blob: 76a218902f22e4cefc3321c262e6c222aa62da16 [file] [log] [blame]
/*
* The Mass Storage protocol state machine in this file is based on mbed's
* implementation. We augment it by adding Zephyr's USB transport and Storage
* APIs.
*
* Copyright (c) 2010-2011 mbed.org, MIT License
* Copyright (c) 2016 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @file
* @brief Mass Storage device class driver
*
* Driver for USB Mass Storage device class driver
*/
#include <zephyr/init.h>
#include <errno.h>
#include <string.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/storage/disk_access.h>
#include <zephyr/usb/class/usb_msc.h>
#include <zephyr/usb/usb_device.h>
#include <usb_descriptor.h>
#define LOG_LEVEL CONFIG_USB_MASS_STORAGE_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(usb_msc);
/* max USB packet size */
#define MAX_PACKET CONFIG_MASS_STORAGE_BULK_EP_MPS
#define BLOCK_SIZE 512
#define DISK_THREAD_PRIO -5
#define THREAD_OP_READ_QUEUED 1
#define THREAD_OP_WRITE_QUEUED 3
#define THREAD_OP_WRITE_DONE 4
#define MASS_STORAGE_IN_EP_ADDR 0x82
#define MASS_STORAGE_OUT_EP_ADDR 0x01
struct usb_mass_config {
struct usb_if_descriptor if0;
struct usb_ep_descriptor if0_in_ep;
struct usb_ep_descriptor if0_out_ep;
} __packed;
USBD_CLASS_DESCR_DEFINE(primary, 0) struct usb_mass_config mass_cfg = {
/* Interface descriptor */
.if0 = {
.bLength = sizeof(struct usb_if_descriptor),
.bDescriptorType = USB_DESC_INTERFACE,
.bInterfaceNumber = 0,
.bAlternateSetting = 0,
.bNumEndpoints = 2,
.bInterfaceClass = USB_BCC_MASS_STORAGE,
.bInterfaceSubClass = SCSI_TRANSPARENT_SUBCLASS,
.bInterfaceProtocol = BULK_ONLY_TRANSPORT_PROTOCOL,
.iInterface = 0,
},
/* First Endpoint IN */
.if0_in_ep = {
.bLength = sizeof(struct usb_ep_descriptor),
.bDescriptorType = USB_DESC_ENDPOINT,
.bEndpointAddress = MASS_STORAGE_IN_EP_ADDR,
.bmAttributes = USB_DC_EP_BULK,
.wMaxPacketSize =
sys_cpu_to_le16(CONFIG_MASS_STORAGE_BULK_EP_MPS),
.bInterval = 0x00,
},
/* Second Endpoint OUT */
.if0_out_ep = {
.bLength = sizeof(struct usb_ep_descriptor),
.bDescriptorType = USB_DESC_ENDPOINT,
.bEndpointAddress = MASS_STORAGE_OUT_EP_ADDR,
.bmAttributes = USB_DC_EP_BULK,
.wMaxPacketSize =
sys_cpu_to_le16(CONFIG_MASS_STORAGE_BULK_EP_MPS),
.bInterval = 0x00,
},
};
static volatile int thread_op;
static K_KERNEL_STACK_DEFINE(mass_thread_stack, CONFIG_MASS_STORAGE_STACK_SIZE);
static struct k_thread mass_thread_data;
static struct k_sem disk_wait_sem;
static volatile uint32_t defered_wr_sz;
/*
* Keep block buffer larger than BLOCK_SIZE for the case
* the dCBWDataTransferLength is multiple of the BLOCK_SIZE and
* the length of the transferred data is not aligned to the BLOCK_SIZE.
*
* Align for cases where the underlying disk access requires word-aligned
* addresses.
*/
static uint8_t __aligned(4) page[BLOCK_SIZE + CONFIG_MASS_STORAGE_BULK_EP_MPS];
/* Initialized during mass_storage_init() */
static uint32_t memory_size;
static uint32_t block_count;
static const char *disk_pdrv = CONFIG_MASS_STORAGE_DISK_NAME;
#define MSD_OUT_EP_IDX 0
#define MSD_IN_EP_IDX 1
static void mass_storage_bulk_out(uint8_t ep,
enum usb_dc_ep_cb_status_code ep_status);
static void mass_storage_bulk_in(uint8_t ep,
enum usb_dc_ep_cb_status_code ep_status);
/* Describe EndPoints configuration */
static struct usb_ep_cfg_data mass_ep_data[] = {
{
.ep_cb = mass_storage_bulk_out,
.ep_addr = MASS_STORAGE_OUT_EP_ADDR
},
{
.ep_cb = mass_storage_bulk_in,
.ep_addr = MASS_STORAGE_IN_EP_ADDR
}
};
/* CSW Status */
enum Status {
CSW_PASSED,
CSW_FAILED,
CSW_ERROR,
};
/* MSC Bulk-only Stage */
enum Stage {
MSC_READ_CBW, /* wait a CBW */
MSC_ERROR, /* error */
MSC_PROCESS_CBW, /* process a CBW request */
MSC_SEND_CSW, /* send a CSW */
MSC_WAIT_CSW /* wait that a CSW has been effectively sent */
};
/* state of the bulk-only state machine */
static enum Stage stage;
/*current CBW*/
static struct CBW cbw;
/*CSW which will be sent*/
static struct CSW csw;
/*addr where will be read or written data*/
static uint32_t addr;
/*length of a reading or writing*/
static uint32_t length;
static uint8_t max_lun_count;
/*memory OK (after a memoryVerify)*/
static bool memOK;
#define INQ_VENDOR_ID_LEN 8
#define INQ_PRODUCT_ID_LEN 16
#define INQ_REVISION_LEN 4
struct dabc_inquiry_data {
uint8_t head[8];
uint8_t t10_vid[INQ_VENDOR_ID_LEN];
uint8_t product_id[INQ_PRODUCT_ID_LEN];
uint8_t product_rev[INQ_REVISION_LEN];
} __packed;
static const struct dabc_inquiry_data inq_rsp = {
.head = {0x00, 0x80, 0x00, 0x01, 36 - 4, 0x80, 0x00, 0x00},
.t10_vid = CONFIG_MASS_STORAGE_INQ_VENDOR_ID,
.product_id = CONFIG_MASS_STORAGE_INQ_PRODUCT_ID,
.product_rev = CONFIG_MASS_STORAGE_INQ_REVISION,
};
BUILD_ASSERT(sizeof(CONFIG_MASS_STORAGE_INQ_VENDOR_ID) == (INQ_VENDOR_ID_LEN + 1),
"CONFIG_MASS_STORAGE_INQ_VENDOR_ID must be 8 characters (pad with spaces)");
BUILD_ASSERT(sizeof(CONFIG_MASS_STORAGE_INQ_PRODUCT_ID) == (INQ_PRODUCT_ID_LEN + 1),
"CONFIG_MASS_STORAGE_INQ_PRODUCT_ID must be 16 characters (pad with spaces)");
BUILD_ASSERT(sizeof(CONFIG_MASS_STORAGE_INQ_REVISION) == (INQ_REVISION_LEN + 1),
"CONFIG_MASS_STORAGE_INQ_REVISION must be 4 characters (pad with spaces)");
static void msd_state_machine_reset(void)
{
stage = MSC_READ_CBW;
}
static void msd_init(void)
{
(void)memset((void *)&cbw, 0, sizeof(struct CBW));
(void)memset((void *)&csw, 0, sizeof(struct CSW));
(void)memset(page, 0, sizeof(page));
addr = 0U;
length = 0U;
}
static void sendCSW(void)
{
csw.Signature = CSW_Signature;
if (usb_write(mass_ep_data[MSD_IN_EP_IDX].ep_addr, (uint8_t *)&csw,
sizeof(struct CSW), NULL) != 0) {
LOG_ERR("usb write failure");
}
stage = MSC_WAIT_CSW;
}
static bool write(uint8_t *buf, uint16_t size)
{
if (size >= cbw.DataLength) {
size = cbw.DataLength;
}
/* updating the State Machine , so that we send CSW when this
* transfer is complete, ie when we get a bulk in callback
*/
stage = MSC_SEND_CSW;
if (usb_write(mass_ep_data[MSD_IN_EP_IDX].ep_addr, buf, size, NULL)) {
LOG_ERR("USB write failed");
return false;
}
csw.DataResidue -= size;
csw.Status = CSW_PASSED;
return true;
}
/**
* @brief Handler called for Class requests not handled by the USB stack.
*
* @param pSetup Information about the request to execute.
* @param len Size of the buffer.
* @param data Buffer containing the request result.
*
* @return 0 on success, negative errno code on fail.
*/
static int mass_storage_class_handle_req(struct usb_setup_packet *setup,
int32_t *len, uint8_t **data)
{
if (setup->wIndex != mass_cfg.if0.bInterfaceNumber ||
setup->wValue != 0) {
LOG_ERR("Invalid setup parameters");
return -EINVAL;
}
if (usb_reqtype_is_to_device(setup)) {
if (setup->bRequest == MSC_REQUEST_RESET &&
setup->wLength == 0) {
LOG_DBG("MSC_REQUEST_RESET");
msd_state_machine_reset();
return 0;
}
} else {
if (setup->bRequest == MSC_REQUEST_GET_MAX_LUN &&
setup->wLength == 1) {
LOG_DBG("MSC_REQUEST_GET_MAX_LUN");
max_lun_count = 0U;
*data = (uint8_t *)(&max_lun_count);
*len = 1;
return 0;
}
}
LOG_WRN("Unsupported bmRequestType 0x%02x bRequest 0x%02x",
setup->bmRequestType, setup->bRequest);
return -ENOTSUP;
}
static void testUnitReady(void)
{
if (cbw.DataLength != 0U) {
if ((cbw.Flags & 0x80) != 0U) {
LOG_WRN("Stall IN endpoint");
usb_ep_set_stall(mass_ep_data[MSD_IN_EP_IDX].ep_addr);
} else {
LOG_WRN("Stall OUT endpoint");
usb_ep_set_stall(mass_ep_data[MSD_OUT_EP_IDX].ep_addr);
}
}
csw.Status = CSW_PASSED;
sendCSW();
}
static bool requestSense(void)
{
uint8_t request_sense[] = {
0x70,
0x00,
0x05, /* Sense Key: illegal request */
0x00,
0x00,
0x00,
0x00,
0x0A,
0x00,
0x00,
0x00,
0x00,
0x30,
0x01,
0x00,
0x00,
0x00,
0x00,
};
return write(request_sense, sizeof(request_sense));
}
static bool inquiryRequest(void)
{
return write((uint8_t *)&inq_rsp, sizeof(inq_rsp));
}
static bool modeSense6(void)
{
uint8_t sense6[] = { 0x03, 0x00, 0x00, 0x00 };
return write(sense6, sizeof(sense6));
}
static bool readFormatCapacity(void)
{
uint8_t capacity[] = { 0x00, 0x00, 0x00, 0x08,
(uint8_t)((block_count >> 24) & 0xff),
(uint8_t)((block_count >> 16) & 0xff),
(uint8_t)((block_count >> 8) & 0xff),
(uint8_t)((block_count >> 0) & 0xff),
0x02,
(uint8_t)((BLOCK_SIZE >> 16) & 0xff),
(uint8_t)((BLOCK_SIZE >> 8) & 0xff),
(uint8_t)((BLOCK_SIZE >> 0) & 0xff),
};
return write(capacity, sizeof(capacity));
}
static bool readCapacity(void)
{
uint8_t capacity[8];
sys_put_be32(block_count - 1, &capacity[0]);
sys_put_be32(BLOCK_SIZE, &capacity[4]);
return write(capacity, sizeof(capacity));
}
static void thread_memory_read_done(void)
{
uint32_t n;
n = (length > MAX_PACKET) ? MAX_PACKET : length;
if ((addr + n) > memory_size) {
n = memory_size - addr;
stage = MSC_ERROR;
}
if (usb_write(mass_ep_data[MSD_IN_EP_IDX].ep_addr,
&page[addr % BLOCK_SIZE], n, NULL) != 0) {
LOG_ERR("Failed to write EP 0x%x",
mass_ep_data[MSD_IN_EP_IDX].ep_addr);
}
addr += n;
length -= n;
csw.DataResidue -= n;
if (!length || (stage != MSC_PROCESS_CBW)) {
csw.Status = (stage == MSC_PROCESS_CBW) ?
CSW_PASSED : CSW_FAILED;
stage = (stage == MSC_PROCESS_CBW) ? MSC_SEND_CSW : stage;
}
}
static void memoryRead(void)
{
uint32_t n;
n = (length > MAX_PACKET) ? MAX_PACKET : length;
if ((addr + n) > memory_size) {
n = memory_size - addr;
stage = MSC_ERROR;
}
/* we read an entire block */
if (!(addr % BLOCK_SIZE)) {
thread_op = THREAD_OP_READ_QUEUED;
LOG_DBG("Signal thread for %d", (addr/BLOCK_SIZE));
k_sem_give(&disk_wait_sem);
return;
}
usb_write(mass_ep_data[MSD_IN_EP_IDX].ep_addr,
&page[addr % BLOCK_SIZE], n, NULL);
addr += n;
length -= n;
csw.DataResidue -= n;
if (!length || (stage != MSC_PROCESS_CBW)) {
csw.Status = (stage == MSC_PROCESS_CBW) ?
CSW_PASSED : CSW_FAILED;
stage = (stage == MSC_PROCESS_CBW) ? MSC_SEND_CSW : stage;
}
}
static bool check_cbw_data_length(void)
{
if (!cbw.DataLength) {
LOG_WRN("Zero length in CBW");
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
return true;
}
static bool infoTransfer(void)
{
uint32_t n;
if (!check_cbw_data_length()) {
return false;
}
/* Logical Block Address of First Block */
n = sys_get_be32(&cbw.CB[2]);
LOG_DBG("LBA (block) : 0x%x ", n);
if ((n * BLOCK_SIZE) >= memory_size) {
LOG_ERR("LBA out of range");
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
addr = n * BLOCK_SIZE;
/* Number of Blocks to transfer */
switch (cbw.CB[0]) {
case READ10:
case WRITE10:
case VERIFY10:
n = sys_get_be16(&cbw.CB[7]);
break;
case READ12:
case WRITE12:
n = sys_get_be32(&cbw.CB[6]);
break;
}
LOG_DBG("Size (block) : 0x%x ", n);
length = n * BLOCK_SIZE;
if (cbw.DataLength != length) {
if ((cbw.Flags & 0x80) != 0U) {
LOG_WRN("Stall IN endpoint");
usb_ep_set_stall(mass_ep_data[MSD_IN_EP_IDX].ep_addr);
} else {
LOG_WRN("Stall OUT endpoint");
usb_ep_set_stall(mass_ep_data[MSD_OUT_EP_IDX].ep_addr);
}
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
return true;
}
static void fail(void)
{
if (cbw.DataLength) {
/* Stall data stage */
usb_ep_set_stall(mass_ep_data[MSD_IN_EP_IDX].ep_addr);
}
csw.Status = CSW_FAILED;
sendCSW();
}
static void CBWDecode(uint8_t *buf, uint16_t size)
{
if (size != sizeof(cbw)) {
LOG_ERR("size != sizeof(cbw)");
return;
}
memcpy((uint8_t *)&cbw, buf, size);
if (cbw.Signature != CBW_Signature) {
LOG_ERR("CBW Signature Mismatch");
return;
}
csw.Tag = cbw.Tag;
csw.DataResidue = cbw.DataLength;
if ((cbw.CBLength < 1) || (cbw.CBLength > 16) || (cbw.LUN != 0U)) {
LOG_WRN("cbw.CBLength %d", cbw.CBLength);
fail();
} else {
switch (cbw.CB[0]) {
case TEST_UNIT_READY:
LOG_DBG(">> TUR");
testUnitReady();
break;
case REQUEST_SENSE:
LOG_DBG(">> REQ_SENSE");
if (check_cbw_data_length()) {
requestSense();
}
break;
case INQUIRY:
LOG_DBG(">> INQ");
if (check_cbw_data_length()) {
inquiryRequest();
}
break;
case MODE_SENSE6:
LOG_DBG(">> MODE_SENSE6");
if (check_cbw_data_length()) {
modeSense6();
}
break;
case READ_FORMAT_CAPACITIES:
LOG_DBG(">> READ_FORMAT_CAPACITY");
if (check_cbw_data_length()) {
readFormatCapacity();
}
break;
case READ_CAPACITY:
LOG_DBG(">> READ_CAPACITY");
if (check_cbw_data_length()) {
readCapacity();
}
break;
case READ10:
case READ12:
LOG_DBG(">> READ");
if (infoTransfer()) {
if ((cbw.Flags & 0x80)) {
stage = MSC_PROCESS_CBW;
memoryRead();
} else {
usb_ep_set_stall(
mass_ep_data[MSD_OUT_EP_IDX].ep_addr);
LOG_WRN("Stall OUT endpoint");
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case WRITE10:
case WRITE12:
LOG_DBG(">> WRITE");
if (infoTransfer()) {
if (!(cbw.Flags & 0x80)) {
stage = MSC_PROCESS_CBW;
} else {
usb_ep_set_stall(
mass_ep_data[MSD_IN_EP_IDX].ep_addr);
LOG_WRN("Stall IN endpoint");
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case VERIFY10:
LOG_DBG(">> VERIFY10");
if (!(cbw.CB[1] & 0x02)) {
csw.Status = CSW_PASSED;
sendCSW();
break;
}
if (infoTransfer()) {
if (!(cbw.Flags & 0x80)) {
stage = MSC_PROCESS_CBW;
memOK = true;
} else {
usb_ep_set_stall(
mass_ep_data[MSD_IN_EP_IDX].ep_addr);
LOG_WRN("Stall IN endpoint");
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case MEDIA_REMOVAL:
LOG_DBG(">> MEDIA_REMOVAL");
csw.Status = CSW_PASSED;
sendCSW();
break;
default:
LOG_WRN(">> default CB[0] %x", cbw.CB[0]);
fail();
break;
} /*switch(cbw.CB[0])*/
} /* else */
}
static void memoryVerify(uint8_t *buf, uint16_t size)
{
uint32_t n;
if ((addr + size) > memory_size) {
size = memory_size - addr;
stage = MSC_ERROR;
usb_ep_set_stall(mass_ep_data[MSD_OUT_EP_IDX].ep_addr);
LOG_WRN("Stall OUT endpoint");
}
/* beginning of a new block -> load a whole block in RAM */
if (!(addr % BLOCK_SIZE)) {
LOG_DBG("Disk READ sector %d", addr/BLOCK_SIZE);
if (disk_access_read(disk_pdrv, page, addr/BLOCK_SIZE, 1)) {
LOG_ERR("---- Disk Read Error %d", addr/BLOCK_SIZE);
}
}
/* info are in RAM -> no need to re-read memory */
for (n = 0U; n < size; n++) {
if (page[addr%BLOCK_SIZE + n] != buf[n]) {
LOG_DBG("Mismatch sector %d offset %d",
addr/BLOCK_SIZE, n);
memOK = false;
break;
}
}
addr += size;
length -= size;
csw.DataResidue -= size;
if (!length || (stage != MSC_PROCESS_CBW)) {
csw.Status = (memOK && (stage == MSC_PROCESS_CBW)) ?
CSW_PASSED : CSW_FAILED;
sendCSW();
}
}
static void memoryWrite(uint8_t *buf, uint16_t size)
{
if ((addr + size) > memory_size) {
size = memory_size - addr;
stage = MSC_ERROR;
usb_ep_set_stall(mass_ep_data[MSD_OUT_EP_IDX].ep_addr);
LOG_WRN("Stall OUT endpoint");
}
/* we fill an array in RAM of 1 block before writing it in memory */
for (int i = 0; i < size; i++) {
page[addr % BLOCK_SIZE + i] = buf[i];
}
/* if the array is filled, write it in memory */
if ((addr % BLOCK_SIZE) + size >= BLOCK_SIZE) {
if (!(disk_access_status(disk_pdrv) &
DISK_STATUS_WR_PROTECT)) {
LOG_DBG("Disk WRITE Qd %d", (addr/BLOCK_SIZE));
thread_op = THREAD_OP_WRITE_QUEUED; /* write_queued */
defered_wr_sz = size;
k_sem_give(&disk_wait_sem);
return;
}
}
addr += size;
length -= size;
csw.DataResidue -= size;
if ((!length) || (stage != MSC_PROCESS_CBW)) {
csw.Status = (stage == MSC_ERROR) ? CSW_FAILED : CSW_PASSED;
sendCSW();
}
}
static void mass_storage_bulk_out(uint8_t ep,
enum usb_dc_ep_cb_status_code ep_status)
{
uint32_t bytes_read = 0U;
uint8_t bo_buf[CONFIG_MASS_STORAGE_BULK_EP_MPS];
ARG_UNUSED(ep_status);
usb_ep_read_wait(ep, bo_buf, CONFIG_MASS_STORAGE_BULK_EP_MPS,
&bytes_read);
switch (stage) {
/*the device has to decode the CBW received*/
case MSC_READ_CBW:
LOG_DBG("> BO - MSC_READ_CBW");
CBWDecode(bo_buf, bytes_read);
break;
/*the device has to receive data from the host*/
case MSC_PROCESS_CBW:
switch (cbw.CB[0]) {
case WRITE10:
case WRITE12:
/* LOG_DBG("> BO - PROC_CBW WR");*/
memoryWrite(bo_buf, bytes_read);
break;
case VERIFY10:
LOG_DBG("> BO - PROC_CBW VER");
memoryVerify(bo_buf, bytes_read);
break;
default:
LOG_ERR("> BO - PROC_CBW default <<ERROR!!!>>");
break;
}
break;
/*an error has occurred: stall endpoint and send CSW*/
default:
LOG_WRN("Stall OUT endpoint, stage: %d", stage);
usb_ep_set_stall(ep);
csw.Status = CSW_ERROR;
sendCSW();
break;
}
if (thread_op != THREAD_OP_WRITE_QUEUED) {
usb_ep_read_continue(ep);
} else {
LOG_DBG("> BO not clearing NAKs yet");
}
}
static void thread_memory_write_done(void)
{
uint32_t size = defered_wr_sz;
size_t overflowed_len = (addr + size) % CONFIG_MASS_STORAGE_BULK_EP_MPS;
if (overflowed_len) {
memmove(page, &page[BLOCK_SIZE], overflowed_len);
}
addr += size;
length -= size;
csw.DataResidue -= size;
if ((!length) || (stage != MSC_PROCESS_CBW)) {
csw.Status = (stage == MSC_ERROR) ? CSW_FAILED : CSW_PASSED;
sendCSW();
}
thread_op = THREAD_OP_WRITE_DONE;
usb_ep_read_continue(mass_ep_data[MSD_OUT_EP_IDX].ep_addr);
}
/**
* @brief EP Bulk IN handler, used to send data to the Host
*
* @param ep Endpoint address.
* @param ep_status Endpoint status code.
*
* @return N/A.
*/
static void mass_storage_bulk_in(uint8_t ep,
enum usb_dc_ep_cb_status_code ep_status)
{
ARG_UNUSED(ep_status);
ARG_UNUSED(ep);
switch (stage) {
/*the device has to send data to the host*/
case MSC_PROCESS_CBW:
switch (cbw.CB[0]) {
case READ10:
case READ12:
/* LOG_DBG("< BI - PROC_CBW READ"); */
memoryRead();
break;
default:
LOG_ERR("< BI-PROC_CBW default <<ERROR!!>>");
break;
}
break;
/*the device has to send a CSW*/
case MSC_SEND_CSW:
LOG_DBG("< BI - MSC_SEND_CSW");
sendCSW();
break;
/*the host has received the CSW -> we wait a CBW*/
case MSC_WAIT_CSW:
LOG_DBG("< BI - MSC_WAIT_CSW");
stage = MSC_READ_CBW;
break;
/*an error has occurred*/
default:
LOG_WRN("Stall IN endpoint, stage: %d", stage);
usb_ep_set_stall(mass_ep_data[MSD_IN_EP_IDX].ep_addr);
sendCSW();
break;
}
}
/**
* @brief Callback used to know the USB connection status
*
* @param status USB device status code.
*
* @return N/A.
*/
static void mass_storage_status_cb(struct usb_cfg_data *cfg,
enum usb_dc_status_code status,
const uint8_t *param)
{
ARG_UNUSED(param);
ARG_UNUSED(cfg);
/* Check the USB status and do needed action if required */
switch (status) {
case USB_DC_ERROR:
LOG_DBG("USB device error");
break;
case USB_DC_RESET:
LOG_DBG("USB device reset detected");
msd_state_machine_reset();
msd_init();
break;
case USB_DC_CONNECTED:
LOG_DBG("USB device connected");
break;
case USB_DC_CONFIGURED:
LOG_DBG("USB device configured");
break;
case USB_DC_DISCONNECTED:
LOG_DBG("USB device disconnected");
break;
case USB_DC_SUSPEND:
LOG_DBG("USB device suspended");
break;
case USB_DC_RESUME:
LOG_DBG("USB device resumed");
break;
case USB_DC_INTERFACE:
LOG_DBG("USB interface selected");
break;
case USB_DC_SOF:
break;
case USB_DC_UNKNOWN:
default:
LOG_DBG("USB unknown state");
break;
}
}
static void mass_interface_config(struct usb_desc_header *head,
uint8_t bInterfaceNumber)
{
ARG_UNUSED(head);
mass_cfg.if0.bInterfaceNumber = bInterfaceNumber;
}
/* Configuration of the Mass Storage Device send to the USB Driver */
USBD_DEFINE_CFG_DATA(mass_storage_config) = {
.usb_device_description = NULL,
.interface_config = mass_interface_config,
.interface_descriptor = &mass_cfg.if0,
.cb_usb_status = mass_storage_status_cb,
.interface = {
.class_handler = mass_storage_class_handle_req,
.custom_handler = NULL,
},
.num_endpoints = ARRAY_SIZE(mass_ep_data),
.endpoint = mass_ep_data
};
static void mass_thread_main(int arg1, int unused)
{
ARG_UNUSED(unused);
ARG_UNUSED(arg1);
while (1) {
k_sem_take(&disk_wait_sem, K_FOREVER);
LOG_DBG("sem %d", thread_op);
switch (thread_op) {
case THREAD_OP_READ_QUEUED:
if (disk_access_read(disk_pdrv,
page, (addr/BLOCK_SIZE), 1)) {
LOG_ERR("!! Disk Read Error %d !",
addr/BLOCK_SIZE);
}
thread_memory_read_done();
break;
case THREAD_OP_WRITE_QUEUED:
if (disk_access_write(disk_pdrv,
page, (addr/BLOCK_SIZE), 1)) {
LOG_ERR("!!!!! Disk Write Error %d !!!!!",
addr/BLOCK_SIZE);
}
thread_memory_write_done();
break;
default:
LOG_ERR("XXXXXX thread_op %d ! XXXXX", thread_op);
}
}
}
/**
* @brief Initialize USB mass storage setup
*
* This routine is called to reset the USB device controller chip to a
* quiescent state. Also it initializes the backing storage and initializes
* the mass storage protocol state.
*
* @param dev device struct.
*
* @return negative errno code on fatal failure, 0 otherwise
*/
static int mass_storage_init(const struct device *dev)
{
uint32_t block_size = 0U;
ARG_UNUSED(dev);
if (disk_access_init(disk_pdrv) != 0) {
LOG_ERR("Storage init ERROR !!!! - Aborting USB init");
return 0;
}
if (disk_access_ioctl(disk_pdrv,
DISK_IOCTL_GET_SECTOR_COUNT, &block_count)) {
LOG_ERR("Unable to get sector count - Aborting USB init");
return 0;
}
if (disk_access_ioctl(disk_pdrv,
DISK_IOCTL_GET_SECTOR_SIZE, &block_size)) {
LOG_ERR("Unable to get sector size - Aborting USB init");
return 0;
}
if (block_size != BLOCK_SIZE) {
LOG_ERR("Block Size reported by the storage side is "
"different from Mass Storage Class page Buffer - "
"Aborting");
return 0;
}
LOG_INF("Sect Count %d", block_count);
memory_size = block_count * BLOCK_SIZE;
LOG_INF("Memory Size %d", memory_size);
msd_state_machine_reset();
msd_init();
k_sem_init(&disk_wait_sem, 0, 1);
/* Start a thread to offload disk ops */
k_thread_create(&mass_thread_data, mass_thread_stack,
CONFIG_MASS_STORAGE_STACK_SIZE,
(k_thread_entry_t)mass_thread_main, NULL, NULL, NULL,
DISK_THREAD_PRIO, 0, K_NO_WAIT);
k_thread_name_set(&mass_thread_data, "usb_mass");
return 0;
}
SYS_INIT(mass_storage_init, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);