blob: e57f35acd993368cb4988941e80ba7bd30515b52 [file] [log] [blame]
/* main.c - Synchronization demo */
/*
* Copyright (c) 2012-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/sys/printk.h>
/*
* The synchronization demo has two threads that utilize semaphores and sleeping
* to take turns printing a greeting message at a controlled rate. The demo
* shows both the static and dynamic approaches for spawning a thread; a real
* world application would likely use the static approach for both threads.
*/
#define PIN_THREADS (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_SCHED_CPU_MASK))
/* size of stack area used by each thread */
#define STACKSIZE 1024
/* scheduling priority used by each thread */
#define PRIORITY 7
/* delay between greetings (in ms) */
#define SLEEPTIME 500
/*
* @param my_name thread identification string
* @param my_sem thread's own semaphore
* @param other_sem other thread's semaphore
*/
void hello_loop(const char *my_name,
struct k_sem *my_sem, struct k_sem *other_sem)
{
const char *tname;
uint8_t cpu;
struct k_thread *current_thread;
while (1) {
/* take my semaphore */
k_sem_take(my_sem, K_FOREVER);
current_thread = k_current_get();
tname = k_thread_name_get(current_thread);
#if CONFIG_SMP
cpu = arch_curr_cpu()->id;
#else
cpu = 0;
#endif
/* say "hello" */
if (tname == NULL) {
printk("%s: Hello World from cpu %d on %s!\n",
my_name, cpu, CONFIG_BOARD);
} else {
printk("%s: Hello World from cpu %d on %s!\n",
tname, cpu, CONFIG_BOARD);
}
/* wait a while, then let other thread have a turn */
k_busy_wait(100000);
k_msleep(SLEEPTIME);
k_sem_give(other_sem);
}
}
/* define semaphores */
K_SEM_DEFINE(thread_a_sem, 1, 1); /* starts off "available" */
K_SEM_DEFINE(thread_b_sem, 0, 1); /* starts off "not available" */
/* thread_a is a dynamic thread that is spawned in main */
void thread_a_entry_point(void *dummy1, void *dummy2, void *dummy3)
{
ARG_UNUSED(dummy1);
ARG_UNUSED(dummy2);
ARG_UNUSED(dummy3);
/* invoke routine to ping-pong hello messages with thread_b */
hello_loop(__func__, &thread_a_sem, &thread_b_sem);
}
K_THREAD_STACK_DEFINE(thread_a_stack_area, STACKSIZE);
static struct k_thread thread_a_data;
/* thread_b is a static thread spawned immediately */
void thread_b_entry_point(void *dummy1, void *dummy2, void *dummy3)
{
ARG_UNUSED(dummy1);
ARG_UNUSED(dummy2);
ARG_UNUSED(dummy3);
/* invoke routine to ping-pong hello messages with thread_a */
hello_loop(__func__, &thread_b_sem, &thread_a_sem);
}
K_THREAD_DEFINE(thread_b, STACKSIZE,
thread_b_entry_point, NULL, NULL, NULL,
PRIORITY, 0, 0);
extern const k_tid_t thread_b;
int main(void)
{
k_thread_create(&thread_a_data, thread_a_stack_area,
K_THREAD_STACK_SIZEOF(thread_a_stack_area),
thread_a_entry_point, NULL, NULL, NULL,
PRIORITY, 0, K_FOREVER);
k_thread_name_set(&thread_a_data, "thread_a");
#if PIN_THREADS
if (arch_num_cpus() > 1) {
k_thread_cpu_pin(&thread_a_data, 0);
/*
* Thread b is a static thread that is spawned immediately. This means that the
* following `k_thread_cpu_pin` call can fail with `-EINVAL` if the thread is
* actively running. Let's suspend the thread and resume it after the affinity mask
* is set.
*/
k_thread_suspend(thread_b);
k_thread_cpu_pin(thread_b, 1);
k_thread_resume(thread_b);
}
#endif
k_thread_start(&thread_a_data);
return 0;
}