODE,
BMC150_MAGN_MODE_SLEEP <<
BMC150_MAGN_SHIFT_OPMODE);
break;
case BMC150_MAGN_POWER_MODE_NORMAL:
return i2c_reg_update_byte_dt(&config->i2c,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_OPMODE,
BMC150_MAGN_MODE_NORMAL <<
BMC150_MAGN_SHIFT_OPMODE);
break;
}
return -ENOTSUP;
}
static int bmc150_magn_set_odr(const struct device *dev, uint8_t val)
{
const struct bmc150_magn_config *config = dev->config;
uint8_t i;
for (i = 0U; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); ++i) {
if (val <= bmc150_magn_samp_freq_table[i].freq) {
return i2c_reg_update_byte_dt(&config->i2c,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_ODR,
bmc150_magn_samp_freq_table[i].reg_val
<< BMC150_MAGN_SHIFT_ODR);
}
}
return -ENOTSUP;
}
#if defined(BMC150_MAGN_SET_ATTR)
static int bmc150_magn_read_rep_xy(const struct device *dev)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
uint8_t reg_val;
if (i2c_reg_read_byte_dt(&config->i2c,
BMC150_MAGN_REG_REP_XY, &reg_val) < 0) {
return -EIO;
}
data->rep_xy = BMC150_MAGN_REGVAL_TO_REPXY((int)(reg_val));
return 0;
}
static int bmc150_magn_read_rep_z(const struct device *dev)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
uint8_t reg_val;
if (i2c_reg_read_byte_dt(&config->i2c,
BMC150_MAGN_REG_REP_Z, &reg_val) < 0) {
return -EIO;
}
data->rep_z = BMC150_MAGN_REGVAL_TO_REPZ((int)(reg_val));
return 0;
}
static int bmc150_magn_compute_max_odr(const struct device *dev, int rep_xy,
int rep_z, int *max_odr)
{
struct bmc150_magn_data *data = dev->data;
if (rep_xy == 0) {
if (data->rep_xy <= 0) {
if (bmc150_magn_read_rep_xy(dev) < 0) {
return -EIO;
}
}
rep_xy = data->rep_xy;
}
if (rep_z == 0) {
if (data->rep_z <= 0) {
if (bmc150_magn_read_rep_z(dev) < 0) {
return -EIO;
}
}
rep_z = data->rep_z;
}
*max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
return 0;
}
#endif
#if defined(BMC150_MAGN_SET_ATTR_REP)
static int bmc150_magn_read_odr(const struct device *dev)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
uint8_t i, odr_val, reg_val;
if (i2c_reg_read_byte_dt(&config->i2c,
BMC150_MAGN_REG_OPMODE_ODR, &reg_val) < 0) {
return -EIO;
}
odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
for (i = 0U; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); ++i) {
if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
data->odr = bmc150_magn_samp_freq_table[i].freq;
return 0;
}
}
return -ENOTSUP;
}
#endif
#if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_XY)
static int bmc150_magn_write_rep_xy(const struct device *dev, int val)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
if (i2c_reg_update_byte_dt(&config->i2c,
BMC150_MAGN_REG_REP_XY,
BMC150_MAGN_REG_REP_DATAMASK,
BMC150_MAGN_REPXY_TO_REGVAL(val)) < 0) {
return -EIO;
}
data->rep_xy = val;
return 0;
}
#endif
#if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_Z)
static int bmc150_magn_write_rep_z(const struct device *dev, int val)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
if (i2c_reg_update_byte_dt(&config->i2c,
BMC150_MAGN_REG_REP_Z,
BMC150_MAGN_REG_REP_DATAMASK,
BMC150_MAGN_REPZ_TO_REGVAL(val)) < 0) {
return -EIO;
}
data->rep_z = val;
return 0;
}
#endif
/*
* Datasheet part 4.3.4, provided by Bosch here:
* https://github.com/BoschSensortec/BMM050_driver
*/
static int32_t bmc150_magn_compensate_xy(struct bmc150_magn_trim_regs *tregs,
int16_t xy, uint16_t rhall, bool is_x)
{
int8_t txy1, txy2;
int16_t val;
if (xy == BMC150_MAGN_XY_OVERFLOW_VAL) {
return INT32_MIN;
}
if (!rhall) {
rhall = tregs->xyz1;
}
if (is_x) {
txy1 = tregs->x1;
txy2 = tregs->x2;
} else {
txy1 = tregs->y1;
txy2 = tregs->y2;
}
val = ((int16_t)(((uint16_t)((((int32_t)tregs->xyz1) << 14) / rhall)) -
((uint16_t)0x4000)));
val = ((int16_t)((((int32_t)xy) * ((((((((int32_t)tregs->xy2) *
((((int32_t)val) * ((int32_t)val)) >> 7)) + (((int32_t)val) *
((int32_t)(((int16_t)tregs->xy1) << 7)))) >> 9) +
((int32_t)0x100000)) * ((int32_t)(((int16_t)txy2) +
((int16_t)0xA0)))) >> 12)) >> 13)) + (((int16_t)txy1) << 3);
return (int32_t)val;
}
static int32_t bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs,
int16_t z, uint16_t rhall)
{
int32_t val;
if (z == BMC150_MAGN_Z_OVERFLOW_VAL) {
return INT32_MIN;
}
val = (((((int32_t)(z - tregs->z4)) << 15) - ((((int32_t)tregs->z3) *
((int32_t)(((int16_t)rhall) - ((int16_t)tregs->xyz1)))) >> 2)) /
(tregs->z2 + ((int16_t)(((((int32_t)tregs->z1) *
((((int16_t)rhall) << 1))) + (1 << 15)) >> 16))));
return val;
}
static int bmc150_magn_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
uint16_t values[BMC150_MAGN_AXIS_XYZR_MAX];
int16_t raw_x, raw_y, raw_z;
uint16_t rhall;
__ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL ||
chan == SENSOR_CHAN_MAGN_XYZ);
if (i2c_burst_read_dt(&config->i2c,
BMC150_MAGN_REG_X_L, (uint8_t *)values,
sizeof(values)) < 0) {
LOG_ERR("failed to read sample");
return -EIO;
}
raw_x = (int16_t)sys_le16_to_cpu(values[BMC150_MAGN_AXIS_X]) >>
BMC150_MAGN_SHIFT_XY_L;
raw_y = (int16_t)sys_le16_to_cpu(values[BMC150_MAGN_AXIS_Y]) >>
BMC150_MAGN_SHIFT_XY_L;
raw_z = (int16_t)sys_le16_to_cpu(values[BMC150_MAGN_AXIS_Z]) >>
BMC150_MAGN_SHIFT_Z_L;
rhall = sys_le16_to_cpu(values[BMC150_MAGN_RHALL]) >>
BMC150_MAGN_SHIFT_RHALL_L;
data->sample_x = bmc150_magn_compensate_xy(&data->tregs, raw_x, rhall,
true);
data->sample_y = bmc150_magn_compensate_xy(&data->tregs, raw_y, rhall,
false);
data->sample_z = bmc150_magn_compensate_z(&data->tregs, raw_z, rhall);
return 0;
}
static void bmc150_magn_convert(struct sensor_value *val, int raw_val)
{
/* val = raw_val / 1600 */
val->val1 = raw_val / 1600;
val->val2 = ((int32_t)raw_val * (1000000 / 1600)) % 1000000;
}
static int bmc150_magn_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct bmc150_magn_data *data = dev->data;
switch (chan) {
case SENSOR_CHAN_MAGN_X:
bmc150_magn_convert(val, data->sample_x);
break;
case SENSOR_CHAN_MAGN_Y:
bmc150_magn_convert(val, data->sample_y);
break;
case SENSOR_CHAN_MAGN_Z:
bmc150_magn_convert(val, data->sample_z);
break;
case SENSOR_CHAN_MAGN_XYZ:
bmc150_magn_convert(val, data->sample_x);
bmc150_magn_convert(val + 1, data->sample_y);
bmc150_magn_convert(val + 2, data->sample_z);
break;
default:
return -EINVAL;
}
return 0;
}
#if defined(BMC150_MAGN_SET_ATTR_REP)
static inline int bmc150_magn_attr_set_rep(const struct device *dev,
enum sensor_channel chan,
const struct sensor_value *val)
{
struct bmc150_magn_data *data = dev->data;
int max_odr;
switch (chan) {
#if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_XY)
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
if (val->val1 < 1 || val->val1 > 511) {
return -EINVAL;
}
if (bmc150_magn_compute_max_odr(dev, val->val1, 0,
&max_odr) < 0) {
return -EIO;
}
if (data->odr <= 0) {
if (bmc150_magn_read_odr(dev) < 0) {
return -EIO;
}
}
if (data->odr > max_odr) {
return -EINVAL;
}
if (bmc150_magn_write_rep_xy(dev, val->val1) < 0) {
return -EIO;
}
break;
#endif
#if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_Z)
case SENSOR_CHAN_MAGN_Z:
if (val->val1 < 1 || val->val1 > 256) {
return -EINVAL;
}
if (bmc150_magn_compute_max_odr(dev, 0, val->val1,
&max_odr) < 0) {
return -EIO;
}
if (data->odr <= 0) {
if (bmc150_magn_read_odr(dev) < 0) {
return -EIO;
}
}
if (data->odr > max_odr) {
return -EINVAL;
}
if (bmc150_magn_write_rep_z(dev, val->val1) < 0) {
return -EIO;
}
break;
#endif
default:
return -EINVAL;
}
return 0;
}
#endif
#if defined(BMC150_MAGN_SET_ATTR)
static int bmc150_magn_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
struct bmc150_magn_data *data = dev->data;
switch (attr) {
#if defined(CONFIG_BMC150_MAGN_SAMPLING_RATE_RUNTIME)
case SENSOR_ATTR_SAMPLING_FREQUENCY:
if (data->max_odr <= 0) {
if (bmc150_magn_compute_max_odr(dev, 0, 0,
&data->max_odr) < 0) {
return -EIO;
}
}
if (data->max_odr < val->val1) {
LOG_ERR("not supported with current oversampling");
return -ENOTSUP;
}
if (bmc150_magn_set_odr(dev, (uint8_t)(val->val1)) < 0) {
return -EIO;
}
break;
#endif
#if defined(BMC150_MAGN_SET_ATTR_REP)
case SENSOR_ATTR_OVERSAMPLING:
bmc150_magn_attr_set_rep(dev, chan, val);
break;
#endif
default:
return -EINVAL;
}
return 0;
}
#endif
static const struct sensor_driver_api bmc150_magn_api_funcs = {
#if defined(BMC150_MAGN_SET_ATTR)
.attr_set = bmc150_magn_attr_set,
#endif
.sample_fetch = bmc150_magn_sample_fetch,
.channel_get = bmc150_magn_channel_get,
#if defined(CONFIG_BMC150_MAGN_TRIGGER_DRDY)
.trigger_set = bmc150_magn_trigger_set,
#endif
};
static int bmc150_magn_init_chip(const struct device *dev)
{
struct bmc150_magn_data *data = dev->data;
const struct bmc150_magn_config *config = dev->config;
uint8_t chip_id;
struct bmc150_magn_preset preset;
bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_NORMAL, 0);
bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_SUSPEND, 1);
if (bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_SUSPEND, 0)
< 0) {
LOG_ERR("failed to bring up device from suspend mode");
return -EIO;
}
if (i2c_reg_read_byte_dt(&config->i2c,
BMC150_MAGN_REG_CHIP_ID, &chip_id) < 0) {
LOG_ERR("failed reading chip id");
goto err_poweroff;
}
if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
LOG_ERR("invalid chip id 0x%x", chip_id);
goto err_poweroff;
}
LOG_ERR("chip id 0x%x", chip_id);
preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
if (bmc150_magn_set_odr(dev, preset.odr) < 0) {
LOG_ERR("failed to set ODR to %d",
preset.odr);
goto err_poweroff;
}
if (i2c_reg_write_byte_dt(&config->i2c,
BMC150_MAGN_REG_REP_XY,
BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy))
< 0) {
LOG_ERR("failed to set REP XY to %d",
preset.rep_xy);
goto err_poweroff;
}
if (i2c_reg_write_byte_dt(&config->i2c,
BMC150_MAGN_REG_REP_Z,
BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)) < 0) {
LOG_ERR("failed to set REP Z to %d",
preset.rep_z);
goto err_poweroff;
}
if (bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_NORMAL, 1)
< 0) {
LOG_ERR("failed to power on device");
goto err_poweroff;
}
if (i2c_burst_read_dt(&config->i2c,
BMC150_MAGN_REG_TRIM_START, (uint8_t *)&data->tregs,
sizeof(data->tregs)) < 0) {
LOG_ERR("failed to read trim regs");
goto err_poweroff;
}
data->rep_xy = 0;
data->rep_z = 0;
data->odr = 0;
data->max_odr = 0;
data->sample_x = 0;
data->sample_y = 0;
data->sample_z = 0;
data->tregs.xyz1 = sys_le16_to_cpu(data->tregs.xyz1);
data->tregs.z1 = sys_le16_to_cpu(data->tregs.z1);
data->tregs.z2 = sys_le16_to_cpu(data->tregs.z2);
data->tregs.z3 = sys_le16_to_cpu(data->tregs.z3);
data->tregs.z4 = sys_le16_to_cpu(data->tregs.z4);
return 0;
err_poweroff:
bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_NORMAL, 0);
bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_SUSPEND, 1);
return -EIO;
}
static int bmc150_magn_init(const struct device *dev)
{
const struct bmc150_magn_config * const config =
dev->config;
if (!device_is_ready(config->i2c.bus)) {
LOG_ERR("I2C bus device not ready");
return -ENODEV;
}
if (bmc150_magn_init_chip(dev) < 0) {
LOG_ERR("failed to initialize chip");
return -EIO;
}
#if defined(CONFIG_BMC150_MAGN_TRIGGER_DRDY)
if (bmc150_magn_init_interrupt(dev) < 0) {
LOG_ERR("failed to initialize interrupts");
return -EINVAL;
}
#endif
return 0;
}
static const struct bmc150_magn_config bmc150_magn_config = {
.i2c = I2C_DT_SPEC_INST_GET(0),
IF_ENABLED(CONFIG_BMC150_MAGN_TRIGGER_DRDY,
(.int_gpio = GPIO_DT_SPEC_INST_GET(0, drdy_gpios),))
};
static struct bmc150_magn_data bmc150_magn_data;
DEVICE_DT_INST_DEFINE(0, bmc150_magn_init, NULL,
&bmc150_magn_data, &bmc150_magn_config, POST_KERNEL,
CONFIG_SENSOR_INIT_PRIORITY, &bmc150_magn_api_funcs);