| /* spi.c - SPI based Bluetooth driver */ |
| |
| #define DT_DRV_COMPAT zephyr_bt_hci_spi |
| |
| /* |
| * Copyright (c) 2017 Linaro Ltd. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/drivers/gpio.h> |
| #include <zephyr/init.h> |
| #include <zephyr/drivers/spi.h> |
| #include <zephyr/sys/byteorder.h> |
| #include <zephyr/sys/util.h> |
| |
| #include <zephyr/bluetooth/hci.h> |
| #include <zephyr/drivers/bluetooth.h> |
| |
| #define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(bt_driver); |
| |
| /* Special Values */ |
| #define SPI_WRITE 0x0A |
| #define SPI_READ 0x0B |
| #define READY_NOW 0x02 |
| |
| #define EVT_BLUE_INITIALIZED 0x01 |
| |
| /* Offsets */ |
| #define STATUS_HEADER_READY 0 |
| #define STATUS_HEADER_TOREAD 3 |
| #define STATUS_HEADER_TOWRITE 1 |
| |
| #define PACKET_TYPE 0 |
| #define EVT_HEADER_TYPE 0 |
| #define EVT_HEADER_EVENT 1 |
| #define EVT_HEADER_SIZE 2 |
| #define EVT_LE_META_SUBEVENT 3 |
| #define EVT_VENDOR_CODE_LSB 3 |
| #define EVT_VENDOR_CODE_MSB 4 |
| |
| #define CMD_OGF 1 |
| #define CMD_OCF 2 |
| |
| /* Max SPI buffer length for transceive operations. |
| * |
| * Buffer size needs to be at least the size of the larger RX/TX buffer |
| * required by the SPI slave, as the legacy spi_transceive requires both RX/TX |
| * to be the same length. Size also needs to be compatible with the |
| * slave device used (e.g. nRF5X max buffer length for SPIS is 255). |
| */ |
| #define SPI_MAX_MSG_LEN 255 /* As defined by X-NUCLEO-IDB04A1 BSP */ |
| |
| #define DATA_DELAY_US DT_INST_PROP(0, controller_data_delay_us) |
| |
| /* Single byte header denoting the buffer type */ |
| #define H4_HDR_SIZE 1 |
| |
| /* Maximum L2CAP MTU that can fit in a single packet */ |
| #define MAX_MTU (SPI_MAX_MSG_LEN - H4_HDR_SIZE - BT_L2CAP_HDR_SIZE - BT_HCI_ACL_HDR_SIZE) |
| |
| #if CONFIG_BT_L2CAP_TX_MTU > MAX_MTU |
| #warning CONFIG_BT_L2CAP_TX_MTU is too large and can result in packets that cannot \ |
| be transmitted across this HCI link |
| #endif /* CONFIG_BT_L2CAP_TX_MTU > MAX_MTU */ |
| |
| struct bt_spi_data { |
| bt_hci_recv_t recv; |
| }; |
| |
| static uint8_t __noinit rxmsg[SPI_MAX_MSG_LEN]; |
| static uint8_t __noinit txmsg[SPI_MAX_MSG_LEN]; |
| |
| static const struct gpio_dt_spec irq_gpio = GPIO_DT_SPEC_INST_GET(0, irq_gpios); |
| static const struct gpio_dt_spec rst_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios); |
| |
| static struct gpio_callback gpio_cb; |
| |
| static K_SEM_DEFINE(sem_initialised, 0, 1); |
| static K_SEM_DEFINE(sem_request, 0, 1); |
| static K_SEM_DEFINE(sem_busy, 1, 1); |
| |
| static K_KERNEL_STACK_DEFINE(spi_rx_stack, CONFIG_BT_DRV_RX_STACK_SIZE); |
| static struct k_thread spi_rx_thread_data; |
| |
| static const struct spi_dt_spec bus = SPI_DT_SPEC_INST_GET( |
| 0, SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | SPI_WORD_SET(8), 0); |
| |
| static struct spi_buf spi_tx_buf; |
| static struct spi_buf spi_rx_buf; |
| static const struct spi_buf_set spi_tx = { |
| .buffers = &spi_tx_buf, |
| .count = 1 |
| }; |
| static const struct spi_buf_set spi_rx = { |
| .buffers = &spi_rx_buf, |
| .count = 1 |
| }; |
| |
| static inline int bt_spi_transceive(void *tx, uint32_t tx_len, |
| void *rx, uint32_t rx_len) |
| { |
| spi_tx_buf.buf = tx; |
| spi_tx_buf.len = (size_t)tx_len; |
| spi_rx_buf.buf = rx; |
| spi_rx_buf.len = (size_t)rx_len; |
| return spi_transceive_dt(&bus, &spi_tx, &spi_rx); |
| } |
| |
| static inline uint16_t bt_spi_get_cmd(uint8_t *msg) |
| { |
| return (msg[CMD_OCF] << 8) | msg[CMD_OGF]; |
| } |
| |
| static inline uint16_t bt_spi_get_evt(uint8_t *msg) |
| { |
| return (msg[EVT_VENDOR_CODE_MSB] << 8) | msg[EVT_VENDOR_CODE_LSB]; |
| } |
| |
| static void bt_spi_isr(const struct device *unused1, |
| struct gpio_callback *unused2, |
| uint32_t unused3) |
| { |
| LOG_DBG(""); |
| |
| k_sem_give(&sem_request); |
| } |
| |
| static bool bt_spi_handle_vendor_evt(uint8_t *msg) |
| { |
| bool handled = false; |
| |
| switch (bt_spi_get_evt(msg)) { |
| case EVT_BLUE_INITIALIZED: { |
| k_sem_give(&sem_initialised); |
| handled = true; |
| } |
| default: |
| break; |
| } |
| return handled; |
| } |
| |
| static int bt_spi_get_header(uint8_t op, uint16_t *size) |
| { |
| uint8_t header_master[5] = {op, 0, 0, 0, 0}; |
| uint8_t header_slave[5]; |
| bool reading = (op == SPI_READ); |
| bool loop_cond; |
| uint8_t size_offset; |
| int ret; |
| |
| if (!(op == SPI_READ || op == SPI_WRITE)) { |
| return -EINVAL; |
| } |
| if (reading) { |
| size_offset = STATUS_HEADER_TOREAD; |
| } |
| |
| do { |
| ret = bt_spi_transceive(header_master, 5, header_slave, 5); |
| if (ret) { |
| break; |
| } |
| if (reading) { |
| /* When reading, keep looping if there is not yet any data */ |
| loop_cond = header_slave[STATUS_HEADER_TOREAD] == 0U; |
| } else { |
| /* When writing, keep looping if all bytes are zero */ |
| loop_cond = ((header_slave[1] | header_slave[2] | header_slave[3] | |
| header_slave[4]) == 0U); |
| } |
| } while ((header_slave[STATUS_HEADER_READY] != READY_NOW) || loop_cond); |
| |
| *size = (reading ? header_slave[size_offset] : SPI_MAX_MSG_LEN); |
| |
| return ret; |
| } |
| |
| static struct net_buf *bt_spi_rx_buf_construct(uint8_t *msg) |
| { |
| bool discardable = false; |
| k_timeout_t timeout = K_FOREVER; |
| struct bt_hci_acl_hdr acl_hdr; |
| struct net_buf *buf; |
| int len; |
| |
| switch (msg[PACKET_TYPE]) { |
| case BT_HCI_H4_EVT: |
| switch (msg[EVT_HEADER_EVENT]) { |
| case BT_HCI_EVT_VENDOR: |
| /* Run event through interface handler */ |
| if (bt_spi_handle_vendor_evt(msg)) { |
| return NULL; |
| } |
| /* Event has not yet been handled */ |
| __fallthrough; |
| default: |
| if (msg[EVT_HEADER_EVENT] == BT_HCI_EVT_LE_META_EVENT && |
| (msg[EVT_LE_META_SUBEVENT] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) { |
| discardable = true; |
| timeout = K_NO_WAIT; |
| } |
| buf = bt_buf_get_evt(msg[EVT_HEADER_EVENT], |
| discardable, timeout); |
| if (!buf) { |
| LOG_DBG("Discard adv report due to insufficient buf"); |
| return NULL; |
| } |
| } |
| |
| len = sizeof(struct bt_hci_evt_hdr) + msg[EVT_HEADER_SIZE]; |
| if (len > net_buf_tailroom(buf)) { |
| LOG_ERR("Event too long: %d", len); |
| net_buf_unref(buf); |
| return NULL; |
| } |
| net_buf_add_mem(buf, &msg[1], len); |
| break; |
| case BT_HCI_H4_ACL: |
| buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER); |
| memcpy(&acl_hdr, &msg[1], sizeof(acl_hdr)); |
| len = sizeof(acl_hdr) + sys_le16_to_cpu(acl_hdr.len); |
| if (len > net_buf_tailroom(buf)) { |
| LOG_ERR("ACL too long: %d", len); |
| net_buf_unref(buf); |
| return NULL; |
| } |
| net_buf_add_mem(buf, &msg[1], len); |
| break; |
| default: |
| LOG_ERR("Unknown BT buf type %d", msg[0]); |
| return NULL; |
| } |
| |
| return buf; |
| } |
| |
| static void bt_spi_rx_thread(void *p1, void *p2, void *p3) |
| { |
| const struct device *dev = p1; |
| struct bt_spi_data *hci = dev->data; |
| |
| ARG_UNUSED(p2); |
| ARG_UNUSED(p3); |
| |
| struct net_buf *buf; |
| uint16_t size = 0U; |
| int ret; |
| |
| (void)memset(&txmsg, 0xFF, SPI_MAX_MSG_LEN); |
| while (true) { |
| |
| /* Wait for interrupt pin to be active */ |
| k_sem_take(&sem_request, K_FOREVER); |
| |
| LOG_DBG(""); |
| |
| /* Wait for SPI bus to be available */ |
| k_sem_take(&sem_busy, K_FOREVER); |
| ret = bt_spi_get_header(SPI_READ, &size); |
| |
| /* Delay here is rounded up to next tick */ |
| k_sleep(K_USEC(DATA_DELAY_US)); |
| /* Read data */ |
| if (ret == 0 && size != 0) { |
| do { |
| ret = bt_spi_transceive(&txmsg, size, |
| &rxmsg, size); |
| if (rxmsg[0] == 0U) { |
| /* Consider increasing controller-data-delay-us |
| * if this message is extremely common. |
| */ |
| LOG_DBG("Controller not ready for SPI transaction " |
| "of %d bytes", size); |
| } |
| } while (rxmsg[0] == 0U && ret == 0); |
| } |
| |
| k_sem_give(&sem_busy); |
| |
| if (ret || size == 0) { |
| if (ret) { |
| LOG_ERR("Error %d", ret); |
| } |
| continue; |
| } |
| |
| LOG_HEXDUMP_DBG(rxmsg, size, "SPI RX"); |
| |
| /* Construct net_buf from SPI data */ |
| buf = bt_spi_rx_buf_construct(rxmsg); |
| if (buf) { |
| /* Handle the received HCI data */ |
| hci->recv(dev, buf); |
| } |
| } |
| } |
| |
| static int bt_spi_send(const struct device *dev, struct net_buf *buf) |
| { |
| uint16_t size; |
| uint8_t rx_first[1]; |
| int ret; |
| |
| ARG_UNUSED(dev); |
| |
| LOG_DBG(""); |
| |
| /* Buffer needs an additional byte for type */ |
| if (buf->len >= SPI_MAX_MSG_LEN) { |
| LOG_ERR("Message too long (%d)", buf->len); |
| return -EINVAL; |
| } |
| |
| /* Wait for SPI bus to be available */ |
| k_sem_take(&sem_busy, K_FOREVER); |
| |
| switch (bt_buf_get_type(buf)) { |
| case BT_BUF_ACL_OUT: |
| net_buf_push_u8(buf, BT_HCI_H4_ACL); |
| break; |
| case BT_BUF_CMD: |
| net_buf_push_u8(buf, BT_HCI_H4_CMD); |
| break; |
| default: |
| LOG_ERR("Unsupported type"); |
| k_sem_give(&sem_busy); |
| return -EINVAL; |
| } |
| |
| ret = bt_spi_get_header(SPI_WRITE, &size); |
| size = MIN(buf->len, size); |
| |
| if (size < buf->len) { |
| LOG_WRN("Unable to write full data, skipping"); |
| size = 0; |
| ret = -ECANCELED; |
| } |
| |
| if (!ret) { |
| /* Delay here is rounded up to next tick */ |
| k_sleep(K_USEC(DATA_DELAY_US)); |
| /* Transmit the message */ |
| while (true) { |
| ret = bt_spi_transceive(buf->data, size, |
| rx_first, 1); |
| if (rx_first[0] != 0U || ret) { |
| break; |
| } |
| /* Consider increasing controller-data-delay-us |
| * if this message is extremely common. |
| */ |
| LOG_DBG("Controller not ready for SPI transaction of %d bytes", size); |
| } |
| } |
| |
| k_sem_give(&sem_busy); |
| |
| if (ret) { |
| LOG_ERR("Error %d", ret); |
| goto out; |
| } |
| |
| LOG_HEXDUMP_DBG(buf->data, buf->len, "SPI TX"); |
| |
| out: |
| net_buf_unref(buf); |
| |
| return ret; |
| } |
| |
| static int bt_spi_open(const struct device *dev, bt_hci_recv_t recv) |
| { |
| struct bt_spi_data *hci = dev->data; |
| int err; |
| |
| /* Configure RST pin and hold BLE in Reset */ |
| err = gpio_pin_configure_dt(&rst_gpio, GPIO_OUTPUT_ACTIVE); |
| if (err) { |
| return err; |
| } |
| |
| /* Configure IRQ pin and the IRQ call-back/handler */ |
| err = gpio_pin_configure_dt(&irq_gpio, GPIO_INPUT); |
| if (err) { |
| return err; |
| } |
| |
| gpio_init_callback(&gpio_cb, bt_spi_isr, BIT(irq_gpio.pin)); |
| err = gpio_add_callback(irq_gpio.port, &gpio_cb); |
| if (err) { |
| return err; |
| } |
| |
| /* Enable the interrupt line */ |
| err = gpio_pin_interrupt_configure_dt(&irq_gpio, GPIO_INT_EDGE_TO_ACTIVE); |
| if (err) { |
| return err; |
| } |
| |
| hci->recv = recv; |
| |
| /* Take BLE out of reset */ |
| k_sleep(K_MSEC(DT_INST_PROP_OR(0, reset_assert_duration_ms, 0))); |
| gpio_pin_set_dt(&rst_gpio, 0); |
| |
| /* Start RX thread */ |
| k_thread_create(&spi_rx_thread_data, spi_rx_stack, |
| K_KERNEL_STACK_SIZEOF(spi_rx_stack), |
| bt_spi_rx_thread, (void *)dev, NULL, NULL, |
| K_PRIO_COOP(CONFIG_BT_DRIVER_RX_HIGH_PRIO), |
| 0, K_NO_WAIT); |
| |
| /* Device will let us know when it's ready */ |
| k_sem_take(&sem_initialised, K_FOREVER); |
| |
| return 0; |
| } |
| |
| static const struct bt_hci_driver_api drv = { |
| .open = bt_spi_open, |
| .send = bt_spi_send, |
| }; |
| |
| static int bt_spi_init(const struct device *dev) |
| { |
| ARG_UNUSED(dev); |
| |
| if (!spi_is_ready_dt(&bus)) { |
| LOG_ERR("SPI device not ready"); |
| return -ENODEV; |
| } |
| |
| if (!gpio_is_ready_dt(&irq_gpio)) { |
| LOG_ERR("IRQ GPIO device not ready"); |
| return -ENODEV; |
| } |
| |
| if (!gpio_is_ready_dt(&rst_gpio)) { |
| LOG_ERR("Reset GPIO device not ready"); |
| return -ENODEV; |
| } |
| |
| LOG_DBG("BT SPI initialized"); |
| |
| return 0; |
| } |
| |
| #define HCI_DEVICE_INIT(inst) \ |
| static struct bt_spi_data hci_data_##inst = { \ |
| }; \ |
| DEVICE_DT_INST_DEFINE(inst, bt_spi_init, NULL, &hci_data_##inst, NULL, \ |
| POST_KERNEL, CONFIG_BT_SPI_INIT_PRIORITY, &drv) |
| |
| /* Only one instance supported right now */ |
| HCI_DEVICE_INIT(0) |