| /* |
| * Copyright (c) 2018 Vikrant More |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <zephyr/sys/util.h> |
| |
| #define MAX_F_ITTERATIONS 6 /* usually converges in 4 loops */ |
| /* this ensures we break out of the loop */ |
| #define MAX_F_ERROR_COUNT 3 /* when result almost converges, stop */ |
| #define EXP_MASK32 GENMASK(30, 23) |
| |
| typedef union { |
| float f; |
| int32_t i; |
| } intfloat_t; |
| |
| float sqrtf(float square) |
| { |
| int i; |
| int32_t exponent; |
| intfloat_t root; |
| intfloat_t last; |
| intfloat_t p_square; |
| |
| p_square.f = square; |
| |
| if (square == 0.0f) { |
| return square; |
| } |
| if (square < 0.0f) { |
| return (square - square) / (square - square); |
| } |
| |
| /* we need a good starting guess so that this will converge quickly, |
| * we can do this by dividing the exponent part of the float by 2 |
| * this assumes IEEE-754 format doubles |
| */ |
| exponent = ((p_square.i & EXP_MASK32) >> 23) - 127; |
| if (exponent == 0xFF - 127) { |
| /* the number is a NAN or inf, return NaN or inf */ |
| return square + square; |
| } |
| exponent /= 2; |
| root.i = (p_square.i & ~EXP_MASK32) | (exponent + 127) << 23; |
| |
| for (i = 0; i < MAX_F_ITTERATIONS; i++) { |
| last = root; |
| root.f = (root.f + square / root.f) * 0.5f; |
| /* if (labs(*p_root - *p_last) < MAX_F_ERROR_COUNT) */ |
| if ((root.i ^ last.i) < MAX_F_ERROR_COUNT) { |
| break; |
| } |
| } |
| return root.f; |
| } |