blob: 1f5fd217ed5cd1fb5ed97f0916bbe782f0340189 [file] [log] [blame]
/*
* Copyright (c) 2020 Intel corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_PM_STATE_H_
#define ZEPHYR_INCLUDE_PM_STATE_H_
#include <zephyr/sys/util.h>
#include <zephyr/devicetree.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief System Power Management States
* @defgroup subsys_pm_states States
* @ingroup subsys_pm
* @{
*/
/**
* @enum pm_state Power management state
*/
enum pm_state {
/**
* @brief Runtime active state
*
* The system is fully powered and active.
*
* @note This state is correlated with ACPI G0/S0 state
*/
PM_STATE_ACTIVE,
/**
* @brief Runtime idle state
*
* Runtime idle is a system sleep state in which all of the cores
* enter deepest possible idle state and wait for interrupts, no
* requirements for the devices, leaving them at the states where
* they are.
*
* @note This state is correlated with ACPI S0ix state
*/
PM_STATE_RUNTIME_IDLE,
/**
* @brief Suspend to idle state
*
* The system goes through a normal platform suspend where it puts
* all of the cores in deepest possible idle state and *may* puts
* peripherals into low-power states. No operating state is lost (ie.
* the cpu core does not lose execution context), so the system can go
* back to where it left off easily enough.
*
* @note This state is correlated with ACPI S1 state
*/
PM_STATE_SUSPEND_TO_IDLE,
/**
* @brief Standby state
*
* In addition to putting peripherals into low-power states all
* non-boot CPUs are powered off. It should allow more energy to be
* saved relative to suspend to idle, but the resume latency will
* generally be greater than for that state. But it should be the same
* state with suspend to idle state on uniprocessor system.
*
* @note This state is correlated with ACPI S2 state
*/
PM_STATE_STANDBY,
/**
* @brief Suspend to ram state
*
* This state offers significant energy savings by powering off as much
* of the system as possible, where memory should be placed into the
* self-refresh mode to retain its contents. The state of devices and
* CPUs is saved and held in memory, and it may require some boot-
* strapping code in ROM to resume the system from it.
*
* @note This state is correlated with ACPI S3 state
*/
PM_STATE_SUSPEND_TO_RAM,
/**
* @brief Suspend to disk state
*
* This state offers significant energy savings by powering off as much
* of the system as possible, including the memory. The contents of
* memory are written to disk or other non-volatile storage, and on
* resume it's read back into memory with the help of boot-strapping
* code, restores the system to the same point of execution where it
* went to suspend to disk.
*
* @note This state is correlated with ACPI S4 state
*/
PM_STATE_SUSPEND_TO_DISK,
/**
* @brief Soft off state
*
* This state consumes a minimal amount of power and requires a large
* latency in order to return to runtime active state. The contents of
* system(CPU and memory) will not be preserved, so the system will be
* restarted as if from initial power-up and kernel boot.
*
* @note This state is correlated with ACPI G2/S5 state
*/
PM_STATE_SOFT_OFF,
/** Number of power management states (internal use) */
PM_STATE_COUNT,
};
/**
* Information about a power management state
*/
struct pm_state_info {
enum pm_state state;
/**
* Some platforms have multiple states that map to
* one Zephyr power state. This property allows the platform
* distinguish them. e.g:
*
* @code{.dts}
* power-states {
* state0: state0 {
* compatible = "zephyr,power-state";
* power-state-name = "suspend-to-idle";
* substate-id = <1>;
* min-residency-us = <10000>;
* exit-latency-us = <100>;
* };
* state1: state1 {
* compatible = "zephyr,power-state";
* power-state-name = "suspend-to-idle";
* substate-id = <2>;
* min-residency-us = <20000>;
* exit-latency-us = <200>;
* };
* };
* @endcode
*/
uint8_t substate_id;
/**
* Minimum residency duration in microseconds. It is the minimum
* time for a given idle state to be worthwhile energywise.
*
* @note 0 means that this property is not available for this state.
*/
uint32_t min_residency_us;
/**
* Worst case latency in microseconds required to exit the idle state.
*
* @note 0 means that this property is not available for this state.
*/
uint32_t exit_latency_us;
};
/** @cond INTERNAL_HIDDEN */
/**
* @brief Helper macro to initialize an entry of a struct pm_state_info array
* when using UTIL_LISTIFY in PM_STATE_INFO_LIST_FROM_DT_CPU.
*
* @param i UTIL_LISTIFY entry index.
* @param node_id A node identifier with compatible zephyr,power-state
*/
#define Z_PM_STATE_INFO_FROM_DT_CPU(i, node_id) \
PM_STATE_INFO_DT_INIT(DT_PHANDLE_BY_IDX(node_id, cpu_power_states, i))
/**
* @brief Helper macro to initialize an entry of a struct pm_state array when
* using UTIL_LISTIFY in PM_STATE_LIST_FROM_DT_CPU.
*
* @param i UTIL_LISTIFY entry index.
* @param node_id A node identifier with compatible zephyr,power-state
*/
#define Z_PM_STATE_FROM_DT_CPU(i, node_id) \
PM_STATE_DT_INIT(DT_PHANDLE_BY_IDX(node_id, cpu_power_states, i))
/** @endcond */
/**
* @brief Initializer for struct pm_state_info given a DT node identifier with
* zephyr,power-state compatible.
*
* @param node_id A node identifier with compatible zephyr,power-state
*/
#define PM_STATE_INFO_DT_INIT(node_id) \
{ \
.state = PM_STATE_DT_INIT(node_id), \
.substate_id = DT_PROP_OR(node_id, substate_id, 0), \
.min_residency_us = DT_PROP_OR(node_id, min_residency_us, 0), \
.exit_latency_us = DT_PROP_OR(node_id, exit_latency_us, 0), \
}
/**
* @brief Initializer for enum pm_state given a DT node identifier with
* zephyr,power-state compatible.
*
* @param node_id A node identifier with compatible zephyr,power-state
*/
#define PM_STATE_DT_INIT(node_id) \
DT_ENUM_IDX(node_id, power_state_name)
/**
* @brief Obtain number of CPU power states supported by the given CPU node
* identifier.
*
* @param node_id A CPU node identifier.
* @return Number of supported CPU power states.
*/
#define DT_NUM_CPU_POWER_STATES(node_id) \
DT_PROP_LEN_OR(node_id, cpu_power_states, 0)
/**
* @brief Initialize an array of struct pm_state_info with information from all
* the states present in the given CPU node identifier.
*
* Example devicetree fragment:
*
* @code{.dts}
* cpus {
* ...
* cpu0: cpu@0 {
* device_type = "cpu";
* ...
* cpu-power-states = <&state0 &state1>;
* };
* };
*
* ...
* power-states {
* state0: state0 {
* compatible = "zephyr,power-state";
* power-state-name = "suspend-to-idle";
* min-residency-us = <10000>;
* exit-latency-us = <100>;
* };
*
* state1: state1 {
* compatible = "zephyr,power-state";
* power-state-name = "suspend-to-ram";
* min-residency-us = <50000>;
* exit-latency-us = <500>;
* };
* };
* @endcode
*
* Example usage:
*
* @code{.c}
* const struct pm_state_info states[] =
* PM_STATE_INFO_LIST_FROM_DT_CPU(DT_NODELABEL(cpu0));
* @endcode
*
* @param node_id A CPU node identifier.
*/
#define PM_STATE_INFO_LIST_FROM_DT_CPU(node_id) \
{ \
LISTIFY(DT_NUM_CPU_POWER_STATES(node_id), \
Z_PM_STATE_INFO_FROM_DT_CPU, (,), node_id) \
}
/**
* @brief Initialize an array of struct pm_state with information from all the
* states present in the given CPU node identifier.
*
* Example devicetree fragment:
*
* @code{.dts}
* cpus {
* ...
* cpu0: cpu@0 {
* device_type = "cpu";
* ...
* cpu-power-states = <&state0 &state1>;
* };
* };
*
* ...
* power-states {
* state0: state0 {
* compatible = "zephyr,power-state";
* power-state-name = "suspend-to-idle";
* min-residency-us = <10000>;
* exit-latency-us = <100>;
* };
*
* state1: state1 {
* compatible = "zephyr,power-state";
* power-state-name = "suspend-to-ram";
* min-residency-us = <50000>;
* exit-latency-us = <500>;
* };
* };
* @endcode
*
* Example usage:
*
* @code{.c}
* const enum pm_state states[] = PM_STATE_LIST_FROM_DT_CPU(DT_NODELABEL(cpu0));
* @endcode
*
* @param node_id A CPU node identifier.
*/
#define PM_STATE_LIST_FROM_DT_CPU(node_id) \
{ \
LISTIFY(DT_NUM_CPU_POWER_STATES(node_id), \
Z_PM_STATE_FROM_DT_CPU, (,), node_id) \
}
/**
* Obtain information about all supported states by a CPU.
*
* @param cpu CPU index.
* @param states Where to store the list of supported states.
*
* @return Number of supported states.
*/
uint8_t pm_state_cpu_get_all(uint8_t cpu, const struct pm_state_info **states);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif