blob: 4d0e373ffc2fef3f0ebd19e90548de69eb2ad280 [file] [log] [blame]
/*
* Copyright (c) 2021 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_DOMAIN flash_stm32l5_u5
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_icache.h>
#include <stm32_ll_system.h>
#include "flash_stm32.h"
#if defined(CONFIG_SOC_SERIES_STM32L5X)
#define STM32_SERIES_MAX_FLASH 512
#elif defined(CONFIG_SOC_SERIES_STM32U5X)
/* at this time stm32u5 mcus have 1MB (stm32u575) or 2MB (stm32u585) */
#define STM32_SERIES_MAX_FLASH 2048
#endif
#define BANK2_OFFSET (KB(STM32_SERIES_MAX_FLASH) / 2)
#define ICACHE_DISABLE_TIMEOUT_VALUE 1U /* 1ms */
#define ICACHE_INVALIDATE_TIMEOUT_VALUE 1U /* 1ms */
static int stm32_icache_disable(void)
{
int status = 0;
uint32_t tickstart;
LOG_DBG("I-cache Disable");
/* Clear BSYENDF flag first and then disable the instruction cache
* that starts a cache invalidation procedure
*/
CLEAR_BIT(ICACHE->FCR, ICACHE_FCR_CBSYENDF);
LL_ICACHE_Disable();
/* Get tick */
tickstart = k_uptime_get_32();
/* Wait for instruction cache to get disabled */
while (LL_ICACHE_IsEnabled()) {
if ((k_uptime_get_32() - tickstart) >
ICACHE_DISABLE_TIMEOUT_VALUE) {
/* New check to avoid false timeout detection in case
* of preemption.
*/
if (LL_ICACHE_IsEnabled()) {
status = -ETIMEDOUT;
break;
}
}
}
return status;
}
static void stm32_icache_enable(void)
{
LOG_DBG("I-cache Enable");
LL_ICACHE_Enable();
}
static int icache_wait_for_invalidate_complete(void)
{
int status = -EIO;
uint32_t tickstart;
/* Check if ongoing invalidation operation */
if (LL_ICACHE_IsActiveFlag_BUSY()) {
/* Get tick */
tickstart = k_uptime_get_32();
/* Wait for end of cache invalidation */
while (!LL_ICACHE_IsActiveFlag_BSYEND()) {
if ((k_uptime_get_32() - tickstart) >
ICACHE_INVALIDATE_TIMEOUT_VALUE) {
break;
}
}
}
/* Clear any pending flags */
if (LL_ICACHE_IsActiveFlag_BSYEND()) {
LOG_DBG("I-cache Invalidation complete");
LL_ICACHE_ClearFlag_BSYEND();
status = 0;
} else {
LOG_ERR("I-cache Invalidation timeout");
status = -ETIMEDOUT;
}
if (LL_ICACHE_IsActiveFlag_ERR()) {
LOG_ERR("I-cache error");
LL_ICACHE_ClearFlag_ERR();
status = -EIO;
}
return status;
}
/*
* offset and len must be aligned on 8 for write,
* positive and not beyond end of flash
*/
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
if (((regs->OPTR & FLASH_STM32_DBANK) == FLASH_STM32_DBANK) &&
(CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) {
/*
* In case of bank1/2 discontinuity, the range should not
* start before bank2 and end beyond bank1 at the same time.
* Locations beyond bank2 are caught by
* flash_stm32_range_exists.
*/
if ((offset < BANK2_OFFSET) &&
(offset + len > FLASH_SIZE / 2)) {
return 0;
}
}
return (!write || (offset % 8 == 0 && len % 8 == 0U)) &&
flash_stm32_range_exists(dev, offset, len);
}
static int write_dword(const struct device *dev, off_t offset, uint64_t val)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
volatile uint32_t *flash = (uint32_t *)(offset
+ CONFIG_FLASH_BASE_ADDRESS);
uint32_t tmp;
int rc;
/* if the non-secure control register is locked,do not fail silently */
if (regs->NSCR & FLASH_STM32_NSLOCK) {
LOG_ERR("NSCR locked\n");
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if this double word is erased */
if ((flash[0] != 0xFFFFFFFFUL) || (flash[1] != 0xFFFFFFFFUL)) {
LOG_ERR("Word at offs %ld not erased", (long)offset);
return -EIO;
}
/* Set the NSPG bit */
regs->NSCR |= FLASH_STM32_NSPG;
/* Flush the register write */
tmp = regs->NSCR;
/* Perform the data write operation at the desired memory address */
flash[0] = (uint32_t)val;
flash[1] = (uint32_t)(val >> 32);
/* Wait until the NSBSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Clear the NSPG bit */
regs->NSCR &= (~FLASH_STM32_NSPG);
return rc;
}
static int erase_page(const struct device *dev, unsigned int offset)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint32_t tmp;
int rc;
int page;
/* if the non-secure control register is locked,do not fail silently */
if (regs->NSCR & FLASH_STM32_NSLOCK) {
LOG_ERR("NSCR locked\n");
return -EIO;
}
/* Check that no Flash memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
if ((regs->OPTR & FLASH_STM32_DBANK) == FLASH_STM32_DBANK) {
bool bank_swap;
/* Check whether bank1/2 are swapped */
bank_swap =
((regs->OPTR & FLASH_OPTR_SWAP_BANK) == FLASH_OPTR_SWAP_BANK);
if ((offset < (FLASH_SIZE / 2)) && !bank_swap) {
/* The pages to be erased is in bank 1 */
regs->NSCR &= ~FLASH_STM32_NSBKER_MSK;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset >= BANK2_OFFSET) && bank_swap) {
/* The pages to be erased is in bank 1 */
regs->NSCR &= ~FLASH_STM32_NSBKER_MSK;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset < (FLASH_SIZE / 2)) && bank_swap) {
/* The pages to be erased is in bank 2 */
regs->NSCR |= FLASH_STM32_NSBKER;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else if ((offset >= BANK2_OFFSET) && !bank_swap) {
/* The pages to be erased is in bank 2 */
regs->NSCR |= FLASH_STM32_NSBKER;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else {
LOG_ERR("Offset %d does not exist", offset);
return -EINVAL;
}
} else {
page = offset / FLASH_PAGE_SIZE_128_BITS;
LOG_DBG("Erase page %d\n", page);
}
/* Set the NSPER bit and select the page you wish to erase */
regs->NSCR |= FLASH_STM32_NSPER;
regs->NSCR &= ~FLASH_STM32_NSPNB_MSK;
regs->NSCR |= (page << FLASH_STM32_NSPNB_POS);
/* Set the NSSTRT bit */
regs->NSCR |= FLASH_STM32_NSSTRT;
/* flush the register write */
tmp = regs->NSCR;
/* Wait for the NSBSY bit */
rc = flash_stm32_wait_flash_idle(dev);
if ((regs->OPTR & FLASH_STM32_DBANK) == FLASH_STM32_DBANK) {
regs->NSCR &= ~(FLASH_STM32_NSPER | FLASH_STM32_NSBKER);
} else {
regs->NSCR &= ~(FLASH_STM32_NSPER);
}
return rc;
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
unsigned int address = offset;
int rc = 0;
bool icache_enabled = LL_ICACHE_IsEnabled();
if (icache_enabled) {
/* Disable icache, this will start the invalidation procedure.
* All changes(erase/write) to flash memory should happen when
* i-cache is disabled. A write to flash performed without
* disabling i-cache will set ERRF error flag in SR register.
*/
rc = stm32_icache_disable();
if (rc != 0) {
return rc;
}
}
for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) {
rc = erase_page(dev, address);
if (rc < 0) {
break;
}
}
if (icache_enabled) {
/* Since i-cache was disabled, this would start the
* invalidation procedure, so wait for completion.
*/
rc = icache_wait_for_invalidate_complete();
/* I-cache should be enabled only after the
* invalidation is complete.
*/
stm32_icache_enable();
}
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int i, rc = 0;
bool icache_enabled = LL_ICACHE_IsEnabled();
if (icache_enabled) {
/* Disable icache, this will start the invalidation procedure.
* All changes(erase/write) to flash memory should happen when
* i-cache is disabled. A write to flash performed without
* disabling i-cache will set ERRF error flag in SR register.
*/
rc = stm32_icache_disable();
if (rc != 0) {
return rc;
}
}
for (i = 0; i < len; i += 8, offset += 8) {
rc = write_dword(dev, offset, ((const uint64_t *) data)[i>>3]);
if (rc < 0) {
break;
}
}
if (icache_enabled) {
/* Since i-cache was disabled, this would start the
* invalidation procedure, so wait for completion.
*/
rc = icache_wait_for_invalidate_complete();
/* I-cache should be enabled only after the
* invalidation is complete.
*/
stm32_icache_enable();
}
return rc;
}
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
static struct flash_pages_layout stm32_flash_layout[3];
#define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2)
if (((regs->OPTR & FLASH_STM32_DBANK) == FLASH_STM32_DBANK) &&
(CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) {
/*
* For stm32l552xx with 256 KB flash
* or For stm32u57x with 1MB flash
*/
if (stm32_flash_layout[0].pages_count == 0) {
/* Bank1 */
stm32_flash_layout[0].pages_count = PAGES_PER_BANK;
stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
/* Dummy page corresponding to discontinuity between
* bank 1/2
*/
stm32_flash_layout[1].pages_count = 1;
stm32_flash_layout[1].pages_size = BANK2_OFFSET
- (PAGES_PER_BANK * FLASH_PAGE_SIZE);
/* Bank2 */
stm32_flash_layout[2].pages_count = PAGES_PER_BANK;
stm32_flash_layout[2].pages_size = FLASH_PAGE_SIZE;
}
} else {
/*
* For stm32l562xx & stm32l552xx with 512 KB flash
* or For stm32u58x with 2MB flash
*/
if (stm32_flash_layout[0].pages_count == 0) {
if ((regs->OPTR & FLASH_STM32_DBANK) == FLASH_STM32_DBANK) {
/* flash with dualbank has 2k pages */
stm32_flash_layout[0].pages_count = FLASH_PAGE_NB;
stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
#if defined(CONFIG_SOC_SERIES_STM32L5X)
} else {
/* flash without dualbank has 4k pages */
stm32_flash_layout[0].pages_count = FLASH_PAGE_NB_128_BITS;
stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE_128_BITS;
#endif /* CONFIG_SOC_SERIES_STM32L5X */
}
}
}
*layout = stm32_flash_layout;
*layout_size = ARRAY_SIZE(stm32_flash_layout);
}