blob: 3cb6903f7259d54191f08d815fc260b99dd17460 [file] [log] [blame]
/*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/kernel_structs.h>
#include <kernel_internal.h>
#include <zephyr/sys/__assert.h>
#include <stdbool.h>
#include <zephyr/spinlock.h>
#include <zephyr/sys/check.h>
#include <zephyr/sys/libc-hooks.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
struct k_spinlock z_mem_domain_lock;
static uint8_t max_partitions;
struct k_mem_domain k_mem_domain_default;
static bool check_add_partition(struct k_mem_domain *domain,
struct k_mem_partition *part)
{
int i;
uintptr_t pstart, pend, dstart, dend;
if (part == NULL) {
LOG_ERR("NULL k_mem_partition provided");
return false;
}
#ifdef CONFIG_EXECUTE_XOR_WRITE
/* Arches where execution cannot be disabled should always return
* false to this check
*/
if (K_MEM_PARTITION_IS_EXECUTABLE(part->attr) &&
K_MEM_PARTITION_IS_WRITABLE(part->attr)) {
LOG_ERR("partition is writable and executable <start %lx>",
part->start);
return false;
}
#endif
if (part->size == 0U) {
LOG_ERR("zero sized partition at %p with base 0x%lx",
part, part->start);
return false;
}
pstart = part->start;
pend = part->start + part->size;
if (pend <= pstart) {
LOG_ERR("invalid partition %p, wraparound detected. base 0x%lx size %zu",
part, part->start, part->size);
return false;
}
/* Check that this partition doesn't overlap any existing ones already
* in the domain
*/
for (i = 0; i < domain->num_partitions; i++) {
struct k_mem_partition *dpart = &domain->partitions[i];
if (dpart->size == 0U) {
/* Unused slot */
continue;
}
dstart = dpart->start;
dend = dstart + dpart->size;
if (pend > dstart && dend > pstart) {
LOG_ERR("partition %p base %lx (size %zu) overlaps existing base %lx (size %zu)",
part, part->start, part->size,
dpart->start, dpart->size);
return false;
}
}
return true;
}
int k_mem_domain_init(struct k_mem_domain *domain, uint8_t num_parts,
struct k_mem_partition *parts[])
{
k_spinlock_key_t key;
int ret = 0;
CHECKIF(domain == NULL) {
ret = -EINVAL;
goto out;
}
CHECKIF(!(num_parts == 0U || parts != NULL)) {
LOG_ERR("parts array is NULL and num_parts is nonzero");
ret = -EINVAL;
goto out;
}
CHECKIF(!(num_parts <= max_partitions)) {
LOG_ERR("num_parts of %d exceeds maximum allowable partitions (%d)",
num_parts, max_partitions);
ret = -EINVAL;
goto out;
}
key = k_spin_lock(&z_mem_domain_lock);
domain->num_partitions = 0U;
(void)memset(domain->partitions, 0, sizeof(domain->partitions));
sys_dlist_init(&domain->mem_domain_q);
#ifdef CONFIG_ARCH_MEM_DOMAIN_DATA
ret = arch_mem_domain_init(domain);
if (ret != 0) {
LOG_ERR("architecture-specific initialization failed for domain %p with %d",
domain, ret);
ret = -ENOMEM;
goto unlock_out;
}
#endif
if (num_parts != 0U) {
uint32_t i;
for (i = 0U; i < num_parts; i++) {
CHECKIF(!check_add_partition(domain, parts[i])) {
LOG_ERR("invalid partition index %d (%p)",
i, parts[i]);
ret = -EINVAL;
goto unlock_out;
}
domain->partitions[i] = *parts[i];
domain->num_partitions++;
#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
int ret2 = arch_mem_domain_partition_add(domain, i);
ARG_UNUSED(ret2);
CHECKIF(ret2 != 0) {
ret = ret2;
}
#endif
}
}
unlock_out:
k_spin_unlock(&z_mem_domain_lock, key);
out:
return ret;
}
int k_mem_domain_add_partition(struct k_mem_domain *domain,
struct k_mem_partition *part)
{
int p_idx;
k_spinlock_key_t key;
int ret = 0;
CHECKIF(domain == NULL) {
ret = -EINVAL;
goto out;
}
CHECKIF(!check_add_partition(domain, part)) {
LOG_ERR("invalid partition %p", part);
ret = -EINVAL;
goto out;
}
key = k_spin_lock(&z_mem_domain_lock);
for (p_idx = 0; p_idx < max_partitions; p_idx++) {
/* A zero-sized partition denotes it's a free partition */
if (domain->partitions[p_idx].size == 0U) {
break;
}
}
CHECKIF(!(p_idx < max_partitions)) {
LOG_ERR("no free partition slots available");
ret = -ENOSPC;
goto unlock_out;
}
LOG_DBG("add partition base %lx size %zu to domain %p\n",
part->start, part->size, domain);
domain->partitions[p_idx].start = part->start;
domain->partitions[p_idx].size = part->size;
domain->partitions[p_idx].attr = part->attr;
domain->num_partitions++;
#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
ret = arch_mem_domain_partition_add(domain, p_idx);
#endif
unlock_out:
k_spin_unlock(&z_mem_domain_lock, key);
out:
return ret;
}
int k_mem_domain_remove_partition(struct k_mem_domain *domain,
struct k_mem_partition *part)
{
int p_idx;
k_spinlock_key_t key;
int ret = 0;
CHECKIF((domain == NULL) || (part == NULL)) {
ret = -EINVAL;
goto out;
}
key = k_spin_lock(&z_mem_domain_lock);
/* find a partition that matches the given start and size */
for (p_idx = 0; p_idx < max_partitions; p_idx++) {
if (domain->partitions[p_idx].start == part->start &&
domain->partitions[p_idx].size == part->size) {
break;
}
}
CHECKIF(!(p_idx < max_partitions)) {
LOG_ERR("no matching partition found");
ret = -ENOENT;
goto unlock_out;
}
LOG_DBG("remove partition base %lx size %zu from domain %p\n",
part->start, part->size, domain);
#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
ret = arch_mem_domain_partition_remove(domain, p_idx);
#endif
/* A zero-sized partition denotes it's a free partition */
domain->partitions[p_idx].size = 0U;
domain->num_partitions--;
unlock_out:
k_spin_unlock(&z_mem_domain_lock, key);
out:
return ret;
}
static int add_thread_locked(struct k_mem_domain *domain,
k_tid_t thread)
{
int ret = 0;
__ASSERT_NO_MSG(domain != NULL);
__ASSERT_NO_MSG(thread != NULL);
LOG_DBG("add thread %p to domain %p\n", thread, domain);
sys_dlist_append(&domain->mem_domain_q,
&thread->mem_domain_info.mem_domain_q_node);
thread->mem_domain_info.mem_domain = domain;
#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
ret = arch_mem_domain_thread_add(thread);
#endif
return ret;
}
static int remove_thread_locked(struct k_thread *thread)
{
int ret = 0;
__ASSERT_NO_MSG(thread != NULL);
LOG_DBG("remove thread %p from memory domain %p\n",
thread, thread->mem_domain_info.mem_domain);
sys_dlist_remove(&thread->mem_domain_info.mem_domain_q_node);
#ifdef CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API
ret = arch_mem_domain_thread_remove(thread);
#endif
return ret;
}
/* Called from thread object initialization */
void z_mem_domain_init_thread(struct k_thread *thread)
{
int ret;
k_spinlock_key_t key = k_spin_lock(&z_mem_domain_lock);
/* New threads inherit memory domain configuration from parent */
ret = add_thread_locked(_current->mem_domain_info.mem_domain, thread);
__ASSERT_NO_MSG(ret == 0);
ARG_UNUSED(ret);
k_spin_unlock(&z_mem_domain_lock, key);
}
/* Called when thread aborts during teardown tasks. sched_spinlock is held */
void z_mem_domain_exit_thread(struct k_thread *thread)
{
int ret;
k_spinlock_key_t key = k_spin_lock(&z_mem_domain_lock);
ret = remove_thread_locked(thread);
__ASSERT_NO_MSG(ret == 0);
ARG_UNUSED(ret);
k_spin_unlock(&z_mem_domain_lock, key);
}
int k_mem_domain_add_thread(struct k_mem_domain *domain, k_tid_t thread)
{
int ret = 0;
k_spinlock_key_t key;
key = k_spin_lock(&z_mem_domain_lock);
if (thread->mem_domain_info.mem_domain != domain) {
ret = remove_thread_locked(thread);
if (ret == 0) {
ret = add_thread_locked(domain, thread);
}
}
k_spin_unlock(&z_mem_domain_lock, key);
return ret;
}
static int init_mem_domain_module(const struct device *arg)
{
int ret;
ARG_UNUSED(arg);
ARG_UNUSED(ret);
max_partitions = arch_mem_domain_max_partitions_get();
/*
* max_partitions must be less than or equal to
* CONFIG_MAX_DOMAIN_PARTITIONS, or would encounter array index
* out of bounds error.
*/
__ASSERT(max_partitions <= CONFIG_MAX_DOMAIN_PARTITIONS, "");
ret = k_mem_domain_init(&k_mem_domain_default, 0, NULL);
__ASSERT(ret == 0, "failed to init default mem domain");
#ifdef Z_LIBC_PARTITION_EXISTS
ret = k_mem_domain_add_partition(&k_mem_domain_default,
&z_libc_partition);
__ASSERT(ret == 0, "failed to add default libc mem partition");
#endif /* Z_LIBC_PARTITION_EXISTS */
return 0;
}
SYS_INIT(init_mem_domain_module, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);