blob: 6d92d5fb7db0b295672c61c5826ed211f6b76105 [file] [log] [blame]
/* hci_core.c - HCI core Bluetooth handling */
/*
* Copyright (c) 2017-2021 Nordic Semiconductor ASA
* Copyright (c) 2015-2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/slist.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/debug/stack.h>
#include <zephyr/sys/__assert.h>
#include <soc.h>
#include <zephyr/settings/settings.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/l2cap.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/hci_vs.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_CORE)
#define LOG_MODULE_NAME bt_hci_core
#include "common/log.h"
#include "common/rpa.h"
#include "keys.h"
#include "monitor.h"
#include "hci_core.h"
#include "hci_ecc.h"
#include "ecc.h"
#include "id.h"
#include "adv.h"
#include "scan.h"
#include "conn_internal.h"
#include "iso_internal.h"
#include "l2cap_internal.h"
#include "gatt_internal.h"
#include "smp.h"
#include "crypto.h"
#include "settings.h"
#if defined(CONFIG_BT_BREDR)
#include "br.h"
#endif
#if IS_ENABLED(CONFIG_BT_DF)
#include "direction_internal.h"
#endif /* CONFIG_BT_DF */
#define HCI_CMD_TIMEOUT K_SECONDS(10)
/* Stacks for the threads */
#if !defined(CONFIG_BT_RECV_BLOCKING)
static void rx_work_handler(struct k_work *work);
static K_WORK_DEFINE(rx_work, rx_work_handler);
#if defined(CONFIG_BT_RECV_WORKQ_BT)
static struct k_work_q bt_workq;
static K_KERNEL_STACK_DEFINE(rx_thread_stack, CONFIG_BT_RX_STACK_SIZE);
#endif /* CONFIG_BT_RECV_WORKQ_BT */
#endif /* !CONFIG_BT_RECV_BLOCKING */
static struct k_thread tx_thread_data;
static K_KERNEL_STACK_DEFINE(tx_thread_stack, CONFIG_BT_HCI_TX_STACK_SIZE);
static void init_work(struct k_work *work);
struct bt_dev bt_dev = {
.init = Z_WORK_INITIALIZER(init_work),
#if defined(CONFIG_BT_PRIVACY)
.rpa_timeout = CONFIG_BT_RPA_TIMEOUT,
#endif
#if defined(CONFIG_BT_DEVICE_APPEARANCE_DYNAMIC)
.appearance = CONFIG_BT_DEVICE_APPEARANCE,
#endif
};
static bt_ready_cb_t ready_cb;
#if defined(CONFIG_BT_HCI_VS_EVT_USER)
static bt_hci_vnd_evt_cb_t *hci_vnd_evt_cb;
#endif /* CONFIG_BT_HCI_VS_EVT_USER */
struct cmd_data {
/** HCI status of the command completion */
uint8_t status;
/** The command OpCode that the buffer contains */
uint16_t opcode;
/** The state to update when command completes with success. */
struct bt_hci_cmd_state_set *state;
/** Used by bt_hci_cmd_send_sync. */
struct k_sem *sync;
};
static struct cmd_data cmd_data[CONFIG_BT_BUF_CMD_TX_COUNT];
#define cmd(buf) (&cmd_data[net_buf_id(buf)])
#define acl(buf) ((struct acl_data *)net_buf_user_data(buf))
void bt_hci_cmd_state_set_init(struct net_buf *buf,
struct bt_hci_cmd_state_set *state,
atomic_t *target, int bit, bool val)
{
state->target = target;
state->bit = bit;
state->val = val;
cmd(buf)->state = state;
}
/* HCI command buffers. Derive the needed size from both Command and Event
* buffer length since the buffer is also used for the response event i.e
* command complete or command status.
*/
#define CMD_BUF_SIZE MAX(BT_BUF_EVT_RX_SIZE, BT_BUF_CMD_TX_SIZE)
NET_BUF_POOL_FIXED_DEFINE(hci_cmd_pool, CONFIG_BT_BUF_CMD_TX_COUNT,
CMD_BUF_SIZE, 8, NULL);
struct event_handler {
uint8_t event;
uint8_t min_len;
void (*handler)(struct net_buf *buf);
};
#define EVENT_HANDLER(_evt, _handler, _min_len) \
{ \
.event = _evt, \
.handler = _handler, \
.min_len = _min_len, \
}
static int handle_event_common(uint8_t event, struct net_buf *buf,
const struct event_handler *handlers, size_t num_handlers)
{
size_t i;
for (i = 0; i < num_handlers; i++) {
const struct event_handler *handler = &handlers[i];
if (handler->event != event) {
continue;
}
if (buf->len < handler->min_len) {
BT_ERR("Too small (%u bytes) event 0x%02x",
buf->len, event);
return -EINVAL;
}
handler->handler(buf);
return 0;
}
return -EOPNOTSUPP;
}
static void handle_event(uint8_t event, struct net_buf *buf, const struct event_handler *handlers,
size_t num_handlers)
{
int err;
err = handle_event_common(event, buf, handlers, num_handlers);
if (err == -EOPNOTSUPP) {
BT_WARN("Unhandled event 0x%02x len %u: %s", event, buf->len,
bt_hex(buf->data, buf->len));
}
/* Other possible errors are handled by handle_event_common function */
}
static void handle_vs_event(uint8_t event, struct net_buf *buf,
const struct event_handler *handlers, size_t num_handlers)
{
int err;
err = handle_event_common(event, buf, handlers, num_handlers);
if (err == -EOPNOTSUPP) {
BT_WARN("Unhandled vendor-specific event: %s", bt_hex(buf->data, buf->len));
}
/* Other possible errors are handled by handle_event_common function */
}
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
void bt_hci_host_num_completed_packets(struct net_buf *buf)
{
struct bt_hci_cp_host_num_completed_packets *cp;
uint16_t handle = acl(buf)->handle;
struct bt_hci_handle_count *hc;
struct bt_conn *conn;
uint8_t index = acl(buf)->index;
net_buf_destroy(buf);
/* Do nothing if controller to host flow control is not supported */
if (!BT_CMD_TEST(bt_dev.supported_commands, 10, 5)) {
return;
}
conn = bt_conn_lookup_index(index);
if (!conn) {
BT_WARN("Unable to look up conn with index 0x%02x", index);
return;
}
if (conn->state != BT_CONN_CONNECTED &&
conn->state != BT_CONN_DISCONNECTING) {
BT_WARN("Not reporting packet for non-connected conn");
bt_conn_unref(conn);
return;
}
bt_conn_unref(conn);
BT_DBG("Reporting completed packet for handle %u", handle);
buf = bt_hci_cmd_create(BT_HCI_OP_HOST_NUM_COMPLETED_PACKETS,
sizeof(*cp) + sizeof(*hc));
if (!buf) {
BT_ERR("Unable to allocate new HCI command");
return;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->num_handles = sys_cpu_to_le16(1);
hc = net_buf_add(buf, sizeof(*hc));
hc->handle = sys_cpu_to_le16(handle);
hc->count = sys_cpu_to_le16(1);
bt_hci_cmd_send(BT_HCI_OP_HOST_NUM_COMPLETED_PACKETS, buf);
}
#endif /* defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL) */
struct net_buf *bt_hci_cmd_create(uint16_t opcode, uint8_t param_len)
{
struct bt_hci_cmd_hdr *hdr;
struct net_buf *buf;
BT_DBG("opcode 0x%04x param_len %u", opcode, param_len);
buf = net_buf_alloc(&hci_cmd_pool, K_FOREVER);
__ASSERT_NO_MSG(buf);
BT_DBG("buf %p", buf);
net_buf_reserve(buf, BT_BUF_RESERVE);
bt_buf_set_type(buf, BT_BUF_CMD);
cmd(buf)->opcode = opcode;
cmd(buf)->sync = NULL;
cmd(buf)->state = NULL;
hdr = net_buf_add(buf, sizeof(*hdr));
hdr->opcode = sys_cpu_to_le16(opcode);
hdr->param_len = param_len;
return buf;
}
int bt_hci_cmd_send(uint16_t opcode, struct net_buf *buf)
{
if (!buf) {
buf = bt_hci_cmd_create(opcode, 0);
if (!buf) {
return -ENOBUFS;
}
}
BT_DBG("opcode 0x%04x len %u", opcode, buf->len);
/* Host Number of Completed Packets can ignore the ncmd value
* and does not generate any cmd complete/status events.
*/
if (opcode == BT_HCI_OP_HOST_NUM_COMPLETED_PACKETS) {
int err;
err = bt_send(buf);
if (err) {
BT_ERR("Unable to send to driver (err %d)", err);
net_buf_unref(buf);
}
return err;
}
net_buf_put(&bt_dev.cmd_tx_queue, buf);
return 0;
}
int bt_hci_cmd_send_sync(uint16_t opcode, struct net_buf *buf,
struct net_buf **rsp)
{
struct k_sem sync_sem;
uint8_t status;
int err;
if (!buf) {
buf = bt_hci_cmd_create(opcode, 0);
if (!buf) {
return -ENOBUFS;
}
}
BT_DBG("buf %p opcode 0x%04x len %u", buf, opcode, buf->len);
k_sem_init(&sync_sem, 0, 1);
cmd(buf)->sync = &sync_sem;
net_buf_put(&bt_dev.cmd_tx_queue, net_buf_ref(buf));
err = k_sem_take(&sync_sem, HCI_CMD_TIMEOUT);
BT_ASSERT_MSG(err == 0, "k_sem_take failed with err %d", err);
status = cmd(buf)->status;
if (status) {
BT_WARN("opcode 0x%04x status 0x%02x", opcode, status);
net_buf_unref(buf);
switch (status) {
case BT_HCI_ERR_CONN_LIMIT_EXCEEDED:
return -ECONNREFUSED;
default:
return -EIO;
}
}
BT_DBG("rsp %p opcode 0x%04x len %u", buf, opcode, buf->len);
if (rsp) {
*rsp = buf;
} else {
net_buf_unref(buf);
}
return 0;
}
int bt_hci_le_rand(void *buffer, size_t len)
{
struct bt_hci_rp_le_rand *rp;
struct net_buf *rsp;
size_t count;
int err;
/* Check first that HCI_LE_Rand is supported */
if (!BT_CMD_TEST(bt_dev.supported_commands, 27, 7)) {
return -ENOTSUP;
}
while (len > 0) {
/* Number of bytes to fill on this iteration */
count = MIN(len, sizeof(rp->rand));
/* Request the next 8 bytes over HCI */
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_RAND, NULL, &rsp);
if (err) {
return err;
}
/* Copy random data into buffer */
rp = (void *)rsp->data;
memcpy(buffer, rp->rand, count);
net_buf_unref(rsp);
buffer = (uint8_t *)buffer + count;
len -= count;
}
return 0;
}
static int hci_le_read_max_data_len(uint16_t *tx_octets, uint16_t *tx_time)
{
struct bt_hci_rp_le_read_max_data_len *rp;
struct net_buf *rsp;
int err;
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_MAX_DATA_LEN, NULL, &rsp);
if (err) {
BT_ERR("Failed to read DLE max data len");
return err;
}
rp = (void *)rsp->data;
*tx_octets = sys_le16_to_cpu(rp->max_tx_octets);
*tx_time = sys_le16_to_cpu(rp->max_tx_time);
net_buf_unref(rsp);
return 0;
}
uint8_t bt_get_phy(uint8_t hci_phy)
{
switch (hci_phy) {
case BT_HCI_LE_PHY_1M:
return BT_GAP_LE_PHY_1M;
case BT_HCI_LE_PHY_2M:
return BT_GAP_LE_PHY_2M;
case BT_HCI_LE_PHY_CODED:
return BT_GAP_LE_PHY_CODED;
default:
return 0;
}
}
#if defined(CONFIG_BT_CONN_TX)
static void hci_num_completed_packets(struct net_buf *buf)
{
struct bt_hci_evt_num_completed_packets *evt = (void *)buf->data;
int i;
BT_DBG("num_handles %u", evt->num_handles);
for (i = 0; i < evt->num_handles; i++) {
uint16_t handle, count;
struct bt_conn *conn;
handle = sys_le16_to_cpu(evt->h[i].handle);
count = sys_le16_to_cpu(evt->h[i].count);
BT_DBG("handle %u count %u", handle, count);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("No connection for handle %u", handle);
continue;
}
while (count--) {
struct bt_conn_tx *tx;
sys_snode_t *node;
unsigned int key;
key = irq_lock();
if (conn->pending_no_cb) {
conn->pending_no_cb--;
irq_unlock(key);
k_sem_give(bt_conn_get_pkts(conn));
continue;
}
node = sys_slist_get(&conn->tx_pending);
irq_unlock(key);
if (!node) {
BT_ERR("packets count mismatch");
break;
}
tx = CONTAINER_OF(node, struct bt_conn_tx, node);
key = irq_lock();
conn->pending_no_cb = tx->pending_no_cb;
tx->pending_no_cb = 0U;
sys_slist_append(&conn->tx_complete, &tx->node);
irq_unlock(key);
k_work_submit(&conn->tx_complete_work);
k_sem_give(bt_conn_get_pkts(conn));
}
bt_conn_unref(conn);
}
}
#endif /* CONFIG_BT_CONN_TX */
#if defined(CONFIG_BT_CONN)
static void hci_acl(struct net_buf *buf)
{
struct bt_hci_acl_hdr *hdr;
uint16_t handle, len;
struct bt_conn *conn;
uint8_t flags;
BT_DBG("buf %p", buf);
BT_ASSERT(buf->len >= sizeof(*hdr));
hdr = net_buf_pull_mem(buf, sizeof(*hdr));
len = sys_le16_to_cpu(hdr->len);
handle = sys_le16_to_cpu(hdr->handle);
flags = bt_acl_flags(handle);
acl(buf)->handle = bt_acl_handle(handle);
acl(buf)->index = BT_CONN_INDEX_INVALID;
BT_DBG("handle %u len %u flags %u", acl(buf)->handle, len, flags);
if (buf->len != len) {
BT_ERR("ACL data length mismatch (%u != %u)", buf->len, len);
net_buf_unref(buf);
return;
}
conn = bt_conn_lookup_handle(acl(buf)->handle);
if (!conn) {
BT_ERR("Unable to find conn for handle %u", acl(buf)->handle);
net_buf_unref(buf);
return;
}
acl(buf)->index = bt_conn_index(conn);
bt_conn_recv(conn, buf, flags);
bt_conn_unref(conn);
}
static void hci_data_buf_overflow(struct net_buf *buf)
{
struct bt_hci_evt_data_buf_overflow *evt = (void *)buf->data;
BT_WARN("Data buffer overflow (link type 0x%02x)", evt->link_type);
}
#if defined(CONFIG_BT_CENTRAL)
static void set_phy_conn_param(const struct bt_conn *conn,
struct bt_hci_ext_conn_phy *phy)
{
phy->conn_interval_min = sys_cpu_to_le16(conn->le.interval_min);
phy->conn_interval_max = sys_cpu_to_le16(conn->le.interval_max);
phy->conn_latency = sys_cpu_to_le16(conn->le.latency);
phy->supervision_timeout = sys_cpu_to_le16(conn->le.timeout);
phy->min_ce_len = 0;
phy->max_ce_len = 0;
}
int bt_le_create_conn_ext(const struct bt_conn *conn)
{
struct bt_hci_cp_le_ext_create_conn *cp;
struct bt_hci_ext_conn_phy *phy;
struct bt_hci_cmd_state_set state;
bool use_filter = false;
struct net_buf *buf;
uint8_t own_addr_type;
uint8_t num_phys;
int err;
if (IS_ENABLED(CONFIG_BT_FILTER_ACCEPT_LIST)) {
use_filter = atomic_test_bit(conn->flags, BT_CONN_AUTO_CONNECT);
}
err = bt_id_set_create_conn_own_addr(use_filter, &own_addr_type);
if (err) {
return err;
}
num_phys = (!(bt_dev.create_param.options &
BT_CONN_LE_OPT_NO_1M) ? 1 : 0) +
((bt_dev.create_param.options &
BT_CONN_LE_OPT_CODED) ? 1 : 0);
buf = bt_hci_cmd_create(BT_HCI_OP_LE_EXT_CREATE_CONN, sizeof(*cp) +
num_phys * sizeof(*phy));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
if (use_filter) {
/* User Initiated procedure use fast scan parameters. */
bt_addr_le_copy(&cp->peer_addr, BT_ADDR_LE_ANY);
cp->filter_policy = BT_HCI_LE_CREATE_CONN_FP_FILTER;
} else {
const bt_addr_le_t *peer_addr = &conn->le.dst;
if (bt_addr_le_cmp(&conn->le.resp_addr, BT_ADDR_LE_ANY)) {
/* Host resolving is used, use the RPA directly. */
peer_addr = &conn->le.resp_addr;
BT_DBG("Using resp_addr %s", bt_addr_le_str(peer_addr));
}
bt_addr_le_copy(&cp->peer_addr, peer_addr);
cp->filter_policy = BT_HCI_LE_CREATE_CONN_FP_NO_FILTER;
}
cp->own_addr_type = own_addr_type;
cp->phys = 0;
if (!(bt_dev.create_param.options & BT_CONN_LE_OPT_NO_1M)) {
cp->phys |= BT_HCI_LE_EXT_SCAN_PHY_1M;
phy = net_buf_add(buf, sizeof(*phy));
phy->scan_interval = sys_cpu_to_le16(
bt_dev.create_param.interval);
phy->scan_window = sys_cpu_to_le16(
bt_dev.create_param.window);
set_phy_conn_param(conn, phy);
}
if (bt_dev.create_param.options & BT_CONN_LE_OPT_CODED) {
cp->phys |= BT_HCI_LE_EXT_SCAN_PHY_CODED;
phy = net_buf_add(buf, sizeof(*phy));
phy->scan_interval = sys_cpu_to_le16(
bt_dev.create_param.interval_coded);
phy->scan_window = sys_cpu_to_le16(
bt_dev.create_param.window_coded);
set_phy_conn_param(conn, phy);
}
bt_hci_cmd_state_set_init(buf, &state, bt_dev.flags,
BT_DEV_INITIATING, true);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_EXT_CREATE_CONN, buf, NULL);
}
static int bt_le_create_conn_legacy(const struct bt_conn *conn)
{
struct bt_hci_cp_le_create_conn *cp;
struct bt_hci_cmd_state_set state;
bool use_filter = false;
struct net_buf *buf;
uint8_t own_addr_type;
int err;
if (IS_ENABLED(CONFIG_BT_FILTER_ACCEPT_LIST)) {
use_filter = atomic_test_bit(conn->flags, BT_CONN_AUTO_CONNECT);
}
err = bt_id_set_create_conn_own_addr(use_filter, &own_addr_type);
if (err) {
return err;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CREATE_CONN, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
memset(cp, 0, sizeof(*cp));
cp->own_addr_type = own_addr_type;
if (use_filter) {
/* User Initiated procedure use fast scan parameters. */
bt_addr_le_copy(&cp->peer_addr, BT_ADDR_LE_ANY);
cp->filter_policy = BT_HCI_LE_CREATE_CONN_FP_FILTER;
} else {
const bt_addr_le_t *peer_addr = &conn->le.dst;
if (bt_addr_le_cmp(&conn->le.resp_addr, BT_ADDR_LE_ANY)) {
/* Host resolving is used, use the RPA directly. */
peer_addr = &conn->le.resp_addr;
BT_DBG("Using resp_addr %s", bt_addr_le_str(peer_addr));
}
bt_addr_le_copy(&cp->peer_addr, peer_addr);
cp->filter_policy = BT_HCI_LE_CREATE_CONN_FP_NO_FILTER;
}
cp->scan_interval = sys_cpu_to_le16(bt_dev.create_param.interval);
cp->scan_window = sys_cpu_to_le16(bt_dev.create_param.window);
cp->conn_interval_min = sys_cpu_to_le16(conn->le.interval_min);
cp->conn_interval_max = sys_cpu_to_le16(conn->le.interval_max);
cp->conn_latency = sys_cpu_to_le16(conn->le.latency);
cp->supervision_timeout = sys_cpu_to_le16(conn->le.timeout);
bt_hci_cmd_state_set_init(buf, &state, bt_dev.flags,
BT_DEV_INITIATING, true);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_CREATE_CONN, buf, NULL);
}
int bt_le_create_conn(const struct bt_conn *conn)
{
if (IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features)) {
return bt_le_create_conn_ext(conn);
}
return bt_le_create_conn_legacy(conn);
}
int bt_le_create_conn_cancel(void)
{
struct net_buf *buf;
struct bt_hci_cmd_state_set state;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CREATE_CONN_CANCEL, 0);
bt_hci_cmd_state_set_init(buf, &state, bt_dev.flags,
BT_DEV_INITIATING, false);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_CREATE_CONN_CANCEL, buf, NULL);
}
#endif /* CONFIG_BT_CENTRAL */
int bt_hci_disconnect(uint16_t handle, uint8_t reason)
{
struct net_buf *buf;
struct bt_hci_cp_disconnect *disconn;
buf = bt_hci_cmd_create(BT_HCI_OP_DISCONNECT, sizeof(*disconn));
if (!buf) {
return -ENOBUFS;
}
disconn = net_buf_add(buf, sizeof(*disconn));
disconn->handle = sys_cpu_to_le16(handle);
disconn->reason = reason;
return bt_hci_cmd_send_sync(BT_HCI_OP_DISCONNECT, buf, NULL);
}
static uint16_t disconnected_handles[CONFIG_BT_MAX_CONN];
static void conn_handle_disconnected(uint16_t handle)
{
for (int i = 0; i < ARRAY_SIZE(disconnected_handles); i++) {
if (!disconnected_handles[i]) {
/* Use invalid connection handle bits so that connection
* handle 0 can be used as a valid non-zero handle.
*/
disconnected_handles[i] = ~BT_ACL_HANDLE_MASK | handle;
}
}
}
static bool conn_handle_is_disconnected(uint16_t handle)
{
handle |= ~BT_ACL_HANDLE_MASK;
for (int i = 0; i < ARRAY_SIZE(disconnected_handles); i++) {
if (disconnected_handles[i] == handle) {
disconnected_handles[i] = 0;
return true;
}
}
return false;
}
static void hci_disconn_complete_prio(struct net_buf *buf)
{
struct bt_hci_evt_disconn_complete *evt = (void *)buf->data;
uint16_t handle = sys_le16_to_cpu(evt->handle);
struct bt_conn *conn;
BT_DBG("status 0x%02x handle %u reason 0x%02x", evt->status, handle,
evt->reason);
if (evt->status) {
return;
}
conn = bt_conn_lookup_handle(handle);
if (!conn) {
/* Priority disconnect complete event received before normal
* connection complete event.
*/
conn_handle_disconnected(handle);
return;
}
bt_conn_set_state(conn, BT_CONN_DISCONNECT_COMPLETE);
bt_conn_unref(conn);
}
static void hci_disconn_complete(struct net_buf *buf)
{
struct bt_hci_evt_disconn_complete *evt = (void *)buf->data;
uint16_t handle = sys_le16_to_cpu(evt->handle);
struct bt_conn *conn;
BT_DBG("status 0x%02x handle %u reason 0x%02x", evt->status, handle,
evt->reason);
if (evt->status) {
return;
}
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to look up conn with handle %u", handle);
return;
}
conn->err = evt->reason;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
if (conn->type != BT_CONN_TYPE_LE) {
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_SCO) {
bt_sco_cleanup(conn);
return;
}
/*
* If only for one connection session bond was set, clear keys
* database row for this connection.
*/
if (conn->type == BT_CONN_TYPE_BR &&
atomic_test_and_clear_bit(conn->flags, BT_CONN_BR_NOBOND)) {
bt_keys_link_key_clear(conn->br.link_key);
}
#endif
bt_conn_unref(conn);
return;
}
#if defined(CONFIG_BT_CENTRAL) && !defined(CONFIG_BT_FILTER_ACCEPT_LIST)
if (atomic_test_bit(conn->flags, BT_CONN_AUTO_CONNECT)) {
bt_conn_set_state(conn, BT_CONN_CONNECTING_SCAN);
bt_le_scan_update(false);
}
#endif /* defined(CONFIG_BT_CENTRAL) && !defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
bt_conn_unref(conn);
}
static int hci_le_read_remote_features(struct bt_conn *conn)
{
struct bt_hci_cp_le_read_remote_features *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_READ_REMOTE_FEATURES,
sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_REMOTE_FEATURES, buf, NULL);
}
static int hci_read_remote_version(struct bt_conn *conn)
{
struct bt_hci_cp_read_remote_version_info *cp;
struct net_buf *buf;
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
/* Remote version cannot change. */
if (atomic_test_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO)) {
return 0;
}
buf = bt_hci_cmd_create(BT_HCI_OP_READ_REMOTE_VERSION_INFO,
sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
return bt_hci_cmd_send_sync(BT_HCI_OP_READ_REMOTE_VERSION_INFO, buf,
NULL);
}
/* LE Data Length Change Event is optional so this function just ignore
* error and stack will continue to use default values.
*/
int bt_le_set_data_len(struct bt_conn *conn, uint16_t tx_octets, uint16_t tx_time)
{
struct bt_hci_cp_le_set_data_len *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_DATA_LEN, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->tx_octets = sys_cpu_to_le16(tx_octets);
cp->tx_time = sys_cpu_to_le16(tx_time);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_DATA_LEN, buf, NULL);
}
#if defined(CONFIG_BT_USER_PHY_UPDATE)
static int hci_le_read_phy(struct bt_conn *conn)
{
struct bt_hci_cp_le_read_phy *cp;
struct bt_hci_rp_le_read_phy *rp;
struct net_buf *buf, *rsp;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_READ_PHY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_PHY, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
conn->le.phy.tx_phy = bt_get_phy(rp->tx_phy);
conn->le.phy.rx_phy = bt_get_phy(rp->rx_phy);
net_buf_unref(rsp);
return 0;
}
#endif /* defined(CONFIG_BT_USER_PHY_UPDATE) */
int bt_le_set_phy(struct bt_conn *conn, uint8_t all_phys,
uint8_t pref_tx_phy, uint8_t pref_rx_phy, uint8_t phy_opts)
{
struct bt_hci_cp_le_set_phy *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_PHY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->all_phys = all_phys;
cp->tx_phys = pref_tx_phy;
cp->rx_phys = pref_rx_phy;
cp->phy_opts = phy_opts;
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_PHY, buf, NULL);
}
static struct bt_conn *find_pending_connect(uint8_t role, bt_addr_le_t *peer_addr)
{
struct bt_conn *conn;
/*
* Make lookup to check if there's a connection object in
* CONNECT or CONNECT_AUTO state associated with passed peer LE address.
*/
if (IS_ENABLED(CONFIG_BT_CENTRAL) && role == BT_HCI_ROLE_CENTRAL) {
conn = bt_conn_lookup_state_le(BT_ID_DEFAULT, peer_addr,
BT_CONN_CONNECTING);
if (IS_ENABLED(CONFIG_BT_FILTER_ACCEPT_LIST) && !conn) {
conn = bt_conn_lookup_state_le(BT_ID_DEFAULT,
BT_ADDR_LE_NONE,
BT_CONN_CONNECTING_AUTO);
}
return conn;
}
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) && role == BT_HCI_ROLE_PERIPHERAL) {
conn = bt_conn_lookup_state_le(bt_dev.adv_conn_id, peer_addr,
BT_CONN_CONNECTING_DIR_ADV);
if (!conn) {
conn = bt_conn_lookup_state_le(bt_dev.adv_conn_id,
BT_ADDR_LE_NONE,
BT_CONN_CONNECTING_ADV);
}
return conn;
}
return NULL;
}
/* We don't want the application to get a PHY update callback upon connection
* establishment on 2M PHY. Therefore we must prevent issuing LE Set PHY
* in this scenario.
*/
static bool skip_auto_phy_update_on_conn_establishment(struct bt_conn *conn)
{
#if defined(CONFIG_BT_USER_PHY_UPDATE)
if (IS_ENABLED(CONFIG_BT_AUTO_PHY_UPDATE) &&
IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features)) {
if (conn->le.phy.tx_phy == BT_HCI_LE_PHY_2M &&
conn->le.phy.rx_phy == BT_HCI_LE_PHY_2M) {
return true;
}
}
#else
ARG_UNUSED(conn);
#endif /* defined(CONFIG_BT_USER_PHY_UPDATE) */
return false;
}
static void conn_auto_initiate(struct bt_conn *conn)
{
int err;
if (conn->state != BT_CONN_CONNECTED) {
/* It is possible that connection was disconnected directly from
* connected callback so we must check state before doing
* connection parameters update.
*/
return;
}
if (!atomic_test_bit(conn->flags, BT_CONN_AUTO_FEATURE_EXCH) &&
((conn->role == BT_HCI_ROLE_CENTRAL) ||
BT_FEAT_LE_PER_INIT_FEAT_XCHG(bt_dev.le.features))) {
err = hci_le_read_remote_features(conn);
if (err) {
BT_ERR("Failed read remote features (%d)", err);
}
}
if (IS_ENABLED(CONFIG_BT_REMOTE_VERSION) &&
!atomic_test_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO)) {
err = hci_read_remote_version(conn);
if (err) {
BT_ERR("Failed read remote version (%d)", err);
}
}
if (IS_ENABLED(CONFIG_BT_AUTO_PHY_UPDATE) &&
BT_FEAT_LE_PHY_2M(bt_dev.le.features) &&
!skip_auto_phy_update_on_conn_establishment(conn)) {
err = bt_le_set_phy(conn, 0U, BT_HCI_LE_PHY_PREFER_2M,
BT_HCI_LE_PHY_PREFER_2M,
BT_HCI_LE_PHY_CODED_ANY);
if (err) {
BT_ERR("Failed LE Set PHY (%d)", err);
}
}
if (IS_ENABLED(CONFIG_BT_AUTO_DATA_LEN_UPDATE) &&
BT_FEAT_LE_DLE(bt_dev.le.features)) {
if (IS_BT_QUIRK_NO_AUTO_DLE(&bt_dev)) {
uint16_t tx_octets, tx_time;
err = hci_le_read_max_data_len(&tx_octets, &tx_time);
if (!err) {
err = bt_le_set_data_len(conn,
tx_octets, tx_time);
if (err) {
BT_ERR("Failed to set data len (%d)", err);
}
}
} else {
/* No need to auto-initiate DLE procedure.
* It is done by the controller.
*/
}
}
}
static void le_conn_complete_cancel(void)
{
struct bt_conn *conn;
/* Handle create connection cancel.
*
* There is no need to check ID address as only one
* connection in central role can be in pending state.
*/
conn = find_pending_connect(BT_HCI_ROLE_CENTRAL, NULL);
if (!conn) {
BT_ERR("No pending central connection");
return;
}
conn->err = BT_HCI_ERR_UNKNOWN_CONN_ID;
/* Handle cancellation of outgoing connection attempt. */
if (!IS_ENABLED(CONFIG_BT_FILTER_ACCEPT_LIST)) {
/* We notify before checking autoconnect flag
* as application may choose to change it from
* callback.
*/
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
/* Check if device is marked for autoconnect. */
if (atomic_test_bit(conn->flags, BT_CONN_AUTO_CONNECT)) {
/* Restart passive scanner for device */
bt_conn_set_state(conn, BT_CONN_CONNECTING_SCAN);
}
} else {
if (atomic_test_bit(conn->flags, BT_CONN_AUTO_CONNECT)) {
/* Restart FAL initiator after RPA timeout. */
bt_le_create_conn(conn);
} else {
/* Create connection canceled by timeout */
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
}
}
bt_conn_unref(conn);
}
static void le_conn_complete_adv_timeout(void)
{
if (!(IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features))) {
struct bt_le_ext_adv *adv = bt_le_adv_lookup_legacy();
struct bt_conn *conn;
/* Handle advertising timeout after high duty cycle directed
* advertising.
*/
atomic_clear_bit(adv->flags, BT_ADV_ENABLED);
if (IS_ENABLED(CONFIG_BT_EXT_ADV) &&
!BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features)) {
/* No advertising set terminated event, must be a
* legacy advertiser set.
*/
bt_le_adv_delete_legacy();
}
/* There is no need to check ID address as only one
* connection in peripheral role can be in pending state.
*/
conn = find_pending_connect(BT_HCI_ROLE_PERIPHERAL, NULL);
if (!conn) {
BT_ERR("No pending peripheral connection");
return;
}
conn->err = BT_HCI_ERR_ADV_TIMEOUT;
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_conn_unref(conn);
}
}
static void enh_conn_complete(struct bt_hci_evt_le_enh_conn_complete *evt)
{
#if (CONFIG_BT_ID_MAX > 1) && (CONFIG_BT_EXT_ADV_MAX_ADV_SET > 1)
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
evt->role == BT_HCI_ROLE_PERIPHERAL &&
evt->status == BT_HCI_ERR_SUCCESS &&
(IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_FEAT_LE_EXT_ADV(bt_dev.le.features))) {
/* Cache the connection complete event. Process it later.
* See bt_dev.cached_conn_complete.
*/
for (int i = 0; i < ARRAY_SIZE(bt_dev.cached_conn_complete); i++) {
if (!bt_dev.cached_conn_complete[i].valid) {
(void)memcpy(&bt_dev.cached_conn_complete[i].evt,
evt,
sizeof(struct bt_hci_evt_le_enh_conn_complete));
bt_dev.cached_conn_complete[i].valid = true;
return;
}
}
__ASSERT(false, "No more cache entries available."
"This should not happen by design");
return;
}
#endif
bt_hci_le_enh_conn_complete(evt);
}
void bt_hci_le_enh_conn_complete(struct bt_hci_evt_le_enh_conn_complete *evt)
{
uint16_t handle = sys_le16_to_cpu(evt->handle);
bool is_disconnected = conn_handle_is_disconnected(handle);
bt_addr_le_t peer_addr, id_addr;
struct bt_conn *conn;
BT_DBG("status 0x%02x handle %u role %u peer %s peer RPA %s",
evt->status, handle, evt->role, bt_addr_le_str(&evt->peer_addr),
bt_addr_str(&evt->peer_rpa));
BT_DBG("local RPA %s", bt_addr_str(&evt->local_rpa));
#if defined(CONFIG_BT_SMP)
bt_id_pending_keys_update();
#endif
if (evt->status) {
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
evt->status == BT_HCI_ERR_ADV_TIMEOUT) {
le_conn_complete_adv_timeout();
return;
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
evt->status == BT_HCI_ERR_UNKNOWN_CONN_ID) {
le_conn_complete_cancel();
bt_le_scan_update(false);
return;
}
BT_WARN("Unexpected status 0x%02x", evt->status);
return;
}
/* Translate "enhanced" identity address type to normal one */
if (evt->peer_addr.type == BT_ADDR_LE_PUBLIC_ID ||
evt->peer_addr.type == BT_ADDR_LE_RANDOM_ID) {
bt_addr_le_copy(&id_addr, &evt->peer_addr);
id_addr.type -= BT_ADDR_LE_PUBLIC_ID;
bt_addr_copy(&peer_addr.a, &evt->peer_rpa);
peer_addr.type = BT_ADDR_LE_RANDOM;
} else {
uint8_t id = evt->role == BT_HCI_ROLE_PERIPHERAL ? bt_dev.adv_conn_id :
BT_ID_DEFAULT;
bt_addr_le_copy(&id_addr,
bt_lookup_id_addr(id, &evt->peer_addr));
bt_addr_le_copy(&peer_addr, &evt->peer_addr);
}
conn = find_pending_connect(evt->role, &id_addr);
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
evt->role == BT_HCI_ROLE_PERIPHERAL &&
!(IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features))) {
struct bt_le_ext_adv *adv = bt_le_adv_lookup_legacy();
/* Clear advertising even if we are not able to add connection
* object to keep host in sync with controller state.
*/
atomic_clear_bit(adv->flags, BT_ADV_ENABLED);
(void)bt_le_lim_adv_cancel_timeout(adv);
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
evt->role == BT_HCI_ROLE_CENTRAL) {
/* Clear initiating even if we are not able to add connection
* object to keep the host in sync with controller state.
*/
atomic_clear_bit(bt_dev.flags, BT_DEV_INITIATING);
}
if (!conn) {
BT_ERR("No pending conn for peer %s",
bt_addr_le_str(&evt->peer_addr));
bt_hci_disconnect(handle, BT_HCI_ERR_UNSPECIFIED);
return;
}
conn->handle = handle;
bt_addr_le_copy(&conn->le.dst, &id_addr);
conn->le.interval = sys_le16_to_cpu(evt->interval);
conn->le.latency = sys_le16_to_cpu(evt->latency);
conn->le.timeout = sys_le16_to_cpu(evt->supv_timeout);
conn->role = evt->role;
conn->err = 0U;
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
conn->le.data_len.tx_max_len = BT_GAP_DATA_LEN_DEFAULT;
conn->le.data_len.tx_max_time = BT_GAP_DATA_TIME_DEFAULT;
conn->le.data_len.rx_max_len = BT_GAP_DATA_LEN_DEFAULT;
conn->le.data_len.rx_max_time = BT_GAP_DATA_TIME_DEFAULT;
#endif
#if defined(CONFIG_BT_USER_PHY_UPDATE)
conn->le.phy.tx_phy = BT_GAP_LE_PHY_1M;
conn->le.phy.rx_phy = BT_GAP_LE_PHY_1M;
#endif
/*
* Use connection address (instead of identity address) as initiator
* or responder address. Only peripheral needs to be updated. For central all
* was set during outgoing connection creation.
*/
if (IS_ENABLED(CONFIG_BT_PERIPHERAL) &&
conn->role == BT_HCI_ROLE_PERIPHERAL) {
bt_addr_le_copy(&conn->le.init_addr, &peer_addr);
if (!(IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features))) {
struct bt_le_ext_adv *adv = bt_le_adv_lookup_legacy();
if (IS_ENABLED(CONFIG_BT_PRIVACY) &&
!atomic_test_bit(adv->flags, BT_ADV_USE_IDENTITY)) {
conn->le.resp_addr.type = BT_ADDR_LE_RANDOM;
if (bt_addr_cmp(&evt->local_rpa,
BT_ADDR_ANY) != 0) {
bt_addr_copy(&conn->le.resp_addr.a,
&evt->local_rpa);
} else {
bt_addr_copy(&conn->le.resp_addr.a,
&bt_dev.random_addr.a);
}
} else {
bt_addr_le_copy(&conn->le.resp_addr,
&bt_dev.id_addr[conn->id]);
}
} else {
/* Copy the local RPA and handle this in advertising set
* terminated event.
*/
bt_addr_copy(&conn->le.resp_addr.a, &evt->local_rpa);
}
/* if the controller supports, lets advertise for another
* peripheral connection.
* check for connectable advertising state is sufficient as
* this is how this le connection complete for peripheral occurred.
*/
if (BT_LE_STATES_PER_CONN_ADV(bt_dev.le.states)) {
bt_le_adv_resume();
}
if (IS_ENABLED(CONFIG_BT_EXT_ADV) &&
!BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features)) {
struct bt_le_ext_adv *adv = bt_le_adv_lookup_legacy();
/* No advertising set terminated event, must be a
* legacy advertiser set.
*/
if (!atomic_test_bit(adv->flags, BT_ADV_PERSIST)) {
bt_le_adv_delete_legacy();
}
}
}
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_HCI_ROLE_CENTRAL) {
bt_addr_le_copy(&conn->le.resp_addr, &peer_addr);
if (IS_ENABLED(CONFIG_BT_PRIVACY)) {
conn->le.init_addr.type = BT_ADDR_LE_RANDOM;
if (bt_addr_cmp(&evt->local_rpa, BT_ADDR_ANY) != 0) {
bt_addr_copy(&conn->le.init_addr.a,
&evt->local_rpa);
} else {
bt_addr_copy(&conn->le.init_addr.a,
&bt_dev.random_addr.a);
}
} else {
bt_addr_le_copy(&conn->le.init_addr,
&bt_dev.id_addr[conn->id]);
}
}
#if defined(CONFIG_BT_USER_PHY_UPDATE)
if (IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features)) {
int err;
err = hci_le_read_phy(conn);
if (err) {
BT_WARN("Failed to read PHY (%d)", err);
}
}
#endif /* defined(CONFIG_BT_USER_PHY_UPDATE) */
bt_conn_set_state(conn, BT_CONN_CONNECTED);
if (is_disconnected) {
/* Mark the connection as already disconnected before calling
* the connected callback, so that the application cannot
* start sending packets
*/
bt_conn_set_state(conn, BT_CONN_DISCONNECT_COMPLETE);
}
bt_conn_connected(conn);
/* Start auto-initiated procedures */
conn_auto_initiate(conn);
bt_conn_unref(conn);
if (IS_ENABLED(CONFIG_BT_CENTRAL) &&
conn->role == BT_HCI_ROLE_CENTRAL) {
bt_le_scan_update(false);
}
}
static void le_enh_conn_complete(struct net_buf *buf)
{
enh_conn_complete((void *)buf->data);
}
static void le_legacy_conn_complete(struct net_buf *buf)
{
struct bt_hci_evt_le_conn_complete *evt = (void *)buf->data;
struct bt_hci_evt_le_enh_conn_complete enh;
BT_DBG("status 0x%02x role %u %s", evt->status, evt->role,
bt_addr_le_str(&evt->peer_addr));
enh.status = evt->status;
enh.handle = evt->handle;
enh.role = evt->role;
enh.interval = evt->interval;
enh.latency = evt->latency;
enh.supv_timeout = evt->supv_timeout;
enh.clock_accuracy = evt->clock_accuracy;
bt_addr_le_copy(&enh.peer_addr, &evt->peer_addr);
if (IS_ENABLED(CONFIG_BT_PRIVACY)) {
bt_addr_copy(&enh.local_rpa, &bt_dev.random_addr.a);
} else {
bt_addr_copy(&enh.local_rpa, BT_ADDR_ANY);
}
bt_addr_copy(&enh.peer_rpa, BT_ADDR_ANY);
enh_conn_complete(&enh);
}
static void le_remote_feat_complete(struct net_buf *buf)
{
struct bt_hci_evt_le_remote_feat_complete *evt = (void *)buf->data;
uint16_t handle = sys_le16_to_cpu(evt->handle);
struct bt_conn *conn;
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to lookup conn for handle %u", handle);
return;
}
if (!evt->status) {
memcpy(conn->le.features, evt->features,
sizeof(conn->le.features));
}
atomic_set_bit(conn->flags, BT_CONN_AUTO_FEATURE_EXCH);
if (IS_ENABLED(CONFIG_BT_REMOTE_INFO) &&
!IS_ENABLED(CONFIG_BT_REMOTE_VERSION)) {
notify_remote_info(conn);
}
bt_conn_unref(conn);
}
#if defined(CONFIG_BT_DATA_LEN_UPDATE)
static void le_data_len_change(struct net_buf *buf)
{
struct bt_hci_evt_le_data_len_change *evt = (void *)buf->data;
uint16_t handle = sys_le16_to_cpu(evt->handle);
struct bt_conn *conn;
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to lookup conn for handle %u", handle);
return;
}
#if defined(CONFIG_BT_USER_DATA_LEN_UPDATE)
uint16_t max_tx_octets = sys_le16_to_cpu(evt->max_tx_octets);
uint16_t max_rx_octets = sys_le16_to_cpu(evt->max_rx_octets);
uint16_t max_tx_time = sys_le16_to_cpu(evt->max_tx_time);
uint16_t max_rx_time = sys_le16_to_cpu(evt->max_rx_time);
BT_DBG("max. tx: %u (%uus), max. rx: %u (%uus)",
max_tx_octets, max_tx_time, max_rx_octets, max_rx_time);
conn->le.data_len.tx_max_len = max_tx_octets;
conn->le.data_len.tx_max_time = max_tx_time;
conn->le.data_len.rx_max_len = max_rx_octets;
conn->le.data_len.rx_max_time = max_rx_time;
notify_le_data_len_updated(conn);
#endif
bt_conn_unref(conn);
}
#endif /* CONFIG_BT_DATA_LEN_UPDATE */
#if defined(CONFIG_BT_PHY_UPDATE)
static void le_phy_update_complete(struct net_buf *buf)
{
struct bt_hci_evt_le_phy_update_complete *evt = (void *)buf->data;
uint16_t handle = sys_le16_to_cpu(evt->handle);
struct bt_conn *conn;
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to lookup conn for handle %u", handle);
return;
}
BT_DBG("PHY updated: status: 0x%02x, tx: %u, rx: %u",
evt->status, evt->tx_phy, evt->rx_phy);
#if defined(CONFIG_BT_USER_PHY_UPDATE)
conn->le.phy.tx_phy = bt_get_phy(evt->tx_phy);
conn->le.phy.rx_phy = bt_get_phy(evt->rx_phy);
notify_le_phy_updated(conn);
#endif
bt_conn_unref(conn);
}
#endif /* CONFIG_BT_PHY_UPDATE */
bool bt_le_conn_params_valid(const struct bt_le_conn_param *param)
{
/* All limits according to BT Core spec 5.0 [Vol 2, Part E, 7.8.12] */
if (param->interval_min > param->interval_max ||
param->interval_min < 6 || param->interval_max > 3200) {
return false;
}
if (param->latency > 499) {
return false;
}
if (param->timeout < 10 || param->timeout > 3200 ||
((param->timeout * 4U) <=
((1U + param->latency) * param->interval_max))) {
return false;
}
return true;
}
static void le_conn_param_neg_reply(uint16_t handle, uint8_t reason)
{
struct bt_hci_cp_le_conn_param_req_neg_reply *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY,
sizeof(*cp));
if (!buf) {
BT_ERR("Unable to allocate buffer");
return;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(handle);
cp->reason = sys_cpu_to_le16(reason);
bt_hci_cmd_send(BT_HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, buf);
}
static int le_conn_param_req_reply(uint16_t handle,
const struct bt_le_conn_param *param)
{
struct bt_hci_cp_le_conn_param_req_reply *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
(void)memset(cp, 0, sizeof(*cp));
cp->handle = sys_cpu_to_le16(handle);
cp->interval_min = sys_cpu_to_le16(param->interval_min);
cp->interval_max = sys_cpu_to_le16(param->interval_max);
cp->latency = sys_cpu_to_le16(param->latency);
cp->timeout = sys_cpu_to_le16(param->timeout);
return bt_hci_cmd_send(BT_HCI_OP_LE_CONN_PARAM_REQ_REPLY, buf);
}
static void le_conn_param_req(struct net_buf *buf)
{
struct bt_hci_evt_le_conn_param_req *evt = (void *)buf->data;
struct bt_le_conn_param param;
struct bt_conn *conn;
uint16_t handle;
handle = sys_le16_to_cpu(evt->handle);
param.interval_min = sys_le16_to_cpu(evt->interval_min);
param.interval_max = sys_le16_to_cpu(evt->interval_max);
param.latency = sys_le16_to_cpu(evt->latency);
param.timeout = sys_le16_to_cpu(evt->timeout);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to lookup conn for handle %u", handle);
le_conn_param_neg_reply(handle, BT_HCI_ERR_UNKNOWN_CONN_ID);
return;
}
if (!le_param_req(conn, &param)) {
le_conn_param_neg_reply(handle, BT_HCI_ERR_INVALID_LL_PARAM);
} else {
le_conn_param_req_reply(handle, &param);
}
bt_conn_unref(conn);
}
static void le_conn_update_complete(struct net_buf *buf)
{
struct bt_hci_evt_le_conn_update_complete *evt = (void *)buf->data;
struct bt_conn *conn;
uint16_t handle;
handle = sys_le16_to_cpu(evt->handle);
BT_DBG("status 0x%02x, handle %u", evt->status, handle);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to lookup conn for handle %u", handle);
return;
}
if (!evt->status) {
conn->le.interval = sys_le16_to_cpu(evt->interval);
conn->le.latency = sys_le16_to_cpu(evt->latency);
conn->le.timeout = sys_le16_to_cpu(evt->supv_timeout);
notify_le_param_updated(conn);
} else if (evt->status == BT_HCI_ERR_UNSUPP_REMOTE_FEATURE &&
conn->role == BT_HCI_ROLE_PERIPHERAL &&
!atomic_test_and_set_bit(conn->flags,
BT_CONN_PERIPHERAL_PARAM_L2CAP)) {
/* CPR not supported, let's try L2CAP CPUP instead */
struct bt_le_conn_param param;
param.interval_min = conn->le.interval_min;
param.interval_max = conn->le.interval_max;
param.latency = conn->le.pending_latency;
param.timeout = conn->le.pending_timeout;
bt_l2cap_update_conn_param(conn, &param);
}
bt_conn_unref(conn);
}
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
static int set_flow_control(void)
{
struct bt_hci_cp_host_buffer_size *hbs;
struct net_buf *buf;
int err;
/* Check if host flow control is actually supported */
if (!BT_CMD_TEST(bt_dev.supported_commands, 10, 5)) {
BT_WARN("Controller to host flow control not supported");
return 0;
}
buf = bt_hci_cmd_create(BT_HCI_OP_HOST_BUFFER_SIZE,
sizeof(*hbs));
if (!buf) {
return -ENOBUFS;
}
hbs = net_buf_add(buf, sizeof(*hbs));
(void)memset(hbs, 0, sizeof(*hbs));
hbs->acl_mtu = sys_cpu_to_le16(CONFIG_BT_BUF_ACL_RX_SIZE);
hbs->acl_pkts = sys_cpu_to_le16(CONFIG_BT_BUF_ACL_RX_COUNT);
err = bt_hci_cmd_send_sync(BT_HCI_OP_HOST_BUFFER_SIZE, buf, NULL);
if (err) {
return err;
}
buf = bt_hci_cmd_create(BT_HCI_OP_SET_CTL_TO_HOST_FLOW, 1);
if (!buf) {
return -ENOBUFS;
}
net_buf_add_u8(buf, BT_HCI_CTL_TO_HOST_FLOW_ENABLE);
return bt_hci_cmd_send_sync(BT_HCI_OP_SET_CTL_TO_HOST_FLOW, buf, NULL);
}
#endif /* CONFIG_BT_HCI_ACL_FLOW_CONTROL */
static void unpair(uint8_t id, const bt_addr_le_t *addr)
{
struct bt_keys *keys = NULL;
struct bt_conn *conn = bt_conn_lookup_addr_le(id, addr);
if (conn) {
/* Clear the conn->le.keys pointer since we'll invalidate it,
* and don't want any subsequent code (like disconnected
* callbacks) accessing it.
*/
if (conn->type == BT_CONN_TYPE_LE) {
keys = conn->le.keys;
conn->le.keys = NULL;
}
bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
bt_conn_unref(conn);
}
if (IS_ENABLED(CONFIG_BT_BREDR)) {
/* LE Public may indicate BR/EDR as well */
if (addr->type == BT_ADDR_LE_PUBLIC) {
bt_keys_link_key_clear_addr(&addr->a);
}
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
if (!keys) {
keys = bt_keys_find_addr(id, addr);
}
if (keys) {
bt_keys_clear(keys);
}
}
bt_gatt_clear(id, addr);
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
struct bt_conn_auth_info_cb *listener, *next;
SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&bt_auth_info_cbs, listener,
next, node) {
if (listener->bond_deleted) {
listener->bond_deleted(id, addr);
}
}
#endif /* defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR) */
}
static void unpair_remote(const struct bt_bond_info *info, void *data)
{
uint8_t *id = (uint8_t *) data;
unpair(*id, &info->addr);
}
int bt_unpair(uint8_t id, const bt_addr_le_t *addr)
{
if (id >= CONFIG_BT_ID_MAX) {
return -EINVAL;
}
if (IS_ENABLED(CONFIG_BT_SMP) &&
(!addr || !bt_addr_le_cmp(addr, BT_ADDR_LE_ANY))) {
bt_foreach_bond(id, unpair_remote, &id);
return 0;
}
unpair(id, addr);
return 0;
}
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
enum bt_security_err bt_security_err_get(uint8_t hci_err)
{
switch (hci_err) {
case BT_HCI_ERR_SUCCESS:
return BT_SECURITY_ERR_SUCCESS;
case BT_HCI_ERR_AUTH_FAIL:
return BT_SECURITY_ERR_AUTH_FAIL;
case BT_HCI_ERR_PIN_OR_KEY_MISSING:
return BT_SECURITY_ERR_PIN_OR_KEY_MISSING;
case BT_HCI_ERR_PAIRING_NOT_SUPPORTED:
return BT_SECURITY_ERR_PAIR_NOT_SUPPORTED;
case BT_HCI_ERR_PAIRING_NOT_ALLOWED:
return BT_SECURITY_ERR_PAIR_NOT_ALLOWED;
case BT_HCI_ERR_INVALID_PARAM:
return BT_SECURITY_ERR_INVALID_PARAM;
default:
return BT_SECURITY_ERR_UNSPECIFIED;
}
}
#endif /* defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR) */
#if defined(CONFIG_BT_SMP)
static bool update_sec_level(struct bt_conn *conn)
{
if (conn->le.keys && (conn->le.keys->flags & BT_KEYS_AUTHENTICATED)) {
if (conn->le.keys->flags & BT_KEYS_SC &&
conn->le.keys->enc_size == BT_SMP_MAX_ENC_KEY_SIZE) {
conn->sec_level = BT_SECURITY_L4;
} else {
conn->sec_level = BT_SECURITY_L3;
}
} else {
conn->sec_level = BT_SECURITY_L2;
}
return !(conn->required_sec_level > conn->sec_level);
}
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
static void hci_encrypt_change(struct net_buf *buf)
{
struct bt_hci_evt_encrypt_change *evt = (void *)buf->data;
uint16_t handle = sys_le16_to_cpu(evt->handle);
uint8_t status = evt->status;
struct bt_conn *conn;
BT_DBG("status 0x%02x handle %u encrypt 0x%02x", evt->status, handle,
evt->encrypt);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to look up conn with handle %u", handle);
return;
}
if (status) {
bt_conn_security_changed(conn, status,
bt_security_err_get(status));
bt_conn_unref(conn);
return;
}
conn->encrypt = evt->encrypt;
#if defined(CONFIG_BT_SMP)
if (conn->type == BT_CONN_TYPE_LE) {
/*
* we update keys properties only on successful encryption to
* avoid losing valid keys if encryption was not successful.
*
* Update keys with last pairing info for proper sec level
* update. This is done only for LE transport, for BR/EDR keys
* are updated on HCI 'Link Key Notification Event'
*/
if (conn->encrypt) {
bt_smp_update_keys(conn);
}
if (!update_sec_level(conn)) {
status = BT_HCI_ERR_AUTH_FAIL;
}
}
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
if (!bt_br_update_sec_level(conn)) {
bt_conn_unref(conn);
return;
}
if (IS_ENABLED(CONFIG_BT_SMP)) {
/*
* Start SMP over BR/EDR if we are pairing and are
* central on the link
*/
if (atomic_test_bit(conn->flags, BT_CONN_BR_PAIRING) &&
conn->role == BT_CONN_ROLE_CENTRAL) {
bt_smp_br_send_pairing_req(conn);
}
}
}
#endif /* CONFIG_BT_BREDR */
bt_conn_security_changed(conn, status, bt_security_err_get(status));
if (status) {
BT_ERR("Failed to set required security level");
bt_conn_disconnect(conn, status);
}
bt_conn_unref(conn);
}
static void hci_encrypt_key_refresh_complete(struct net_buf *buf)
{
struct bt_hci_evt_encrypt_key_refresh_complete *evt = (void *)buf->data;
uint8_t status = evt->status;
struct bt_conn *conn;
uint16_t handle;
handle = sys_le16_to_cpu(evt->handle);
BT_DBG("status 0x%02x handle %u", evt->status, handle);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to look up conn with handle %u", handle);
return;
}
if (status) {
bt_conn_security_changed(conn, status,
bt_security_err_get(status));
bt_conn_unref(conn);
return;
}
/*
* Update keys with last pairing info for proper sec level update.
* This is done only for LE transport. For BR/EDR transport keys are
* updated on HCI 'Link Key Notification Event', therefore update here
* only security level based on available keys and encryption state.
*/
#if defined(CONFIG_BT_SMP)
if (conn->type == BT_CONN_TYPE_LE) {
bt_smp_update_keys(conn);
if (!update_sec_level(conn)) {
status = BT_HCI_ERR_AUTH_FAIL;
}
}
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
if (!bt_br_update_sec_level(conn)) {
bt_conn_unref(conn);
return;
}
}
#endif /* CONFIG_BT_BREDR */
bt_conn_security_changed(conn, status, bt_security_err_get(status));
if (status) {
BT_ERR("Failed to set required security level");
bt_conn_disconnect(conn, status);
}
bt_conn_unref(conn);
}
#endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
#if defined(CONFIG_BT_REMOTE_VERSION)
static void bt_hci_evt_read_remote_version_complete(struct net_buf *buf)
{
struct bt_hci_evt_remote_version_info *evt;
struct bt_conn *conn;
uint16_t handle;
evt = net_buf_pull_mem(buf, sizeof(*evt));
handle = sys_le16_to_cpu(evt->handle);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("No connection for handle %u", handle);
return;
}
if (!evt->status) {
conn->rv.version = evt->version;
conn->rv.manufacturer = sys_le16_to_cpu(evt->manufacturer);
conn->rv.subversion = sys_le16_to_cpu(evt->subversion);
}
atomic_set_bit(conn->flags, BT_CONN_AUTO_VERSION_INFO);
if (IS_ENABLED(CONFIG_BT_REMOTE_INFO)) {
/* Remote features is already present */
notify_remote_info(conn);
}
bt_conn_unref(conn);
}
#endif /* CONFIG_BT_REMOTE_VERSION */
static void hci_hardware_error(struct net_buf *buf)
{
struct bt_hci_evt_hardware_error *evt;
evt = net_buf_pull_mem(buf, sizeof(*evt));
BT_ERR("Hardware error, hardware code: %d", evt->hardware_code);
}
#if defined(CONFIG_BT_SMP)
static void le_ltk_neg_reply(uint16_t handle)
{
struct bt_hci_cp_le_ltk_req_neg_reply *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_LTK_REQ_NEG_REPLY, sizeof(*cp));
if (!buf) {
BT_ERR("Out of command buffers");
return;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(handle);
bt_hci_cmd_send(BT_HCI_OP_LE_LTK_REQ_NEG_REPLY, buf);
}
static void le_ltk_reply(uint16_t handle, uint8_t *ltk)
{
struct bt_hci_cp_le_ltk_req_reply *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_LTK_REQ_REPLY,
sizeof(*cp));
if (!buf) {
BT_ERR("Out of command buffers");
return;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(handle);
memcpy(cp->ltk, ltk, sizeof(cp->ltk));
bt_hci_cmd_send(BT_HCI_OP_LE_LTK_REQ_REPLY, buf);
}
static void le_ltk_request(struct net_buf *buf)
{
struct bt_hci_evt_le_ltk_request *evt = (void *)buf->data;
struct bt_conn *conn;
uint16_t handle;
uint8_t ltk[16];
handle = sys_le16_to_cpu(evt->handle);
BT_DBG("handle %u", handle);
conn = bt_conn_lookup_handle(handle);
if (!conn) {
BT_ERR("Unable to lookup conn for handle %u", handle);
return;
}
if (bt_smp_request_ltk(conn, evt->rand, evt->ediv, ltk)) {
le_ltk_reply(handle, ltk);
} else {
le_ltk_neg_reply(handle);
}
bt_conn_unref(conn);
}
#endif /* CONFIG_BT_SMP */
static void hci_reset_complete(struct net_buf *buf)
{
uint8_t status = buf->data[0];
atomic_t flags;
BT_DBG("status 0x%02x", status);
if (status) {
return;
}
if (IS_ENABLED(CONFIG_BT_OBSERVER)) {
bt_scan_reset();
}
#if defined(CONFIG_BT_BREDR)
bt_br_discovery_reset();
#endif /* CONFIG_BT_BREDR */
flags = (atomic_get(bt_dev.flags) & BT_DEV_PERSISTENT_FLAGS);
atomic_set(bt_dev.flags, flags);
}
static void hci_cmd_done(uint16_t opcode, uint8_t status, struct net_buf *buf)
{
BT_DBG("opcode 0x%04x status 0x%02x buf %p", opcode, status, buf);
if (net_buf_pool_get(buf->pool_id) != &hci_cmd_pool) {
BT_WARN("opcode 0x%04x pool id %u pool %p != &hci_cmd_pool %p",
opcode, buf->pool_id, net_buf_pool_get(buf->pool_id),
&hci_cmd_pool);
return;
}
if (cmd(buf)->opcode != opcode) {
BT_WARN("OpCode 0x%04x completed instead of expected 0x%04x",
opcode, cmd(buf)->opcode);
return;
}
if (bt_dev.sent_cmd) {
net_buf_unref(bt_dev.sent_cmd);
bt_dev.sent_cmd = NULL;
}
if (cmd(buf)->state && !status) {
struct bt_hci_cmd_state_set *update = cmd(buf)->state;
atomic_set_bit_to(update->target, update->bit, update->val);
}
/* If the command was synchronous wake up bt_hci_cmd_send_sync() */
if (cmd(buf)->sync) {
cmd(buf)->status = status;
k_sem_give(cmd(buf)->sync);
}
}
static void hci_cmd_complete(struct net_buf *buf)
{
struct bt_hci_evt_cmd_complete *evt;
uint8_t status, ncmd;
uint16_t opcode;
evt = net_buf_pull_mem(buf, sizeof(*evt));
ncmd = evt->ncmd;
opcode = sys_le16_to_cpu(evt->opcode);
BT_DBG("opcode 0x%04x", opcode);
/* All command return parameters have a 1-byte status in the
* beginning, so we can safely make this generalization.
*/
status = buf->data[0];
hci_cmd_done(opcode, status, buf);
/* Allow next command to be sent */
if (ncmd) {
k_sem_give(&bt_dev.ncmd_sem);
}
}
static void hci_cmd_status(struct net_buf *buf)
{
struct bt_hci_evt_cmd_status *evt;
uint16_t opcode;
uint8_t ncmd;
evt = net_buf_pull_mem(buf, sizeof(*evt));
opcode = sys_le16_to_cpu(evt->opcode);
ncmd = evt->ncmd;
BT_DBG("opcode 0x%04x", opcode);
hci_cmd_done(opcode, evt->status, buf);
/* Allow next command to be sent */
if (ncmd) {
k_sem_give(&bt_dev.ncmd_sem);
}
}
int bt_hci_get_conn_handle(const struct bt_conn *conn, uint16_t *conn_handle)
{
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
*conn_handle = conn->handle;
return 0;
}
#if defined(CONFIG_BT_EXT_ADV)
int bt_hci_get_adv_handle(const struct bt_le_ext_adv *adv, uint8_t *adv_handle)
{
if (!atomic_test_bit(adv->flags, BT_ADV_CREATED)) {
return -EINVAL;
}
*adv_handle = adv->handle;
return 0;
}
#endif /* CONFIG_BT_EXT_ADV */
#if defined(CONFIG_BT_HCI_VS_EVT_USER)
int bt_hci_register_vnd_evt_cb(bt_hci_vnd_evt_cb_t cb)
{
hci_vnd_evt_cb = cb;
return 0;
}
#endif /* CONFIG_BT_HCI_VS_EVT_USER */
static const struct event_handler vs_events[] = {
#if defined(CONFIG_BT_DF_VS_CL_IQ_REPORT_16_BITS_IQ_SAMPLES)
EVENT_HANDLER(BT_HCI_EVT_VS_LE_CONNECTIONLESS_IQ_REPORT,
bt_hci_le_vs_df_connectionless_iq_report,
sizeof(struct bt_hci_evt_vs_le_connectionless_iq_report)),
#endif /* CONFIG_BT_DF_VS_CL_IQ_REPORT_16_BITS_IQ_SAMPLES */
#if defined(CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES)
EVENT_HANDLER(BT_HCI_EVT_VS_LE_CONNECTION_IQ_REPORT, bt_hci_le_vs_df_connection_iq_report,
sizeof(struct bt_hci_evt_vs_le_connection_iq_report)),
#endif /* CONFIG_BT_DF_VS_CONN_IQ_REPORT_16_BITS_IQ_SAMPLES */
};
static void hci_vendor_event(struct net_buf *buf)
{
bool handled = false;
#if defined(CONFIG_BT_HCI_VS_EVT_USER)
if (hci_vnd_evt_cb) {
struct net_buf_simple_state state;
net_buf_simple_save(&buf->b, &state);
handled = hci_vnd_evt_cb(&buf->b);
net_buf_simple_restore(&buf->b, &state);
}
#endif /* CONFIG_BT_HCI_VS_EVT_USER */
if (IS_ENABLED(CONFIG_BT_HCI_VS_EVT) && !handled) {
struct bt_hci_evt_vs *evt;
evt = net_buf_pull_mem(buf, sizeof(*evt));
BT_DBG("subevent 0x%02x", evt->subevent);
handle_vs_event(evt->subevent, buf, vs_events, ARRAY_SIZE(vs_events));
}
}
static const struct event_handler meta_events[] = {
#if defined(CONFIG_BT_OBSERVER)
EVENT_HANDLER(BT_HCI_EVT_LE_ADVERTISING_REPORT, bt_hci_le_adv_report,
sizeof(struct bt_hci_evt_le_advertising_report)),
#endif /* CONFIG_BT_OBSERVER */
#if defined(CONFIG_BT_CONN)
EVENT_HANDLER(BT_HCI_EVT_LE_CONN_COMPLETE, le_legacy_conn_complete,
sizeof(struct bt_hci_evt_le_conn_complete)),
EVENT_HANDLER(BT_HCI_EVT_LE_ENH_CONN_COMPLETE, le_enh_conn_complete,
sizeof(struct bt_hci_evt_le_enh_conn_complete)),
EVENT_HANDLER(BT_HCI_EVT_LE_CONN_UPDATE_COMPLETE,
le_conn_update_complete,
sizeof(struct bt_hci_evt_le_conn_update_complete)),
EVENT_HANDLER(BT_HCI_EVT_LE_REMOTE_FEAT_COMPLETE,
le_remote_feat_complete,
sizeof(struct bt_hci_evt_le_remote_feat_complete)),
EVENT_HANDLER(BT_HCI_EVT_LE_CONN_PARAM_REQ, le_conn_param_req,
sizeof(struct bt_hci_evt_le_conn_param_req)),
#if defined(CONFIG_BT_DATA_LEN_UPDATE)
EVENT_HANDLER(BT_HCI_EVT_LE_DATA_LEN_CHANGE, le_data_len_change,
sizeof(struct bt_hci_evt_le_data_len_change)),
#endif /* CONFIG_BT_DATA_LEN_UPDATE */
#if defined(CONFIG_BT_PHY_UPDATE)
EVENT_HANDLER(BT_HCI_EVT_LE_PHY_UPDATE_COMPLETE,
le_phy_update_complete,
sizeof(struct bt_hci_evt_le_phy_update_complete)),
#endif /* CONFIG_BT_PHY_UPDATE */
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_SMP)
EVENT_HANDLER(BT_HCI_EVT_LE_LTK_REQUEST, le_ltk_request,
sizeof(struct bt_hci_evt_le_ltk_request)),
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_ECC)
EVENT_HANDLER(BT_HCI_EVT_LE_P256_PUBLIC_KEY_COMPLETE,
bt_hci_evt_le_pkey_complete,
sizeof(struct bt_hci_evt_le_p256_public_key_complete)),
EVENT_HANDLER(BT_HCI_EVT_LE_GENERATE_DHKEY_COMPLETE,
bt_hci_evt_le_dhkey_complete,
sizeof(struct bt_hci_evt_le_generate_dhkey_complete)),
#endif /* CONFIG_BT_SMP */
#if defined(CONFIG_BT_EXT_ADV)
#if defined(CONFIG_BT_BROADCASTER)
EVENT_HANDLER(BT_HCI_EVT_LE_ADV_SET_TERMINATED, bt_hci_le_adv_set_terminated,
sizeof(struct bt_hci_evt_le_adv_set_terminated)),
EVENT_HANDLER(BT_HCI_EVT_LE_SCAN_REQ_RECEIVED, bt_hci_le_scan_req_received,
sizeof(struct bt_hci_evt_le_scan_req_received)),
#endif
#if defined(CONFIG_BT_OBSERVER)
EVENT_HANDLER(BT_HCI_EVT_LE_SCAN_TIMEOUT, bt_hci_le_scan_timeout,
0),
EVENT_HANDLER(BT_HCI_EVT_LE_EXT_ADVERTISING_REPORT, bt_hci_le_adv_ext_report,
sizeof(struct bt_hci_evt_le_ext_advertising_report)),
#endif /* defined(CONFIG_BT_OBSERVER) */
#if defined(CONFIG_BT_PER_ADV_SYNC)
EVENT_HANDLER(BT_HCI_EVT_LE_PER_ADV_SYNC_ESTABLISHED,
bt_hci_le_per_adv_sync_established,
sizeof(struct bt_hci_evt_le_per_adv_sync_established)),
EVENT_HANDLER(BT_HCI_EVT_LE_PER_ADVERTISING_REPORT, bt_hci_le_per_adv_report,
sizeof(struct bt_hci_evt_le_per_advertising_report)),
EVENT_HANDLER(BT_HCI_EVT_LE_PER_ADV_SYNC_LOST, bt_hci_le_per_adv_sync_lost,
sizeof(struct bt_hci_evt_le_per_adv_sync_lost)),
#if defined(CONFIG_BT_CONN)
EVENT_HANDLER(BT_HCI_EVT_LE_PAST_RECEIVED, bt_hci_le_past_received,
sizeof(struct bt_hci_evt_le_past_received)),
#endif /* CONFIG_BT_CONN */
#endif /* defined(CONFIG_BT_PER_ADV_SYNC) */
#endif /* defined(CONFIG_BT_EXT_ADV) */
#if defined(CONFIG_BT_ISO_UNICAST)
EVENT_HANDLER(BT_HCI_EVT_LE_CIS_ESTABLISHED, hci_le_cis_established,
sizeof(struct bt_hci_evt_le_cis_established)),
#if defined(CONFIG_BT_ISO_PERIPHERAL)
EVENT_HANDLER(BT_HCI_EVT_LE_CIS_REQ, hci_le_cis_req,
sizeof(struct bt_hci_evt_le_cis_req)),
#endif /* (CONFIG_BT_ISO_PERIPHERAL) */
#endif /* (CONFIG_BT_ISO_UNICAST) */
#if defined(CONFIG_BT_ISO_BROADCASTER)
EVENT_HANDLER(BT_HCI_EVT_LE_BIG_COMPLETE,
hci_le_big_complete,
sizeof(struct bt_hci_evt_le_big_complete)),
EVENT_HANDLER(BT_HCI_EVT_LE_BIG_TERMINATE,
hci_le_big_terminate,
sizeof(struct bt_hci_evt_le_big_terminate)),
#endif /* CONFIG_BT_ISO_BROADCASTER */
#if defined(CONFIG_BT_ISO_SYNC_RECEIVER)
EVENT_HANDLER(BT_HCI_EVT_LE_BIG_SYNC_ESTABLISHED,
hci_le_big_sync_established,
sizeof(struct bt_hci_evt_le_big_sync_established)),
EVENT_HANDLER(BT_HCI_EVT_LE_BIG_SYNC_LOST,
hci_le_big_sync_lost,
sizeof(struct bt_hci_evt_le_big_sync_lost)),
EVENT_HANDLER(BT_HCI_EVT_LE_BIGINFO_ADV_REPORT,
bt_hci_le_biginfo_adv_report,
sizeof(struct bt_hci_evt_le_biginfo_adv_report)),
#endif /* CONFIG_BT_ISO_SYNC_RECEIVER */
#if defined(CONFIG_BT_DF_CONNECTIONLESS_CTE_RX)
EVENT_HANDLER(BT_HCI_EVT_LE_CONNECTIONLESS_IQ_REPORT, bt_hci_le_df_connectionless_iq_report,
sizeof(struct bt_hci_evt_le_connectionless_iq_report)),
#endif /* CONFIG_BT_DF_CONNECTIONLESS_CTE_RX */
#if defined(CONFIG_BT_DF_CONNECTION_CTE_RX)
EVENT_HANDLER(BT_HCI_EVT_LE_CONNECTION_IQ_REPORT, bt_hci_le_df_connection_iq_report,
sizeof(struct bt_hci_evt_le_connection_iq_report)),
#endif /* CONFIG_BT_DF_CONNECTION_CTE_RX */
#if defined(CONFIG_BT_DF_CONNECTION_CTE_REQ)
EVENT_HANDLER(BT_HCI_EVT_LE_CTE_REQUEST_FAILED, bt_hci_le_df_cte_req_failed,
sizeof(struct bt_hci_evt_le_cte_req_failed)),
#endif /* CONFIG_BT_DF_CONNECTION_CTE_REQ */
};
static void hci_le_meta_event(struct net_buf *buf)
{
struct bt_hci_evt_le_meta_event *evt;
evt = net_buf_pull_mem(buf, sizeof(*evt));
BT_DBG("subevent 0x%02x", evt->subevent);
handle_event(evt->subevent, buf, meta_events, ARRAY_SIZE(meta_events));
}
static const struct event_handler normal_events[] = {
EVENT_HANDLER(BT_HCI_EVT_VENDOR, hci_vendor_event,
sizeof(struct bt_hci_evt_vs)),
EVENT_HANDLER(BT_HCI_EVT_LE_META_EVENT, hci_le_meta_event,
sizeof(struct bt_hci_evt_le_meta_event)),
#if defined(CONFIG_BT_BREDR)
EVENT_HANDLER(BT_HCI_EVT_CONN_REQUEST, bt_hci_conn_req,
sizeof(struct bt_hci_evt_conn_request)),
EVENT_HANDLER(BT_HCI_EVT_CONN_COMPLETE, bt_hci_conn_complete,
sizeof(struct bt_hci_evt_conn_complete)),
EVENT_HANDLER(BT_HCI_EVT_PIN_CODE_REQ, bt_hci_pin_code_req,
sizeof(struct bt_hci_evt_pin_code_req)),
EVENT_HANDLER(BT_HCI_EVT_LINK_KEY_NOTIFY, bt_hci_link_key_notify,
sizeof(struct bt_hci_evt_link_key_notify)),
EVENT_HANDLER(BT_HCI_EVT_LINK_KEY_REQ, bt_hci_link_key_req,
sizeof(struct bt_hci_evt_link_key_req)),
EVENT_HANDLER(BT_HCI_EVT_IO_CAPA_RESP, bt_hci_io_capa_resp,
sizeof(struct bt_hci_evt_io_capa_resp)),
EVENT_HANDLER(BT_HCI_EVT_IO_CAPA_REQ, bt_hci_io_capa_req,
sizeof(struct bt_hci_evt_io_capa_req)),
EVENT_HANDLER(BT_HCI_EVT_SSP_COMPLETE, bt_hci_ssp_complete,
sizeof(struct bt_hci_evt_ssp_complete)),
EVENT_HANDLER(BT_HCI_EVT_USER_CONFIRM_REQ, bt_hci_user_confirm_req,
sizeof(struct bt_hci_evt_user_confirm_req)),
EVENT_HANDLER(BT_HCI_EVT_USER_PASSKEY_NOTIFY,
bt_hci_user_passkey_notify,
sizeof(struct bt_hci_evt_user_passkey_notify)),
EVENT_HANDLER(BT_HCI_EVT_USER_PASSKEY_REQ, bt_hci_user_passkey_req,
sizeof(struct bt_hci_evt_user_passkey_req)),
EVENT_HANDLER(BT_HCI_EVT_INQUIRY_COMPLETE, bt_hci_inquiry_complete,
sizeof(struct bt_hci_evt_inquiry_complete)),
EVENT_HANDLER(BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI,
bt_hci_inquiry_result_with_rssi,
sizeof(struct bt_hci_evt_inquiry_result_with_rssi)),
EVENT_HANDLER(BT_HCI_EVT_EXTENDED_INQUIRY_RESULT,
bt_hci_extended_inquiry_result,
sizeof(struct bt_hci_evt_extended_inquiry_result)),
EVENT_HANDLER(BT_HCI_EVT_REMOTE_NAME_REQ_COMPLETE,
bt_hci_remote_name_request_complete,
sizeof(struct bt_hci_evt_remote_name_req_complete)),
EVENT_HANDLER(BT_HCI_EVT_AUTH_COMPLETE, bt_hci_auth_complete,
sizeof(struct bt_hci_evt_auth_complete)),
EVENT_HANDLER(BT_HCI_EVT_REMOTE_FEATURES,
bt_hci_read_remote_features_complete,
sizeof(struct bt_hci_evt_remote_features)),
EVENT_HANDLER(BT_HCI_EVT_REMOTE_EXT_FEATURES,
bt_hci_read_remote_ext_features_complete,
sizeof(struct bt_hci_evt_remote_ext_features)),
EVENT_HANDLER(BT_HCI_EVT_ROLE_CHANGE, bt_hci_role_change,
sizeof(struct bt_hci_evt_role_change)),
EVENT_HANDLER(BT_HCI_EVT_SYNC_CONN_COMPLETE, bt_hci_synchronous_conn_complete,
sizeof(struct bt_hci_evt_sync_conn_complete)),
#endif /* CONFIG_BT_BREDR */
#if defined(CONFIG_BT_CONN)
EVENT_HANDLER(BT_HCI_EVT_DISCONN_COMPLETE, hci_disconn_complete,
sizeof(struct bt_hci_evt_disconn_complete)),
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_SMP) || defined(CONFIG_BT_BREDR)
EVENT_HANDLER(BT_HCI_EVT_ENCRYPT_CHANGE, hci_encrypt_change,
sizeof(struct bt_hci_evt_encrypt_change)),
EVENT_HANDLER(BT_HCI_EVT_ENCRYPT_KEY_REFRESH_COMPLETE,
hci_encrypt_key_refresh_complete,
sizeof(struct bt_hci_evt_encrypt_key_refresh_complete)),
#endif /* CONFIG_BT_SMP || CONFIG_BT_BREDR */
#if defined(CONFIG_BT_REMOTE_VERSION)
EVENT_HANDLER(BT_HCI_EVT_REMOTE_VERSION_INFO,
bt_hci_evt_read_remote_version_complete,
sizeof(struct bt_hci_evt_remote_version_info)),
#endif /* CONFIG_BT_REMOTE_VERSION */
EVENT_HANDLER(BT_HCI_EVT_HARDWARE_ERROR, hci_hardware_error,
sizeof(struct bt_hci_evt_hardware_error)),
};
static void hci_event(struct net_buf *buf)
{
struct bt_hci_evt_hdr *hdr;
BT_ASSERT(buf->len >= sizeof(*hdr));
hdr = net_buf_pull_mem(buf, sizeof(*hdr));
BT_DBG("event 0x%02x", hdr->evt);
BT_ASSERT(bt_hci_evt_get_flags(hdr->evt) & BT_HCI_EVT_FLAG_RECV);
handle_event(hdr->evt, buf, normal_events, ARRAY_SIZE(normal_events));
net_buf_unref(buf);
}
static void send_cmd(void)
{
struct net_buf *buf;
int err;
/* Get next command */
BT_DBG("calling net_buf_get");
buf = net_buf_get(&bt_dev.cmd_tx_queue, K_NO_WAIT);
BT_ASSERT(buf);
/* Wait until ncmd > 0 */
BT_DBG("calling sem_take_wait");
k_sem_take(&bt_dev.ncmd_sem, K_FOREVER);
/* Clear out any existing sent command */
if (bt_dev.sent_cmd) {
BT_ERR("Uncleared pending sent_cmd");
net_buf_unref(bt_dev.sent_cmd);
bt_dev.sent_cmd = NULL;
}
bt_dev.sent_cmd = net_buf_ref(buf);
BT_DBG("Sending command 0x%04x (buf %p) to driver",
cmd(buf)->opcode, buf);
err = bt_send(buf);
if (err) {
BT_ERR("Unable to send to driver (err %d)", err);
k_sem_give(&bt_dev.ncmd_sem);
hci_cmd_done(cmd(buf)->opcode, BT_HCI_ERR_UNSPECIFIED, buf);
net_buf_unref(buf);
}
}
static void process_events(struct k_poll_event *ev, int count)
{
BT_DBG("count %d", count);
for (; count; ev++, count--) {
BT_DBG("ev->state %u", ev->state);
switch (ev->state) {
case K_POLL_STATE_SIGNALED:
break;
case K_POLL_STATE_FIFO_DATA_AVAILABLE:
if (ev->tag == BT_EVENT_CMD_TX) {
send_cmd();
} else if (IS_ENABLED(CONFIG_BT_CONN) ||
IS_ENABLED(CONFIG_BT_ISO)) {
struct bt_conn *conn;
if (ev->tag == BT_EVENT_CONN_TX_QUEUE) {
conn = CONTAINER_OF(ev->fifo,
struct bt_conn,
tx_queue);
bt_conn_process_tx(conn);
}
}
break;
case K_POLL_STATE_NOT_READY:
break;
default:
BT_WARN("Unexpected k_poll event state %u", ev->state);
break;
}
}
}
#if defined(CONFIG_BT_CONN)
#if defined(CONFIG_BT_ISO)
/* command FIFO + conn_change signal + MAX_CONN + ISO_MAX_CHAN */
#define EV_COUNT (2 + CONFIG_BT_MAX_CONN + CONFIG_BT_ISO_MAX_CHAN)
#else
/* command FIFO + conn_change signal + MAX_CONN */
#define EV_COUNT (2 + CONFIG_BT_MAX_CONN)
#endif /* CONFIG_BT_ISO */
#else
#if defined(CONFIG_BT_ISO)
/* command FIFO + conn_change signal + ISO_MAX_CHAN */
#define EV_COUNT (2 + CONFIG_BT_ISO_MAX_CHAN)
#else
/* command FIFO */
#define EV_COUNT 1
#endif /* CONFIG_BT_ISO */
#endif /* CONFIG_BT_CONN */
static void hci_tx_thread(void *p1, void *p2, void *p3)
{
static struct k_poll_event events[EV_COUNT] = {
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&bt_dev.cmd_tx_queue,
BT_EVENT_CMD_TX),
};
BT_DBG("Started");
while (1) {
int ev_count, err;
events[0].state = K_POLL_STATE_NOT_READY;
ev_count = 1;
if (IS_ENABLED(CONFIG_BT_CONN) || IS_ENABLED(CONFIG_BT_ISO)) {
ev_count += bt_conn_prepare_events(&events[1]);
}
BT_DBG("Calling k_poll with %d events", ev_count);
err = k_poll(events, ev_count, K_FOREVER);
BT_ASSERT(err == 0);
process_events(events, ev_count);
/* Make sure we don't hog the CPU if there's all the time
* some ready events.
*/
k_yield();
}
}
static void read_local_ver_complete(struct net_buf *buf)
{
struct bt_hci_rp_read_local_version_info *rp = (void *)buf->data;
BT_DBG("status 0x%02x", rp->status);
bt_dev.hci_version = rp->hci_version;
bt_dev.hci_revision = sys_le16_to_cpu(rp->hci_revision);
bt_dev.lmp_version = rp->lmp_version;
bt_dev.lmp_subversion = sys_le16_to_cpu(rp->lmp_subversion);
bt_dev.manufacturer = sys_le16_to_cpu(rp->manufacturer);
}
static void read_le_features_complete(struct net_buf *buf)
{
struct bt_hci_rp_le_read_local_features *rp = (void *)buf->data;
BT_DBG("status 0x%02x", rp->status);
memcpy(bt_dev.le.features, rp->features, sizeof(bt_dev.le.features));
}
#if defined(CONFIG_BT_CONN)
#if !defined(CONFIG_BT_BREDR)
static void read_buffer_size_complete(struct net_buf *buf)
{
struct bt_hci_rp_read_buffer_size *rp = (void *)buf->data;
uint16_t pkts;
BT_DBG("status 0x%02x", rp->status);
/* If LE-side has buffers we can ignore the BR/EDR values */
if (bt_dev.le.acl_mtu) {
return;
}
bt_dev.le.acl_mtu = sys_le16_to_cpu(rp->acl_max_len);
pkts = sys_le16_to_cpu(rp->acl_max_num);
BT_DBG("ACL BR/EDR buffers: pkts %u mtu %u", pkts, bt_dev.le.acl_mtu);
k_sem_init(&bt_dev.le.acl_pkts, pkts, pkts);
}
#endif /* !defined(CONFIG_BT_BREDR) */
#endif /* CONFIG_BT_CONN */
static void le_read_buffer_size_complete(struct net_buf *buf)
{
struct bt_hci_rp_le_read_buffer_size *rp = (void *)buf->data;
BT_DBG("status 0x%02x", rp->status);
#if defined(CONFIG_BT_CONN)
bt_dev.le.acl_mtu = sys_le16_to_cpu(rp->le_max_len);
if (!bt_dev.le.acl_mtu) {
return;
}
BT_DBG("ACL LE buffers: pkts %u mtu %u", rp->le_max_num,
bt_dev.le.acl_mtu);
k_sem_init(&bt_dev.le.acl_pkts, rp->le_max_num, rp->le_max_num);
#endif /* CONFIG_BT_CONN */
}
static void read_buffer_size_v2_complete(struct net_buf *buf)
{
#if defined(CONFIG_BT_ISO)
struct bt_hci_rp_le_read_buffer_size_v2 *rp = (void *)buf->data;
BT_DBG("status %u", rp->status);
#if defined(CONFIG_BT_CONN)
bt_dev.le.acl_mtu = sys_le16_to_cpu(rp->acl_max_len);
if (!bt_dev.le.acl_mtu) {
return;
}
BT_DBG("ACL LE buffers: pkts %u mtu %u", rp->acl_max_num,
bt_dev.le.acl_mtu);
k_sem_init(&bt_dev.le.acl_pkts, rp->acl_max_num, rp->acl_max_num);
#endif /* CONFIG_BT_CONN */
bt_dev.le.iso_mtu = sys_le16_to_cpu(rp->iso_max_len);
if (!bt_dev.le.iso_mtu) {
BT_ERR("ISO buffer size not set");
return;
}
BT_DBG("ISO buffers: pkts %u mtu %u", rp->iso_max_num,
bt_dev.le.iso_mtu);
k_sem_init(&bt_dev.le.iso_pkts, rp->iso_max_num, rp->iso_max_num);
#endif /* CONFIG_BT_ISO */
}
static int le_set_host_feature(uint8_t bit_number, uint8_t bit_value)
{
struct bt_hci_cp_le_set_host_feature *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_HOST_FEATURE, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->bit_number = bit_number;
cp->bit_value = bit_value;
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_HOST_FEATURE, buf, NULL);
}
static void read_supported_commands_complete(struct net_buf *buf)
{
struct bt_hci_rp_read_supported_commands *rp = (void *)buf->data;
BT_DBG("status 0x%02x", rp->status);
memcpy(bt_dev.supported_commands, rp->commands,
sizeof(bt_dev.supported_commands));
/* Report additional HCI commands used for ECDH as
* supported if TinyCrypt ECC is used for emulation.
*/
if (IS_ENABLED(CONFIG_BT_TINYCRYPT_ECC)) {
bt_hci_ecc_supported_commands(bt_dev.supported_commands);
}
}
static void read_local_features_complete(struct net_buf *buf)
{
struct bt_hci_rp_read_local_features *rp = (void *)buf->data;
BT_DBG("status 0x%02x", rp->status);
memcpy(bt_dev.features[0], rp->features, sizeof(bt_dev.features[0]));
}
static void le_read_supp_states_complete(struct net_buf *buf)
{
struct bt_hci_rp_le_read_supp_states *rp = (void *)buf->data;
BT_DBG("status 0x%02x", rp->status);
bt_dev.le.states = sys_get_le64(rp->le_states);
}
#if defined(CONFIG_BT_SMP)
static void le_read_resolving_list_size_complete(struct net_buf *buf)
{
struct bt_hci_rp_le_read_rl_size *rp = (void *)buf->data;
BT_DBG("Resolving List size %u", rp->rl_size);
bt_dev.le.rl_size = rp->rl_size;
}
#endif /* defined(CONFIG_BT_SMP) */
static int common_init(void)
{
struct net_buf *rsp;
int err;
if (!(bt_dev.drv->quirks & BT_QUIRK_NO_RESET)) {
/* Send HCI_RESET */
err = bt_hci_cmd_send_sync(BT_HCI_OP_RESET, NULL, &rsp);
if (err) {
return err;
}
hci_reset_complete(rsp);
net_buf_unref(rsp);
}
/* Read Local Supported Features */
err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_LOCAL_FEATURES, NULL, &rsp);
if (err) {
return err;
}
read_local_features_complete(rsp);
net_buf_unref(rsp);
/* Read Local Version Information */
err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_LOCAL_VERSION_INFO, NULL,
&rsp);
if (err) {
return err;
}
read_local_ver_complete(rsp);
net_buf_unref(rsp);
/* Read Local Supported Commands */
err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_SUPPORTED_COMMANDS, NULL,
&rsp);
if (err) {
return err;
}
read_supported_commands_complete(rsp);
net_buf_unref(rsp);
if (IS_ENABLED(CONFIG_BT_HOST_CRYPTO_PRNG)) {
/* Initialize the PRNG so that it is safe to use it later
* on in the initialization process.
*/
err = prng_init();
if (err) {
return err;
}
}
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
err = set_flow_control();
if (err) {
return err;
}
#endif /* CONFIG_BT_HCI_ACL_FLOW_CONTROL */
return 0;
}
static int le_set_event_mask(void)
{
struct bt_hci_cp_le_set_event_mask *cp_mask;
struct net_buf *buf;
uint64_t mask = 0U;
/* Set LE event mask */
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_EVENT_MASK, sizeof(*cp_mask));
if (!buf) {
return -ENOBUFS;
}
cp_mask = net_buf_add(buf, sizeof(*cp_mask));
mask |= BT_EVT_MASK_LE_ADVERTISING_REPORT;
if (IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_ADV_SET_TERMINATED;
mask |= BT_EVT_MASK_LE_SCAN_REQ_RECEIVED;
mask |= BT_EVT_MASK_LE_EXT_ADVERTISING_REPORT;
mask |= BT_EVT_MASK_LE_SCAN_TIMEOUT;
if (IS_ENABLED(CONFIG_BT_PER_ADV_SYNC)) {
mask |= BT_EVT_MASK_LE_PER_ADV_SYNC_ESTABLISHED;
mask |= BT_EVT_MASK_LE_PER_ADVERTISING_REPORT;
mask |= BT_EVT_MASK_LE_PER_ADV_SYNC_LOST;
mask |= BT_EVT_MASK_LE_PAST_RECEIVED;
}
}
if (IS_ENABLED(CONFIG_BT_CONN)) {
if ((IS_ENABLED(CONFIG_BT_SMP) &&
BT_FEAT_LE_PRIVACY(bt_dev.le.features)) ||
(IS_ENABLED(CONFIG_BT_EXT_ADV) &&
BT_DEV_FEAT_LE_EXT_ADV(bt_dev.le.features))) {
/* C24:
* Mandatory if the LE Controller supports Connection
* State and either LE Feature (LL Privacy) or
* LE Feature (Extended Advertising) is supported, ...
*/
mask |= BT_EVT_MASK_LE_ENH_CONN_COMPLETE;
} else {
mask |= BT_EVT_MASK_LE_CONN_COMPLETE;
}
mask |= BT_EVT_MASK_LE_CONN_UPDATE_COMPLETE;
mask |= BT_EVT_MASK_LE_REMOTE_FEAT_COMPLETE;
if (BT_FEAT_LE_CONN_PARAM_REQ_PROC(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_CONN_PARAM_REQ;
}
if (IS_ENABLED(CONFIG_BT_DATA_LEN_UPDATE) &&
BT_FEAT_LE_DLE(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_DATA_LEN_CHANGE;
}
if (IS_ENABLED(CONFIG_BT_PHY_UPDATE) &&
(BT_FEAT_LE_PHY_2M(bt_dev.le.features) ||
BT_FEAT_LE_PHY_CODED(bt_dev.le.features))) {
mask |= BT_EVT_MASK_LE_PHY_UPDATE_COMPLETE;
}
}
if (IS_ENABLED(CONFIG_BT_SMP) &&
BT_FEAT_LE_ENCR(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_LTK_REQUEST;
}
/*
* If "LE Read Local P-256 Public Key" and "LE Generate DH Key" are
* supported we need to enable events generated by those commands.
*/
if (IS_ENABLED(CONFIG_BT_ECC) &&
(BT_CMD_TEST(bt_dev.supported_commands, 34, 1)) &&
(BT_CMD_TEST(bt_dev.supported_commands, 34, 2))) {
mask |= BT_EVT_MASK_LE_P256_PUBLIC_KEY_COMPLETE;
mask |= BT_EVT_MASK_LE_GENERATE_DHKEY_COMPLETE;
}
/*
* Enable CIS events only if ISO connections are enabled and controller
* support them.
*/
if (IS_ENABLED(CONFIG_BT_ISO) &&
BT_FEAT_LE_CIS(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_CIS_ESTABLISHED;
if (BT_FEAT_LE_CIS_PERIPHERAL(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_CIS_REQ;
}
}
/* Enable BIS events for broadcaster and/or receiver */
if (IS_ENABLED(CONFIG_BT_ISO) && BT_FEAT_LE_BIS(bt_dev.le.features)) {
if (IS_ENABLED(CONFIG_BT_ISO_BROADCASTER) &&
BT_FEAT_LE_ISO_BROADCASTER(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_BIG_COMPLETE;
mask |= BT_EVT_MASK_LE_BIG_TERMINATED;
}
if (IS_ENABLED(CONFIG_BT_ISO_SYNC_RECEIVER) &&
BT_FEAT_LE_SYNC_RECEIVER(bt_dev.le.features)) {
mask |= BT_EVT_MASK_LE_BIG_SYNC_ESTABLISHED;
mask |= BT_EVT_MASK_LE_BIG_SYNC_LOST;
mask |= BT_EVT_MASK_LE_BIGINFO_ADV_REPORT;
}
}
/* Enable IQ samples report events receiver */
if (IS_ENABLED(CONFIG_BT_DF_CONNECTIONLESS_CTE_RX)) {
mask |= BT_EVT_MASK_LE_CONNECTIONLESS_IQ_REPORT;
}
if (IS_ENABLED(CONFIG_BT_DF_CONNECTION_CTE_RX)) {
mask |= BT_EVT_MASK_LE_CONNECTION_IQ_REPORT;
mask |= BT_EVT_MASK_LE_CTE_REQUEST_FAILED;
}
sys_put_le64(mask, cp_mask->events);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_EVENT_MASK, buf, NULL);
}
static int le_init_iso(void)
{
int err;
struct net_buf *rsp;
/* Set Isochronous Channels - Host support */
err = le_set_host_feature(BT_LE_FEAT_BIT_ISO_CHANNELS, 1);
if (err) {
return err;
}
/* Octet 41, bit 5 is read buffer size V2 */
if (BT_CMD_TEST(bt_dev.supported_commands, 41, 5)) {
/* Read ISO Buffer Size V2 */
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_BUFFER_SIZE_V2,
NULL, &rsp);
if (err) {
return err;
}
read_buffer_size_v2_complete(rsp);
net_buf_unref(rsp);
} else if (IS_ENABLED(CONFIG_BT_CONN)) {
BT_WARN("Read Buffer Size V2 command is not supported."
"No ISO buffers will be available");
/* Read LE Buffer Size */
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_BUFFER_SIZE,
NULL, &rsp);
if (err) {
return err;
}
le_read_buffer_size_complete(rsp);
net_buf_unref(rsp);
}
return 0;
}
static int le_init(void)
{
struct bt_hci_cp_write_le_host_supp *cp_le;
struct net_buf *buf, *rsp;
int err;
/* For now we only support LE capable controllers */
if (!BT_FEAT_LE(bt_dev.features)) {
BT_ERR("Non-LE capable controller detected!");
return -ENODEV;
}
/* Read Low Energy Supported Features */
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_LOCAL_FEATURES, NULL,
&rsp);
if (err) {
return err;
}
read_le_features_complete(rsp);
net_buf_unref(rsp);
if (IS_ENABLED(CONFIG_BT_ISO) &&
BT_FEAT_LE_ISO(bt_dev.le.features)) {
err = le_init_iso();
if (err) {
return err;
}
} else if (IS_ENABLED(CONFIG_BT_CONN)) {
/* Read LE Buffer Size */
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_BUFFER_SIZE,
NULL, &rsp);
if (err) {
return err;
}
le_read_buffer_size_complete(rsp);
net_buf_unref(rsp);
}
if (BT_FEAT_BREDR(bt_dev.features)) {
buf = bt_hci_cmd_create(BT_HCI_OP_LE_WRITE_LE_HOST_SUPP,
sizeof(*cp_le));
if (!buf) {
return -ENOBUFS;
}
cp_le = net_buf_add(buf, sizeof(*cp_le));
/* Explicitly enable LE for dual-mode controllers */
cp_le->le = 0x01;
cp_le->simul = 0x00;
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_WRITE_LE_HOST_SUPP, buf,
NULL);
if (err) {
return err;
}
}
/* Read LE Supported States */
if (BT_CMD_LE_STATES(bt_dev.supported_commands)) {
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_SUPP_STATES, NULL,
&rsp);
if (err) {
return err;
}
le_read_supp_states_complete(rsp);
net_buf_unref(rsp);
}
if (IS_ENABLED(CONFIG_BT_CONN) &&
IS_ENABLED(CONFIG_BT_DATA_LEN_UPDATE) &&
IS_ENABLED(CONFIG_BT_AUTO_DATA_LEN_UPDATE) &&
BT_FEAT_LE_DLE(bt_dev.le.features)) {
struct bt_hci_cp_le_write_default_data_len *cp;
uint16_t tx_octets, tx_time;
err = hci_le_read_max_data_len(&tx_octets, &tx_time);
if (err) {
return err;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_WRITE_DEFAULT_DATA_LEN,
sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->max_tx_octets = sys_cpu_to_le16(tx_octets);
cp->max_tx_time = sys_cpu_to_le16(tx_time);
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_WRITE_DEFAULT_DATA_LEN,
buf, NULL);
if (err) {
return err;
}
}
#if defined(CONFIG_BT_SMP)
if (BT_FEAT_LE_PRIVACY(bt_dev.le.features)) {
#if defined(CONFIG_BT_PRIVACY)
struct bt_hci_cp_le_set_rpa_timeout *cp;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_RPA_TIMEOUT,
sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->rpa_timeout = sys_cpu_to_le16(bt_dev.rpa_timeout);
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_RPA_TIMEOUT, buf,
NULL);
if (err) {
return err;
}
#endif /* defined(CONFIG_BT_PRIVACY) */
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_READ_RL_SIZE, NULL,
&rsp);
if (err) {
return err;
}
le_read_resolving_list_size_complete(rsp);
net_buf_unref(rsp);
}
#endif
#if IS_ENABLED(CONFIG_BT_DF)
if (BT_FEAT_LE_CONNECTIONLESS_CTE_TX(bt_dev.le.features) ||
BT_FEAT_LE_CONNECTIONLESS_CTE_RX(bt_dev.le.features) ||
BT_FEAT_LE_RX_CTE(bt_dev.le.features)) {
err = le_df_init();
if (err) {
return err;
}
}
#endif /* CONFIG_BT_DF */
return le_set_event_mask();
}
#if !defined(CONFIG_BT_BREDR)
static int bt_br_init(void)
{
#if defined(CONFIG_BT_CONN)
struct net_buf *rsp;
int err;
if (bt_dev.le.acl_mtu) {
return 0;
}
/* Use BR/EDR buffer size if LE reports zero buffers */
err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_BUFFER_SIZE, NULL, &rsp);
if (err) {
return err;
}
read_buffer_size_complete(rsp);
net_buf_unref(rsp);
#endif /* CONFIG_BT_CONN */
return 0;
}
#endif /* !defined(CONFIG_BT_BREDR) */
static int set_event_mask(void)
{
struct bt_hci_cp_set_event_mask *ev;
struct net_buf *buf;
uint64_t mask = 0U;
buf = bt_hci_cmd_create(BT_HCI_OP_SET_EVENT_MASK, sizeof(*ev));
if (!buf) {
return -ENOBUFS;
}
ev = net_buf_add(buf, sizeof(*ev));
if (IS_ENABLED(CONFIG_BT_BREDR)) {
/* Since we require LE support, we can count on a
* Bluetooth 4.0 feature set
*/
mask |= BT_EVT_MASK_INQUIRY_COMPLETE;
mask |= BT_EVT_MASK_CONN_COMPLETE;
mask |= BT_EVT_MASK_CONN_REQUEST;
mask |= BT_EVT_MASK_AUTH_COMPLETE;
mask |= BT_EVT_MASK_REMOTE_NAME_REQ_COMPLETE;
mask |= BT_EVT_MASK_REMOTE_FEATURES;
mask |= BT_EVT_MASK_ROLE_CHANGE;
mask |= BT_EVT_MASK_PIN_CODE_REQ;
mask |= BT_EVT_MASK_LINK_KEY_REQ;
mask |= BT_EVT_MASK_LINK_KEY_NOTIFY;
mask |= BT_EVT_MASK_INQUIRY_RESULT_WITH_RSSI;
mask |= BT_EVT_MASK_REMOTE_EXT_FEATURES;
mask |= BT_EVT_MASK_SYNC_CONN_COMPLETE;
mask |= BT_EVT_MASK_EXTENDED_INQUIRY_RESULT;
mask |= BT_EVT_MASK_IO_CAPA_REQ;
mask |= BT_EVT_MASK_IO_CAPA_RESP;
mask |= BT_EVT_MASK_USER_CONFIRM_REQ;
mask |= BT_EVT_MASK_USER_PASSKEY_REQ;
mask |= BT_EVT_MASK_SSP_COMPLETE;
mask |= BT_EVT_MASK_USER_PASSKEY_NOTIFY;
}
mask |= BT_EVT_MASK_HARDWARE_ERROR;
mask |= BT_EVT_MASK_DATA_BUFFER_OVERFLOW;
mask |= BT_EVT_MASK_LE_META_EVENT;
if (IS_ENABLED(CONFIG_BT_CONN)) {
mask |= BT_EVT_MASK_DISCONN_COMPLETE;
mask |= BT_EVT_MASK_REMOTE_VERSION_INFO;
}
if (IS_ENABLED(CONFIG_BT_SMP) &&
BT_FEAT_LE_ENCR(bt_dev.le.features)) {
mask |= BT_EVT_MASK_ENCRYPT_CHANGE;
mask |= BT_EVT_MASK_ENCRYPT_KEY_REFRESH_COMPLETE;
}
sys_put_le64(mask, ev->events);
return bt_hci_cmd_send_sync(BT_HCI_OP_SET_EVENT_MASK, buf, NULL);
}
#if defined(CONFIG_BT_DEBUG)
static const char *ver_str(uint8_t ver)
{
const char * const str[] = {
"1.0b", "1.1", "1.2", "2.0", "2.1", "3.0", "4.0", "4.1", "4.2",
"5.0", "5.1", "5.2", "5.3"
};
if (ver < ARRAY_SIZE(str)) {
return str[ver];
}
return "unknown";
}
static void bt_dev_show_info(void)
{
int i;
BT_INFO("Identity%s: %s", bt_dev.id_count > 1 ? "[0]" : "",
bt_addr_le_str(&bt_dev.id_addr[0]));
if (IS_ENABLED(CONFIG_BT_LOG_SNIFFER_INFO)) {
#if defined(CONFIG_BT_PRIVACY)
uint8_t irk[16];
sys_memcpy_swap(irk, bt_dev.irk[0], 16);
BT_INFO("IRK%s: 0x%s", bt_dev.id_count > 1 ? "[0]" : "",
bt_hex(irk, 16));
#endif
}
for (i = 1; i < bt_dev.id_count; i++) {
BT_INFO("Identity[%d]: %s",
i, bt_addr_le_str(&bt_dev.id_addr[i]));
if (IS_ENABLED(CONFIG_BT_LOG_SNIFFER_INFO)) {
#if defined(CONFIG_BT_PRIVACY)
uint8_t irk[16];
sys_memcpy_swap(irk, bt_dev.irk[i], 16);
BT_INFO("IRK[%d]: 0x%s", i, bt_hex(irk, 16));
#endif
}
}
if (IS_ENABLED(CONFIG_BT_SMP) &&
IS_ENABLED(CONFIG_BT_LOG_SNIFFER_INFO)) {
bt_keys_foreach_type(BT_KEYS_ALL, bt_keys_show_sniffer_info, NULL);
}
BT_INFO("HCI: version %s (0x%02x) revision 0x%04x, manufacturer 0x%04x",
ver_str(bt_dev.hci_version), bt_dev.hci_version,
bt_dev.hci_revision, bt_dev.manufacturer);
BT_INFO("LMP: version %s (0x%02x) subver 0x%04x",
ver_str(bt_dev.lmp_version), bt_dev.lmp_version,
bt_dev.lmp_subversion);
}
#else
static inline void bt_dev_show_info(void)
{
}
#endif /* CONFIG_BT_DEBUG */
#if defined(CONFIG_BT_HCI_VS_EXT)
#if defined(CONFIG_BT_DEBUG)
static const char *vs_hw_platform(uint16_t platform)
{
static const char * const plat_str[] = {
"reserved", "Intel Corporation", "Nordic Semiconductor",
"NXP Semiconductors" };
if (platform < ARRAY_SIZE(plat_str)) {
return plat_str[platform];
}
return "unknown";
}
static const char *vs_hw_variant(uint16_t platform, uint16_t variant)
{
static const char * const nordic_str[] = {
"reserved", "nRF51x", "nRF52x", "nRF53x"
};
if (platform != BT_HCI_VS_HW_PLAT_NORDIC) {
return "unknown";
}
if (variant < ARRAY_SIZE(nordic_str)) {
return nordic_str[variant];
}
return "unknown";
}
static const char *vs_fw_variant(uint8_t variant)
{
static const char * const var_str[] = {
"Standard Bluetooth controller",
"Vendor specific controller",
"Firmware loader",
"Rescue image",
};
if (variant < ARRAY_SIZE(var_str)) {
return var_str[variant];
}
return "unknown";
}
#endif /* CONFIG_BT_DEBUG */
static void hci_vs_init(void)
{
union {
struct bt_hci_rp_vs_read_version_info *info;
struct bt_hci_rp_vs_read_supported_commands *cmds;
struct bt_hci_rp_vs_read_supported_features *feat;
} rp;
struct net_buf *rsp;
int err;
/* If heuristics is enabled, try to guess HCI VS support by looking
* at the HCI version and identity address. We haven't set any addresses
* at this point. So we need to read the public address.
*/
if (IS_ENABLED(CONFIG_BT_HCI_VS_EXT_DETECT)) {
bt_addr_le_t addr;
if ((bt_dev.hci_version < BT_HCI_VERSION_5_0) ||
bt_id_read_public_addr(&addr)) {
BT_WARN("Controller doesn't seem to support "
"Zephyr vendor HCI");
return;
}
}
err = bt_hci_cmd_send_sync(BT_HCI_OP_VS_READ_VERSION_INFO, NULL, &rsp);
if (err) {
BT_WARN("Vendor HCI extensions not available");
return;
}
if (IS_ENABLED(CONFIG_BT_HCI_VS_EXT_DETECT) &&
rsp->len != sizeof(struct bt_hci_rp_vs_read_version_info)) {
BT_WARN("Invalid Vendor HCI extensions");
net_buf_unref(rsp);
return;
}
#if defined(CONFIG_BT_DEBUG)
rp.info = (void *)rsp->data;
BT_INFO("HW Platform: %s (0x%04x)",
vs_hw_platform(sys_le16_to_cpu(rp.info->hw_platform)),
sys_le16_to_cpu(rp.info->hw_platform));
BT_INFO("HW Variant: %s (0x%04x)",
vs_hw_variant(sys_le16_to_cpu(rp.info->hw_platform),
sys_le16_to_cpu(rp.info->hw_variant)),
sys_le16_to_cpu(rp.info->hw_variant));
BT_INFO("Firmware: %s (0x%02x) Version %u.%u Build %u",
vs_fw_variant(rp.info->fw_variant), rp.info->fw_variant,
rp.info->fw_version, sys_le16_to_cpu(rp.info->fw_revision),
sys_le32_to_cpu(rp.info->fw_build));
#endif /* CONFIG_BT_DEBUG */
net_buf_unref(rsp);
err = bt_hci_cmd_send_sync(BT_HCI_OP_VS_READ_SUPPORTED_COMMANDS,
NULL, &rsp);
if (err) {
BT_WARN("Failed to read supported vendor commands");
return;
}
if (IS_ENABLED(CONFIG_BT_HCI_VS_EXT_DETECT) &&
rsp->len != sizeof(struct bt_hci_rp_vs_read_supported_commands)) {
BT_WARN("Invalid Vendor HCI extensions");
net_buf_unref(rsp);
return;
}
rp.cmds = (void *)rsp->data;
memcpy(bt_dev.vs_commands, rp.cmds->commands, BT_DEV_VS_CMDS_MAX);
net_buf_unref(rsp);
if (BT_VS_CMD_SUP_FEAT(bt_dev.vs_commands)) {
err = bt_hci_cmd_send_sync(BT_HCI_OP_VS_READ_SUPPORTED_FEATURES,
NULL, &rsp);
if (err) {
BT_WARN("Failed to read supported vendor features");
return;
}
if (IS_ENABLED(CONFIG_BT_HCI_VS_EXT_DETECT) &&
rsp->len !=
sizeof(struct bt_hci_rp_vs_read_supported_features)) {
BT_WARN("Invalid Vendor HCI extensions");
net_buf_unref(rsp);
return;
}
rp.feat = (void *)rsp->data;
memcpy(bt_dev.vs_features, rp.feat->features,
BT_DEV_VS_FEAT_MAX);
net_buf_unref(rsp);
}
}
#endif /* CONFIG_BT_HCI_VS_EXT */
static int hci_init(void)
{
int err;
#if defined(CONFIG_BT_HCI_SETUP)
if (bt_dev.drv->setup) {
err = bt_dev.drv->setup();
if (err) {
return err;
}
}
#endif /* defined(CONFIG_BT_HCI_SETUP) */
err = common_init();
if (err) {
return err;
}
err = le_init();
if (err) {
return err;
}
if (BT_FEAT_BREDR(bt_dev.features)) {
err = bt_br_init();
if (err) {
return err;
}
} else if (IS_ENABLED(CONFIG_BT_BREDR)) {
BT_ERR("Non-BR/EDR controller detected");
return -EIO;
}
#if defined(CONFIG_BT_CONN)
else if (!bt_dev.le.acl_mtu) {
BT_ERR("ACL BR/EDR buffers not initialized");
return -EIO;
}
#endif
err = set_event_mask();
if (err) {
return err;
}
#if defined(CONFIG_BT_HCI_VS_EXT)
hci_vs_init();
#endif
err = bt_id_init();
if (err) {
return err;
}
return 0;
}
int bt_send(struct net_buf *buf)
{
BT_DBG("buf %p len %u type %u", buf, buf->len, bt_buf_get_type(buf));
bt_monitor_send(bt_monitor_opcode(buf), buf->data, buf->len);
if (IS_ENABLED(CONFIG_BT_TINYCRYPT_ECC)) {
return bt_hci_ecc_send(buf);
}
return bt_dev.drv->send(buf);
}
static const struct event_handler prio_events[] = {
EVENT_HANDLER(BT_HCI_EVT_CMD_COMPLETE, hci_cmd_complete,
sizeof(struct bt_hci_evt_cmd_complete)),
EVENT_HANDLER(BT_HCI_EVT_CMD_STATUS, hci_cmd_status,
sizeof(struct bt_hci_evt_cmd_status)),
#if defined(CONFIG_BT_CONN)
EVENT_HANDLER(BT_HCI_EVT_DATA_BUF_OVERFLOW,
hci_data_buf_overflow,
sizeof(struct bt_hci_evt_data_buf_overflow)),
EVENT_HANDLER(BT_HCI_EVT_DISCONN_COMPLETE, hci_disconn_complete_prio,
sizeof(struct bt_hci_evt_disconn_complete)),
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_CONN_TX)
EVENT_HANDLER(BT_HCI_EVT_NUM_COMPLETED_PACKETS,
hci_num_completed_packets,
sizeof(struct bt_hci_evt_num_completed_packets)),
#endif /* CONFIG_BT_CONN_TX */
};
void hci_event_prio(struct net_buf *buf)
{
struct net_buf_simple_state state;
struct bt_hci_evt_hdr *hdr;
uint8_t evt_flags;
net_buf_simple_save(&buf->b, &state);
BT_ASSERT(buf->len >= sizeof(*hdr));
hdr = net_buf_pull_mem(buf, sizeof(*hdr));
evt_flags = bt_hci_evt_get_flags(hdr->evt);
BT_ASSERT(evt_flags & BT_HCI_EVT_FLAG_RECV_PRIO);
handle_event(hdr->evt, buf, prio_events, ARRAY_SIZE(prio_events));
if (evt_flags & BT_HCI_EVT_FLAG_RECV) {
net_buf_simple_restore(&buf->b, &state);
} else {
net_buf_unref(buf);
}
}
#if !defined(CONFIG_BT_RECV_BLOCKING)
static void rx_queue_put(struct net_buf *buf)
{
net_buf_slist_put(&bt_dev.rx_queue, buf);
#if defined(CONFIG_BT_RECV_WORKQ_SYS)
const int err = k_work_submit(&rx_work);
#elif defined(CONFIG_BT_RECV_WORKQ_BT)
const int err = k_work_submit_to_queue(&bt_workq, &rx_work);
#endif /* CONFIG_BT_RECV_WORKQ_SYS */
if (err < 0) {
BT_ERR("Could not submit rx_work: %d", err);
}
}
#endif /* !CONFIG_BT_RECV_BLOCKING */
int bt_recv(struct net_buf *buf)
{
bt_monitor_send(bt_monitor_opcode(buf), buf->data, buf->len);
BT_DBG("buf %p len %u", buf, buf->len);
switch (bt_buf_get_type(buf)) {
#if defined(CONFIG_BT_CONN)
case BT_BUF_ACL_IN:
#if defined(CONFIG_BT_RECV_BLOCKING)
hci_acl(buf);
#else
rx_queue_put(buf);
#endif
return 0;
#endif /* BT_CONN */
case BT_BUF_EVT:
{
#if defined(CONFIG_BT_RECV_BLOCKING)
hci_event(buf);
#else
struct bt_hci_evt_hdr *hdr = (void *)buf->data;
uint8_t evt_flags = bt_hci_evt_get_flags(hdr->evt);
if (evt_flags & BT_HCI_EVT_FLAG_RECV_PRIO) {
hci_event_prio(buf);
}
if (evt_flags & BT_HCI_EVT_FLAG_RECV) {
rx_queue_put(buf);
}
#endif
return 0;
}
#if defined(CONFIG_BT_ISO)
case BT_BUF_ISO_IN:
#if defined(CONFIG_BT_RECV_BLOCKING)
hci_iso(buf);
#else
rx_queue_put(buf);
#endif
return 0;
#endif /* CONFIG_BT_ISO */
default:
BT_ERR("Invalid buf type %u", bt_buf_get_type(buf));
net_buf_unref(buf);
return -EINVAL;
}
}
int bt_recv_prio(struct net_buf *buf)
{
bt_monitor_send(bt_monitor_opcode(buf), buf->data, buf->len);
BT_ASSERT(bt_buf_get_type(buf) == BT_BUF_EVT);
hci_event_prio(buf);
return 0;
}
int bt_hci_driver_register(const struct bt_hci_driver *drv)
{
if (bt_dev.drv) {
return -EALREADY;
}
if (!drv->open || !drv->send) {
return -EINVAL;
}
bt_dev.drv = drv;
BT_DBG("Registered %s", drv->name ? drv->name : "");
bt_monitor_new_index(BT_MONITOR_TYPE_PRIMARY, drv->bus,
BT_ADDR_ANY, drv->name ? drv->name : "bt0");
return 0;
}
void bt_finalize_init(void)
{
atomic_set_bit(bt_dev.flags, BT_DEV_READY);
if (IS_ENABLED(CONFIG_BT_OBSERVER)) {
bt_le_scan_update(false);
}
bt_dev_show_info();
}
static int bt_init(void)
{
int err;
err = hci_init();
if (err) {
return err;
}
if (IS_ENABLED(CONFIG_BT_CONN)) {
err = bt_conn_init();
if (err) {
return err;
}
}
if (IS_ENABLED(CONFIG_BT_ISO)) {
err = bt_conn_iso_init();
if (err) {
return err;
}
}
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
if (!bt_dev.id_count) {
BT_INFO("No ID address. App must call settings_load()");
return 0;
}
atomic_set_bit(bt_dev.flags, BT_DEV_PRESET_ID);
}
bt_finalize_init();
return 0;
}
static void init_work(struct k_work *work)
{
int err;
err = bt_init();
if (ready_cb) {
ready_cb(err);
}
}
#if !defined(CONFIG_BT_RECV_BLOCKING)
static void rx_work_handler(struct k_work *work)
{
int err;
struct net_buf *buf;
BT_DBG("Getting net_buf from queue");
buf = net_buf_slist_get(&bt_dev.rx_queue);
if (!buf) {
return;
}
BT_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf),
buf->len);
switch (bt_buf_get_type(buf)) {
#if defined(CONFIG_BT_CONN)
case BT_BUF_ACL_IN:
hci_acl(buf);
break;
#endif /* CONFIG_BT_CONN */
#if defined(CONFIG_BT_ISO)
case BT_BUF_ISO_IN:
hci_iso(buf);
break;
#endif /* CONFIG_BT_ISO */
case BT_BUF_EVT:
hci_event(buf);
break;
default:
BT_ERR("Unknown buf type %u", bt_buf_get_type(buf));
net_buf_unref(buf);
break;
}
/* Schedule the work handler to be executed again if there are
* additional items in the queue. This allows for other users of the
* work queue to get a chance at running, which wouldn't be possible if
* we used a while() loop with a k_yield() statement.
*/
if (!sys_slist_is_empty(&bt_dev.rx_queue)) {
#if defined(CONFIG_BT_RECV_WORKQ_SYS)
err = k_work_submit(&rx_work);
#elif defined(CONFIG_BT_RECV_WORKQ_BT)
err = k_work_submit_to_queue(&bt_workq, &rx_work);
#endif
if (err < 0) {
BT_ERR("Could not submit rx_work: %d", err);
}
}
}
#endif /* !CONFIG_BT_RECV_BLOCKING */
int bt_enable(bt_ready_cb_t cb)
{
int err;
if (!bt_dev.drv) {
BT_ERR("No HCI driver registered");
return -ENODEV;
}
atomic_clear_bit(bt_dev.flags, BT_DEV_DISABLE);
if (atomic_test_and_set_bit(bt_dev.flags, BT_DEV_ENABLE)) {
return -EALREADY;
}
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
err = bt_settings_init();
if (err) {
return err;
}
} else if (IS_ENABLED(CONFIG_BT_DEVICE_NAME_DYNAMIC)) {
err = bt_set_name(CONFIG_BT_DEVICE_NAME);
if (err) {
BT_WARN("Failed to set device name (%d)", err);
}
}
ready_cb = cb;
/* Give cmd_sem allowing to send first HCI_Reset cmd, the only
* exception is if the controller requests to wait for an
* initial Command Complete for NOP.
*/
if (!IS_ENABLED(CONFIG_BT_WAIT_NOP)) {
k_sem_init(&bt_dev.ncmd_sem, 1, 1);
} else {
k_sem_init(&bt_dev.ncmd_sem, 0, 1);
}
k_fifo_init(&bt_dev.cmd_tx_queue);
/* TX thread */
k_thread_create(&tx_thread_data, tx_thread_stack,
K_KERNEL_STACK_SIZEOF(tx_thread_stack),
hci_tx_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_HCI_TX_PRIO),
0, K_NO_WAIT);
k_thread_name_set(&tx_thread_data, "BT TX");
#if defined(CONFIG_BT_RECV_WORKQ_BT)
/* RX thread */
k_work_queue_start(&bt_workq, rx_thread_stack,
CONFIG_BT_RX_STACK_SIZE,
K_PRIO_COOP(CONFIG_BT_RX_PRIO), NULL);
k_thread_name_set(&bt_workq.thread, "BT RX");
#endif
err = bt_dev.drv->open();
if (err) {
BT_ERR("HCI driver open failed (%d)", err);
return err;
}
bt_monitor_send(BT_MONITOR_OPEN_INDEX, NULL, 0);
if (!cb) {
return bt_init();
}
k_work_submit(&bt_dev.init);
return 0;
}
int bt_disable(void)
{
int err;
if (!bt_dev.drv) {
BT_ERR("No HCI driver registered");
return -ENODEV;
}
if (!bt_dev.drv->close) {
return -ENOTSUP;
}
if (atomic_test_and_set_bit(bt_dev.flags, BT_DEV_DISABLE)) {
return -EALREADY;
}
/* Clear BT_DEV_READY before disabling HCI link */
atomic_clear_bit(bt_dev.flags, BT_DEV_READY);
err = bt_dev.drv->close();
if (err) {
BT_ERR("HCI driver close failed (%d)", err);
/* Re-enable BT_DEV_READY to avoid inconsistent stack state */
atomic_set_bit(bt_dev.flags, BT_DEV_READY);
return err;
}
/* Some functions rely on checking this bitfield */
memset(bt_dev.supported_commands, 0x00, sizeof(bt_dev.supported_commands));
/* If random address was set up - clear it */
bt_addr_le_copy(&bt_dev.random_addr, BT_ADDR_LE_ANY);
/* Abort TX thread */
k_thread_abort(&tx_thread_data);
#if defined(CONFIG_BT_RECV_WORKQ_BT)
/* Abort RX thread */
k_thread_abort(&bt_workq.thread);
#endif
bt_monitor_send(BT_MONITOR_CLOSE_INDEX, NULL, 0);
#if defined(CONFIG_BT_PER_ADV_SYNC)
bt_periodic_sync_disable();
#endif /* CONFIG_BT_PER_ADV_SYNC */
/* Clear BT_DEV_ENABLE here to prevent early bt_enable() calls, before disable is
* completed.
*/
atomic_clear_bit(bt_dev.flags, BT_DEV_ENABLE);
return 0;
}
bool bt_is_ready(void)
{
return atomic_test_bit(bt_dev.flags, BT_DEV_READY);
}
#define DEVICE_NAME_LEN (sizeof(CONFIG_BT_DEVICE_NAME) - 1)
#if defined(CONFIG_BT_DEVICE_NAME_DYNAMIC)
BUILD_ASSERT(DEVICE_NAME_LEN < CONFIG_BT_DEVICE_NAME_MAX);
#else
BUILD_ASSERT(DEVICE_NAME_LEN < 248);
#endif
int bt_set_name(const char *name)
{
#if defined(CONFIG_BT_DEVICE_NAME_DYNAMIC)
size_t len = strlen(name);
int err;
if (len > CONFIG_BT_DEVICE_NAME_MAX) {
return -ENOMEM;
}
if (!strcmp(bt_dev.name, name)) {
return 0;
}
strncpy(bt_dev.name, name, len);
bt_dev.name[len] = '\0';
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
err = settings_save_one("bt/name", bt_dev.name, len);
if (err) {
BT_WARN("Unable to store name");
}
}
return 0;
#else
return -ENOMEM;
#endif
}
const char *bt_get_name(void)
{
#if defined(CONFIG_BT_DEVICE_NAME_DYNAMIC)
return bt_dev.name;
#else
return CONFIG_BT_DEVICE_NAME;
#endif
}
uint16_t bt_get_appearance(void)
{
#if defined(CONFIG_BT_DEVICE_APPEARANCE_DYNAMIC)
return bt_dev.appearance;
#else
return CONFIG_BT_DEVICE_APPEARANCE;
#endif
}
#if defined(CONFIG_BT_DEVICE_APPEARANCE_DYNAMIC)
int bt_set_appearance(uint16_t appearance)
{
if (bt_dev.appearance != appearance) {
if (IS_ENABLED(CONFIG_BT_SETTINGS)) {
int err = settings_save_one("bt/appearance", &appearance,
sizeof(appearance));
if (err) {
BT_ERR("Unable to save setting 'bt/appearance' (err %d).", err);
return err;
}
}
bt_dev.appearance = appearance;
}
return 0;
}
#endif
bool bt_addr_le_is_bonded(uint8_t id, const bt_addr_le_t *addr)
{
if (IS_ENABLED(CONFIG_BT_SMP)) {
struct bt_keys *keys = bt_keys_find_addr(id, addr);
/* if there are any keys stored then device is bonded */
return keys && keys->keys;
} else {
return false;
}
}
#if defined(CONFIG_BT_FILTER_ACCEPT_LIST)
int bt_le_filter_accept_list_add(const bt_addr_le_t *addr)
{
struct bt_hci_cp_le_add_dev_to_fal *cp;
struct net_buf *buf;
int err;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EAGAIN;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_ADD_DEV_TO_FAL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_le_copy(&cp->addr, addr);
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_ADD_DEV_TO_FAL, buf, NULL);
if (err) {
BT_ERR("Failed to add device to filter accept list");
return err;
}
return 0;
}
int bt_le_filter_accept_list_remove(const bt_addr_le_t *addr)
{
struct bt_hci_cp_le_rem_dev_from_fal *cp;
struct net_buf *buf;
int err;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EAGAIN;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_REM_DEV_FROM_FAL, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_le_copy(&cp->addr, addr);
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_REM_DEV_FROM_FAL, buf, NULL);
if (err) {
BT_ERR("Failed to remove device from filter accept list");
return err;
}
return 0;
}
int bt_le_filter_accept_list_clear(void)
{
int err;
if (!atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
return -EAGAIN;
}
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_CLEAR_FAL, NULL, NULL);
if (err) {
BT_ERR("Failed to clear filter accept list");
return err;
}
return 0;
}
#endif /* defined(CONFIG_BT_FILTER_ACCEPT_LIST) */
int bt_le_set_chan_map(uint8_t chan_map[5])
{
struct bt_hci_cp_le_set_host_chan_classif *cp;
struct net_buf *buf;
if (!IS_ENABLED(CONFIG_BT_CENTRAL)) {
return -ENOTSUP;
}
if (!BT_CMD_TEST(bt_dev.supported_commands, 27, 3)) {
BT_WARN("Set Host Channel Classification command is "
"not supported");
return -ENOTSUP;
}
buf = bt_hci_cmd_create(BT_HCI_OP_LE_SET_HOST_CHAN_CLASSIF,
sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
memcpy(&cp->ch_map[0], &chan_map[0], 4);
cp->ch_map[4] = chan_map[4] & BIT_MASK(5);
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_SET_HOST_CHAN_CLASSIF,
buf, NULL);
}
#if defined(CONFIG_BT_RPA_TIMEOUT_DYNAMIC)
int bt_le_set_rpa_timeout(uint16_t new_rpa_timeout)
{
if ((new_rpa_timeout == 0) || (new_rpa_timeout > 3600)) {
return -EINVAL;
}
if (new_rpa_timeout == bt_dev.rpa_timeout) {
return 0;
}
bt_dev.rpa_timeout = new_rpa_timeout;
atomic_set_bit(bt_dev.flags, BT_DEV_RPA_TIMEOUT_CHANGED);
return 0;
}
#endif
void bt_data_parse(struct net_buf_simple *ad,
bool (*func)(struct bt_data *data, void *user_data),
void *user_data)
{
while (ad->len > 1) {
struct bt_data data;
uint8_t len;
len = net_buf_simple_pull_u8(ad);
if (len == 0U) {
/* Early termination */
return;
}
if (len > ad->len) {
BT_WARN("Malformed data");
return;
}
data.type = net_buf_simple_pull_u8(ad);
data.data_len = len - 1;
data.data = ad->data;
if (!func(&data, user_data)) {
return;
}
net_buf_simple_pull(ad, len - 1);
}
}
int bt_configure_data_path(uint8_t dir, uint8_t id, uint8_t vs_config_len,
const uint8_t *vs_config)
{
struct bt_hci_rp_configure_data_path *rp;
struct bt_hci_cp_configure_data_path *cp;
struct net_buf *rsp;
struct net_buf *buf;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_CONFIGURE_DATA_PATH, sizeof(*cp) +
vs_config_len);
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->data_path_dir = dir;
cp->data_path_id = id;
cp->vs_config_len = vs_config_len;
if (vs_config_len) {
(void)memcpy(cp->vs_config, vs_config, vs_config_len);
}
err = bt_hci_cmd_send_sync(BT_HCI_OP_CONFIGURE_DATA_PATH, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
if (rp->status) {
err = -EIO;
}
net_buf_unref(rsp);
return err;
}