blob: ab2e54be82649c159e3715b688d744f54e0c1f2d [file] [log] [blame]
/*
* Copyright (c) 2017 Linaro Limited
* Copyright (c) 2021 Nordic Semiconductor
*
* SPDX-License-Identifier: Apache-2.0
*/
/* libc headers */
#include <fcntl.h>
/* Zephyr headers */
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(net_sock, CONFIG_NET_SOCKETS_LOG_LEVEL);
#include <zephyr/kernel.h>
#include <zephyr/net/net_context.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/socket.h>
#include <zephyr/net/socket_types.h>
#include <zephyr/syscall_handler.h>
#include <zephyr/sys/fdtable.h>
#include <zephyr/sys/math_extras.h>
#if defined(CONFIG_SOCKS)
#include "socks.h"
#endif
#include "../../ip/net_stats.h"
#include "sockets_internal.h"
#include "../../ip/tcp_internal.h"
#define SET_ERRNO(x) \
{ int _err = x; if (_err < 0) { errno = -_err; return -1; } }
#define VTABLE_CALL(fn, sock, ...) \
do { \
const struct socket_op_vtable *vtable; \
struct k_mutex *lock; \
void *obj; \
int ret; \
\
obj = get_sock_vtable(sock, &vtable, &lock); \
if (obj == NULL) { \
errno = EBADF; \
return -1; \
} \
\
if (vtable->fn == NULL) { \
errno = EOPNOTSUPP; \
return -1; \
} \
\
(void)k_mutex_lock(lock, K_FOREVER); \
\
ret = vtable->fn(obj, __VA_ARGS__); \
\
k_mutex_unlock(lock); \
\
return ret; \
} while (0)
const struct socket_op_vtable sock_fd_op_vtable;
static inline void *get_sock_vtable(int sock,
const struct socket_op_vtable **vtable,
struct k_mutex **lock)
{
void *ctx;
ctx = z_get_fd_obj_and_vtable(sock,
(const struct fd_op_vtable **)vtable,
lock);
#ifdef CONFIG_USERSPACE
if (ctx != NULL && z_is_in_user_syscall()) {
struct z_object *zo;
int ret;
zo = z_object_find(ctx);
ret = z_object_validate(zo, K_OBJ_NET_SOCKET, _OBJ_INIT_TRUE);
if (ret != 0) {
z_dump_object_error(ret, ctx, zo, K_OBJ_NET_SOCKET);
/* Invalidate the context, the caller doesn't have
* sufficient permission or there was some other
* problem with the net socket object
*/
ctx = NULL;
}
}
#endif /* CONFIG_USERSPACE */
if (ctx == NULL) {
NET_ERR("invalid access on sock %d by thread %p", sock,
_current);
}
return ctx;
}
void *z_impl_zsock_get_context_object(int sock)
{
const struct socket_op_vtable *ignored;
return get_sock_vtable(sock, &ignored, NULL);
}
#ifdef CONFIG_USERSPACE
void *z_vrfy_zsock_get_context_object(int sock)
{
/* All checking done in implementation */
return z_impl_zsock_get_context_object(sock);
}
#include <syscalls/zsock_get_context_object_mrsh.c>
#endif
static void zsock_received_cb(struct net_context *ctx,
struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status,
void *user_data);
static int fifo_wait_non_empty(struct k_fifo *fifo, k_timeout_t timeout)
{
struct k_poll_event events[] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY, fifo),
};
return k_poll(events, ARRAY_SIZE(events), timeout);
}
static void zsock_flush_queue(struct net_context *ctx)
{
bool is_listen = net_context_get_state(ctx) == NET_CONTEXT_LISTENING;
void *p;
/* recv_q and accept_q are shared via a union */
while ((p = k_fifo_get(&ctx->recv_q, K_NO_WAIT)) != NULL) {
if (is_listen) {
NET_DBG("discarding ctx %p", p);
net_context_put(p);
} else {
NET_DBG("discarding pkt %p", p);
net_pkt_unref(p);
}
}
/* Some threads might be waiting on recv, cancel the wait */
k_fifo_cancel_wait(&ctx->recv_q);
}
#if defined(CONFIG_NET_NATIVE)
static int zsock_socket_internal(int family, int type, int proto)
{
int fd = z_reserve_fd();
struct net_context *ctx;
int res;
if (fd < 0) {
return -1;
}
if (proto == 0) {
if (family == AF_INET || family == AF_INET6) {
if (type == SOCK_DGRAM) {
proto = IPPROTO_UDP;
} else if (type == SOCK_STREAM) {
proto = IPPROTO_TCP;
}
}
}
res = net_context_get(family, type, proto, &ctx);
if (res < 0) {
z_free_fd(fd);
errno = -res;
return -1;
}
/* Initialize user_data, all other calls will preserve it */
ctx->user_data = NULL;
/* The socket flags are stored here */
ctx->socket_data = NULL;
/* recv_q and accept_q are in union */
k_fifo_init(&ctx->recv_q);
/* Condition variable is used to avoid keeping lock for a long time
* when waiting data to be received
*/
k_condvar_init(&ctx->cond.recv);
/* TCP context is effectively owned by both application
* and the stack: stack may detect that peer closed/aborted
* connection, but it must not dispose of the context behind
* the application back. Likewise, when application "closes"
* context, it's not disposed of immediately - there's yet
* closing handshake for stack to perform.
*/
if (proto == IPPROTO_TCP) {
net_context_ref(ctx);
}
z_finalize_fd(fd, ctx, (const struct fd_op_vtable *)&sock_fd_op_vtable);
NET_DBG("socket: ctx=%p, fd=%d", ctx, fd);
return fd;
}
#endif /* CONFIG_NET_NATIVE */
int z_impl_zsock_socket(int family, int type, int proto)
{
STRUCT_SECTION_FOREACH(net_socket_register, sock_family) {
if (sock_family->family != family &&
sock_family->family != AF_UNSPEC) {
continue;
}
NET_ASSERT(sock_family->is_supported);
if (!sock_family->is_supported(family, type, proto)) {
continue;
}
return sock_family->handler(family, type, proto);
}
errno = EAFNOSUPPORT;
return -1;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_socket(int family, int type, int proto)
{
/* implementation call to net_context_get() should do all necessary
* checking
*/
return z_impl_zsock_socket(family, type, proto);
}
#include <syscalls/zsock_socket_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_close_ctx(struct net_context *ctx)
{
/* Reset callbacks to avoid any race conditions while
* flushing queues. No need to check return values here,
* as these are fail-free operations and we're closing
* socket anyway.
*/
if (net_context_get_state(ctx) == NET_CONTEXT_LISTENING) {
(void)net_context_accept(ctx, NULL, K_NO_WAIT, NULL);
} else {
(void)net_context_recv(ctx, NULL, K_NO_WAIT, NULL);
}
zsock_flush_queue(ctx);
SET_ERRNO(net_context_put(ctx));
return 0;
}
int z_impl_zsock_close(int sock)
{
const struct socket_op_vtable *vtable;
struct k_mutex *lock;
void *ctx;
int ret;
ctx = get_sock_vtable(sock, &vtable, &lock);
if (ctx == NULL) {
errno = EBADF;
return -1;
}
(void)k_mutex_lock(lock, K_FOREVER);
NET_DBG("close: ctx=%p, fd=%d", ctx, sock);
ret = vtable->fd_vtable.close(ctx);
k_mutex_unlock(lock);
z_free_fd(sock);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_close(int sock)
{
return z_impl_zsock_close(sock);
}
#include <syscalls/zsock_close_mrsh.c>
#endif /* CONFIG_USERSPACE */
int z_impl_zsock_shutdown(int sock, int how)
{
const struct socket_op_vtable *vtable;
struct k_mutex *lock;
void *ctx;
int ret;
ctx = get_sock_vtable(sock, &vtable, &lock);
if (ctx == NULL) {
errno = EBADF;
return -1;
}
if (!vtable->shutdown) {
errno = ENOTSUP;
return -1;
}
(void)k_mutex_lock(lock, K_FOREVER);
NET_DBG("shutdown: ctx=%p, fd=%d, how=%d", ctx, sock, how);
ret = vtable->shutdown(ctx, how);
k_mutex_unlock(lock);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_shutdown(int sock, int how)
{
return z_impl_zsock_shutdown(sock, how);
}
#include <syscalls/zsock_shutdown_mrsh.c>
#endif /* CONFIG_USERSPACE */
static void zsock_accepted_cb(struct net_context *new_ctx,
struct sockaddr *addr, socklen_t addrlen,
int status, void *user_data) {
struct net_context *parent = user_data;
NET_DBG("parent=%p, ctx=%p, st=%d", parent, new_ctx, status);
if (status == 0) {
/* This just installs a callback, so cannot fail. */
(void)net_context_recv(new_ctx, zsock_received_cb, K_NO_WAIT,
NULL);
k_fifo_init(&new_ctx->recv_q);
k_condvar_init(&new_ctx->cond.recv);
k_fifo_put(&parent->accept_q, new_ctx);
/* TCP context is effectively owned by both application
* and the stack: stack may detect that peer closed/aborted
* connection, but it must not dispose of the context behind
* the application back. Likewise, when application "closes"
* context, it's not disposed of immediately - there's yet
* closing handshake for stack to perform.
*/
net_context_ref(new_ctx);
}
}
static void zsock_received_cb(struct net_context *ctx,
struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status,
void *user_data)
{
if (ctx->cond.lock) {
(void)k_mutex_lock(ctx->cond.lock, K_FOREVER);
}
NET_DBG("ctx=%p, pkt=%p, st=%d, user_data=%p", ctx, pkt, status,
user_data);
if (status < 0) {
ctx->user_data = INT_TO_POINTER(-status);
sock_set_error(ctx);
}
/* if pkt is NULL, EOF */
if (!pkt) {
struct net_pkt *last_pkt = k_fifo_peek_tail(&ctx->recv_q);
if (!last_pkt) {
/* If there're no packets in the queue, recv() may
* be blocked waiting on it to become non-empty,
* so cancel that wait.
*/
sock_set_eof(ctx);
k_fifo_cancel_wait(&ctx->recv_q);
NET_DBG("Marked socket %p as peer-closed", ctx);
} else {
net_pkt_set_eof(last_pkt, true);
NET_DBG("Set EOF flag on pkt %p", last_pkt);
}
goto unlock;
}
/* Normal packet */
net_pkt_set_eof(pkt, false);
net_pkt_set_rx_stats_tick(pkt, k_cycle_get_32());
k_fifo_put(&ctx->recv_q, pkt);
unlock:
if (ctx->cond.lock) {
(void)k_mutex_unlock(ctx->cond.lock);
}
/* Let reader to wake if it was sleeping */
(void)k_condvar_signal(&ctx->cond.recv);
}
int zsock_shutdown_ctx(struct net_context *ctx, int how)
{
if (how == ZSOCK_SHUT_RD) {
if (net_context_get_state(ctx) == NET_CONTEXT_LISTENING) {
SET_ERRNO(net_context_accept(ctx, NULL, K_NO_WAIT, NULL));
} else {
SET_ERRNO(net_context_recv(ctx, NULL, K_NO_WAIT, NULL));
}
sock_set_eof(ctx);
zsock_flush_queue(ctx);
/* Let reader to wake if it was sleeping */
(void)k_condvar_signal(&ctx->cond.recv);
} else if (how == ZSOCK_SHUT_WR || how == ZSOCK_SHUT_RDWR) {
SET_ERRNO(-ENOTSUP);
} else {
SET_ERRNO(-EINVAL);
}
return 0;
}
int zsock_bind_ctx(struct net_context *ctx, const struct sockaddr *addr,
socklen_t addrlen)
{
SET_ERRNO(net_context_bind(ctx, addr, addrlen));
/* For DGRAM socket, we expect to receive packets after call to
* bind(), but for STREAM socket, next expected operation is
* listen(), which doesn't work if recv callback is set.
*/
if (net_context_get_type(ctx) == SOCK_DGRAM) {
SET_ERRNO(net_context_recv(ctx, zsock_received_cb, K_NO_WAIT,
ctx->user_data));
}
return 0;
}
int z_impl_zsock_bind(int sock, const struct sockaddr *addr, socklen_t addrlen)
{
VTABLE_CALL(bind, sock, addr, addrlen);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_bind(int sock, const struct sockaddr *addr,
socklen_t addrlen)
{
struct sockaddr_storage dest_addr_copy;
Z_OOPS(Z_SYSCALL_VERIFY(addrlen <= sizeof(dest_addr_copy)));
Z_OOPS(z_user_from_copy(&dest_addr_copy, (void *)addr, addrlen));
return z_impl_zsock_bind(sock, (struct sockaddr *)&dest_addr_copy,
addrlen);
}
#include <syscalls/zsock_bind_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_connect_ctx(struct net_context *ctx, const struct sockaddr *addr,
socklen_t addrlen)
{
#if defined(CONFIG_SOCKS)
if (net_context_is_proxy_enabled(ctx)) {
SET_ERRNO(net_socks5_connect(ctx, addr, addrlen));
SET_ERRNO(net_context_recv(ctx, zsock_received_cb,
K_NO_WAIT, ctx->user_data));
return 0;
}
#endif
SET_ERRNO(net_context_connect(ctx, addr, addrlen, NULL,
K_MSEC(CONFIG_NET_SOCKETS_CONNECT_TIMEOUT),
NULL));
SET_ERRNO(net_context_recv(ctx, zsock_received_cb, K_NO_WAIT,
ctx->user_data));
return 0;
}
int z_impl_zsock_connect(int sock, const struct sockaddr *addr,
socklen_t addrlen)
{
VTABLE_CALL(connect, sock, addr, addrlen);
}
#ifdef CONFIG_USERSPACE
int z_vrfy_zsock_connect(int sock, const struct sockaddr *addr,
socklen_t addrlen)
{
struct sockaddr_storage dest_addr_copy;
Z_OOPS(Z_SYSCALL_VERIFY(addrlen <= sizeof(dest_addr_copy)));
Z_OOPS(z_user_from_copy(&dest_addr_copy, (void *)addr, addrlen));
return z_impl_zsock_connect(sock, (struct sockaddr *)&dest_addr_copy,
addrlen);
}
#include <syscalls/zsock_connect_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_listen_ctx(struct net_context *ctx, int backlog)
{
SET_ERRNO(net_context_listen(ctx, backlog));
SET_ERRNO(net_context_accept(ctx, zsock_accepted_cb, K_NO_WAIT, ctx));
return 0;
}
int z_impl_zsock_listen(int sock, int backlog)
{
VTABLE_CALL(listen, sock, backlog);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_listen(int sock, int backlog)
{
return z_impl_zsock_listen(sock, backlog);
}
#include <syscalls/zsock_listen_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_accept_ctx(struct net_context *parent, struct sockaddr *addr,
socklen_t *addrlen)
{
k_timeout_t timeout = K_FOREVER;
struct net_context *ctx;
struct net_pkt *last_pkt;
int fd;
fd = z_reserve_fd();
if (fd < 0) {
return -1;
}
if (sock_is_nonblock(parent)) {
timeout = K_NO_WAIT;
}
ctx = k_fifo_get(&parent->accept_q, timeout);
if (ctx == NULL) {
z_free_fd(fd);
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
/* For non-blocking sockets return EAGAIN because it
* just means the fifo is empty at this time
*/
errno = EAGAIN;
} else {
/* For blocking sockets return EINVAL because it means
* the socket was closed while we were waiting for
* connections. This is the same error code returned
* under Linux when calling shutdown on a blocked accept
* call
*/
errno = EINVAL;
}
return -1;
}
/* Check if the connection is already disconnected */
last_pkt = k_fifo_peek_tail(&ctx->recv_q);
if (last_pkt) {
if (net_pkt_eof(last_pkt)) {
sock_set_eof(ctx);
z_free_fd(fd);
zsock_flush_queue(ctx);
net_context_unref(ctx);
errno = ECONNABORTED;
return -1;
}
}
if (net_context_is_closing(ctx)) {
errno = ECONNABORTED;
z_free_fd(fd);
zsock_flush_queue(ctx);
net_context_unref(ctx);
return -1;
}
net_context_set_accepting(ctx, false);
if (addr != NULL && addrlen != NULL) {
int len = MIN(*addrlen, sizeof(ctx->remote));
memcpy(addr, &ctx->remote, len);
/* addrlen is a value-result argument, set to actual
* size of source address
*/
if (ctx->remote.sa_family == AF_INET) {
*addrlen = sizeof(struct sockaddr_in);
} else if (ctx->remote.sa_family == AF_INET6) {
*addrlen = sizeof(struct sockaddr_in6);
} else {
z_free_fd(fd);
errno = ENOTSUP;
zsock_flush_queue(ctx);
net_context_unref(ctx);
return -1;
}
}
NET_DBG("accept: ctx=%p, fd=%d", ctx, fd);
z_finalize_fd(fd, ctx, (const struct fd_op_vtable *)&sock_fd_op_vtable);
return fd;
}
int z_impl_zsock_accept(int sock, struct sockaddr *addr, socklen_t *addrlen)
{
VTABLE_CALL(accept, sock, addr, addrlen);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_accept(int sock, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t addrlen_copy;
int ret;
Z_OOPS(addrlen && z_user_from_copy(&addrlen_copy, addrlen,
sizeof(socklen_t)));
Z_OOPS(addr && Z_SYSCALL_MEMORY_WRITE(addr, addrlen ? addrlen_copy : 0));
ret = z_impl_zsock_accept(sock, (struct sockaddr *)addr,
addrlen ? &addrlen_copy : NULL);
Z_OOPS(ret >= 0 && addrlen && z_user_to_copy(addrlen, &addrlen_copy,
sizeof(socklen_t)));
return ret;
}
#include <syscalls/zsock_accept_mrsh.c>
#endif /* CONFIG_USERSPACE */
#define WAIT_BUFS_INITIAL_MS 10
#define WAIT_BUFS_MAX_MS 100
#define MAX_WAIT_BUFS K_SECONDS(10)
static int send_check_and_wait(struct net_context *ctx, int status,
uint64_t buf_timeout, k_timeout_t timeout,
uint32_t *retry_timeout)
{
int64_t remaining;
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
goto out;
}
if (status != -ENOBUFS && status != -EAGAIN) {
goto out;
}
/* If we cannot get any buffers in reasonable
* amount of time, then do not wait forever as
* there might be some bigger issue.
* If we get -EAGAIN and cannot recover, then
* it means that the sending window is blocked
* and we just cannot send anything.
*/
remaining = buf_timeout - sys_clock_tick_get();
if (remaining <= 0) {
if (status == -ENOBUFS) {
status = -ENOMEM;
} else {
status = -ENOBUFS;
}
goto out;
}
if (ctx->cond.lock) {
(void)k_mutex_unlock(ctx->cond.lock);
}
if (status == -ENOBUFS) {
/* We can monitor net_pkt/net_buf avaialbility, so just wait. */
k_sleep(K_MSEC(*retry_timeout));
}
if (status == -EAGAIN) {
if (IS_ENABLED(CONFIG_NET_NATIVE_TCP) &&
net_context_get_type(ctx) == SOCK_STREAM) {
struct k_poll_event event;
k_poll_event_init(&event,
K_POLL_TYPE_SEM_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
net_tcp_tx_sem_get(ctx));
k_poll(&event, 1, K_MSEC(*retry_timeout));
} else {
k_sleep(K_MSEC(*retry_timeout));
}
}
/* Exponentially increase the retry timeout
* Cap the value to WAIT_BUFS_MAX_MS
*/
*retry_timeout = MIN(WAIT_BUFS_MAX_MS, *retry_timeout << 1);
if (ctx->cond.lock) {
(void)k_mutex_lock(ctx->cond.lock, K_FOREVER);
}
return 0;
out:
errno = -status;
return -1;
}
ssize_t zsock_sendto_ctx(struct net_context *ctx, const void *buf, size_t len,
int flags,
const struct sockaddr *dest_addr, socklen_t addrlen)
{
k_timeout_t timeout = K_FOREVER;
uint32_t retry_timeout = WAIT_BUFS_INITIAL_MS;
uint64_t buf_timeout = 0;
int status;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else {
net_context_get_option(ctx, NET_OPT_SNDTIMEO, &timeout, NULL);
buf_timeout = sys_clock_timeout_end_calc(MAX_WAIT_BUFS);
}
/* Register the callback before sending in order to receive the response
* from the peer.
*/
status = net_context_recv(ctx, zsock_received_cb,
K_NO_WAIT, ctx->user_data);
if (status < 0) {
errno = -status;
return -1;
}
while (1) {
if (dest_addr) {
status = net_context_sendto(ctx, buf, len, dest_addr,
addrlen, NULL, timeout,
ctx->user_data);
} else {
status = net_context_send(ctx, buf, len, NULL, timeout,
ctx->user_data);
}
if (status < 0) {
status = send_check_and_wait(ctx, status, buf_timeout,
timeout, &retry_timeout);
if (status < 0) {
return status;
}
continue;
}
break;
}
return status;
}
ssize_t z_impl_zsock_sendto(int sock, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen)
{
VTABLE_CALL(sendto, sock, buf, len, flags, dest_addr, addrlen);
}
#ifdef CONFIG_USERSPACE
ssize_t z_vrfy_zsock_sendto(int sock, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen)
{
struct sockaddr_storage dest_addr_copy;
Z_OOPS(Z_SYSCALL_MEMORY_READ(buf, len));
if (dest_addr) {
Z_OOPS(Z_SYSCALL_VERIFY(addrlen <= sizeof(dest_addr_copy)));
Z_OOPS(z_user_from_copy(&dest_addr_copy, (void *)dest_addr,
addrlen));
}
return z_impl_zsock_sendto(sock, (const void *)buf, len, flags,
dest_addr ? (struct sockaddr *)&dest_addr_copy : NULL,
addrlen);
}
#include <syscalls/zsock_sendto_mrsh.c>
#endif /* CONFIG_USERSPACE */
size_t msghdr_non_empty_iov_count(const struct msghdr *msg)
{
size_t non_empty_iov_count = 0;
for (size_t i = 0; i < msg->msg_iovlen; i++) {
if (msg->msg_iov[i].iov_len) {
non_empty_iov_count++;
}
}
return non_empty_iov_count;
}
ssize_t zsock_sendmsg_ctx(struct net_context *ctx, const struct msghdr *msg,
int flags)
{
k_timeout_t timeout = K_FOREVER;
uint32_t retry_timeout = WAIT_BUFS_INITIAL_MS;
uint64_t buf_timeout = 0;
int status;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else {
net_context_get_option(ctx, NET_OPT_SNDTIMEO, &timeout, NULL);
buf_timeout = sys_clock_timeout_end_calc(MAX_WAIT_BUFS);
}
while (1) {
status = net_context_sendmsg(ctx, msg, flags, NULL, timeout, NULL);
if (status < 0) {
if (status < 0) {
status = send_check_and_wait(ctx, status,
buf_timeout,
timeout, &retry_timeout);
if (status < 0) {
return status;
}
continue;
}
}
break;
}
return status;
}
ssize_t z_impl_zsock_sendmsg(int sock, const struct msghdr *msg, int flags)
{
VTABLE_CALL(sendmsg, sock, msg, flags);
}
#ifdef CONFIG_USERSPACE
static inline ssize_t z_vrfy_zsock_sendmsg(int sock,
const struct msghdr *msg,
int flags)
{
struct msghdr msg_copy;
size_t i;
int ret;
Z_OOPS(z_user_from_copy(&msg_copy, (void *)msg, sizeof(msg_copy)));
msg_copy.msg_name = NULL;
msg_copy.msg_control = NULL;
msg_copy.msg_iov = z_user_alloc_from_copy(msg->msg_iov,
msg->msg_iovlen * sizeof(struct iovec));
if (!msg_copy.msg_iov) {
errno = ENOMEM;
goto fail;
}
for (i = 0; i < msg->msg_iovlen; i++) {
msg_copy.msg_iov[i].iov_base =
z_user_alloc_from_copy(msg->msg_iov[i].iov_base,
msg->msg_iov[i].iov_len);
if (!msg_copy.msg_iov[i].iov_base) {
errno = ENOMEM;
goto fail;
}
msg_copy.msg_iov[i].iov_len = msg->msg_iov[i].iov_len;
}
if (msg->msg_namelen > 0) {
msg_copy.msg_name = z_user_alloc_from_copy(msg->msg_name,
msg->msg_namelen);
if (!msg_copy.msg_name) {
errno = ENOMEM;
goto fail;
}
}
if (msg->msg_controllen > 0) {
msg_copy.msg_control = z_user_alloc_from_copy(msg->msg_control,
msg->msg_controllen);
if (!msg_copy.msg_control) {
errno = ENOMEM;
goto fail;
}
}
ret = z_impl_zsock_sendmsg(sock, (const struct msghdr *)&msg_copy,
flags);
k_free(msg_copy.msg_name);
k_free(msg_copy.msg_control);
for (i = 0; i < msg_copy.msg_iovlen; i++) {
k_free(msg_copy.msg_iov[i].iov_base);
}
k_free(msg_copy.msg_iov);
return ret;
fail:
if (msg_copy.msg_name) {
k_free(msg_copy.msg_name);
}
if (msg_copy.msg_control) {
k_free(msg_copy.msg_control);
}
if (msg_copy.msg_iov) {
for (i = 0; i < msg_copy.msg_iovlen; i++) {
if (msg_copy.msg_iov[i].iov_base) {
k_free(msg_copy.msg_iov[i].iov_base);
}
}
k_free(msg_copy.msg_iov);
}
return -1;
}
#include <syscalls/zsock_sendmsg_mrsh.c>
#endif /* CONFIG_USERSPACE */
static int sock_get_pkt_src_addr(struct net_pkt *pkt,
enum net_ip_protocol proto,
struct sockaddr *addr,
socklen_t addrlen)
{
int ret = 0;
struct net_pkt_cursor backup;
uint16_t *port;
if (!addr || !pkt) {
return -EINVAL;
}
net_pkt_cursor_backup(pkt, &backup);
net_pkt_cursor_init(pkt);
addr->sa_family = net_pkt_family(pkt);
if (IS_ENABLED(CONFIG_NET_IPV4) &&
net_pkt_family(pkt) == AF_INET) {
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv4_access,
struct net_ipv4_hdr);
struct sockaddr_in *addr4 = net_sin(addr);
struct net_ipv4_hdr *ipv4_hdr;
if (addrlen < sizeof(struct sockaddr_in)) {
ret = -EINVAL;
goto error;
}
ipv4_hdr = (struct net_ipv4_hdr *)net_pkt_get_data(
pkt, &ipv4_access);
if (!ipv4_hdr ||
net_pkt_acknowledge_data(pkt, &ipv4_access) ||
net_pkt_skip(pkt, net_pkt_ipv4_opts_len(pkt))) {
ret = -ENOBUFS;
goto error;
}
net_ipv4_addr_copy_raw((uint8_t *)&addr4->sin_addr, ipv4_hdr->src);
port = &addr4->sin_port;
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
net_pkt_family(pkt) == AF_INET6) {
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv6_access,
struct net_ipv6_hdr);
struct sockaddr_in6 *addr6 = net_sin6(addr);
struct net_ipv6_hdr *ipv6_hdr;
if (addrlen < sizeof(struct sockaddr_in6)) {
ret = -EINVAL;
goto error;
}
ipv6_hdr = (struct net_ipv6_hdr *)net_pkt_get_data(
pkt, &ipv6_access);
if (!ipv6_hdr ||
net_pkt_acknowledge_data(pkt, &ipv6_access) ||
net_pkt_skip(pkt, net_pkt_ipv6_ext_len(pkt))) {
ret = -ENOBUFS;
goto error;
}
net_ipv6_addr_copy_raw((uint8_t *)&addr6->sin6_addr, ipv6_hdr->src);
port = &addr6->sin6_port;
} else {
ret = -ENOTSUP;
goto error;
}
if (IS_ENABLED(CONFIG_NET_UDP) && proto == IPPROTO_UDP) {
NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr);
struct net_udp_hdr *udp_hdr;
udp_hdr = (struct net_udp_hdr *)net_pkt_get_data(pkt,
&udp_access);
if (!udp_hdr) {
ret = -ENOBUFS;
goto error;
}
*port = udp_hdr->src_port;
} else if (IS_ENABLED(CONFIG_NET_TCP) && proto == IPPROTO_TCP) {
NET_PKT_DATA_ACCESS_DEFINE(tcp_access, struct net_tcp_hdr);
struct net_tcp_hdr *tcp_hdr;
tcp_hdr = (struct net_tcp_hdr *)net_pkt_get_data(pkt,
&tcp_access);
if (!tcp_hdr) {
ret = -ENOBUFS;
goto error;
}
*port = tcp_hdr->src_port;
} else {
ret = -ENOTSUP;
}
error:
net_pkt_cursor_restore(pkt, &backup);
return ret;
}
void net_socket_update_tc_rx_time(struct net_pkt *pkt, uint32_t end_tick)
{
net_pkt_set_rx_stats_tick(pkt, end_tick);
net_stats_update_tc_rx_time(net_pkt_iface(pkt),
net_pkt_priority(pkt),
net_pkt_create_time(pkt),
end_tick);
if (IS_ENABLED(CONFIG_NET_PKT_RXTIME_STATS_DETAIL)) {
uint32_t val, prev = net_pkt_create_time(pkt);
int i;
for (i = 0; i < net_pkt_stats_tick_count(pkt); i++) {
if (!net_pkt_stats_tick(pkt)[i]) {
break;
}
val = net_pkt_stats_tick(pkt)[i] - prev;
prev = net_pkt_stats_tick(pkt)[i];
net_pkt_stats_tick(pkt)[i] = val;
}
net_stats_update_tc_rx_time_detail(
net_pkt_iface(pkt),
net_pkt_priority(pkt),
net_pkt_stats_tick(pkt));
}
}
int zsock_wait_data(struct net_context *ctx, k_timeout_t *timeout)
{
if (ctx->cond.lock == NULL) {
/* For some reason the lock pointer is not set properly
* when called by fdtable.c:z_finalize_fd()
* It is not practical to try to figure out the fdtable
* lock at this point so skip it.
*/
NET_WARN("No lock pointer set for context %p", ctx);
return -EINVAL;
}
if (k_fifo_is_empty(&ctx->recv_q)) {
/* Wait for the data to arrive but without holding a lock */
return k_condvar_wait(&ctx->cond.recv, ctx->cond.lock,
*timeout);
}
return 0;
}
static inline ssize_t zsock_recv_dgram(struct net_context *ctx,
void *buf,
size_t max_len,
int flags,
struct sockaddr *src_addr,
socklen_t *addrlen)
{
k_timeout_t timeout = K_FOREVER;
size_t recv_len = 0;
size_t read_len;
struct net_pkt_cursor backup;
struct net_pkt *pkt;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else {
int ret;
net_context_get_option(ctx, NET_OPT_RCVTIMEO, &timeout, NULL);
ret = zsock_wait_data(ctx, &timeout);
if (ret < 0) {
errno = -ret;
return -1;
}
}
if (flags & ZSOCK_MSG_PEEK) {
int res;
res = fifo_wait_non_empty(&ctx->recv_q, timeout);
/* EAGAIN when timeout expired, EINTR when cancelled */
if (res && res != -EAGAIN && res != -EINTR) {
errno = -res;
return -1;
}
pkt = k_fifo_peek_head(&ctx->recv_q);
} else {
pkt = k_fifo_get(&ctx->recv_q, timeout);
}
if (!pkt) {
errno = EAGAIN;
return -1;
}
net_pkt_cursor_backup(pkt, &backup);
if (src_addr && addrlen) {
if (IS_ENABLED(CONFIG_NET_OFFLOAD) &&
net_if_is_ip_offloaded(net_context_get_iface(ctx))) {
/*
* Packets from offloaded IP stack do not have IP
* headers, so src address cannot be figured out at this
* point. The best we can do is returning remote address
* if that was set using connect() call.
*/
if (ctx->flags & NET_CONTEXT_REMOTE_ADDR_SET) {
memcpy(src_addr, &ctx->remote,
MIN(*addrlen, sizeof(ctx->remote)));
} else {
errno = ENOTSUP;
goto fail;
}
} else {
int rv;
rv = sock_get_pkt_src_addr(pkt, net_context_get_proto(ctx),
src_addr, *addrlen);
if (rv < 0) {
errno = -rv;
LOG_ERR("sock_get_pkt_src_addr %d", rv);
goto fail;
}
}
/* addrlen is a value-result argument, set to actual
* size of source address
*/
if (src_addr->sa_family == AF_INET) {
*addrlen = sizeof(struct sockaddr_in);
} else if (src_addr->sa_family == AF_INET6) {
*addrlen = sizeof(struct sockaddr_in6);
} else {
errno = ENOTSUP;
goto fail;
}
}
recv_len = net_pkt_remaining_data(pkt);
read_len = MIN(recv_len, max_len);
if (net_pkt_read(pkt, buf, read_len)) {
errno = ENOBUFS;
goto fail;
}
if (IS_ENABLED(CONFIG_NET_PKT_RXTIME_STATS) &&
!(flags & ZSOCK_MSG_PEEK)) {
net_socket_update_tc_rx_time(pkt, k_cycle_get_32());
}
if (!(flags & ZSOCK_MSG_PEEK)) {
net_pkt_unref(pkt);
} else {
net_pkt_cursor_restore(pkt, &backup);
}
return (flags & ZSOCK_MSG_TRUNC) ? recv_len : read_len;
fail:
if (!(flags & ZSOCK_MSG_PEEK)) {
net_pkt_unref(pkt);
}
return -1;
}
static inline ssize_t zsock_recv_stream(struct net_context *ctx,
void *buf,
size_t max_len,
int flags)
{
k_timeout_t timeout = K_FOREVER;
size_t recv_len = 0;
struct net_pkt_cursor backup;
int res;
uint64_t end;
const bool waitall = flags & ZSOCK_MSG_WAITALL;
if (!net_context_is_used(ctx)) {
errno = EBADF;
return -1;
}
if (net_context_get_state(ctx) != NET_CONTEXT_CONNECTED) {
errno = ENOTCONN;
return -1;
}
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else if (!sock_is_eof(ctx) && !sock_is_error(ctx)) {
net_context_get_option(ctx, NET_OPT_RCVTIMEO, &timeout, NULL);
}
end = sys_clock_timeout_end_calc(timeout);
do {
struct net_pkt *pkt;
size_t data_len, read_len;
bool release_pkt = true;
if (sock_is_error(ctx)) {
errno = POINTER_TO_INT(ctx->user_data);
return -1;
}
if (sock_is_eof(ctx)) {
return 0;
}
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
res = zsock_wait_data(ctx, &timeout);
if (res < 0) {
errno = -res;
return -1;
}
}
pkt = k_fifo_peek_head(&ctx->recv_q);
if (!pkt) {
/* Either timeout expired, or wait was cancelled
* due to connection closure by peer.
*/
NET_DBG("NULL return from fifo");
if (waitall && (recv_len > 0)) {
return recv_len;
} else if (sock_is_error(ctx)) {
errno = POINTER_TO_INT(ctx->user_data);
return -1;
} else if (sock_is_eof(ctx)) {
return 0;
} else {
errno = EAGAIN;
return -1;
}
}
net_pkt_cursor_backup(pkt, &backup);
data_len = net_pkt_remaining_data(pkt);
read_len = data_len;
if (recv_len + read_len > max_len) {
read_len = max_len - recv_len;
release_pkt = false;
}
/* Actually copy data to application buffer */
if (net_pkt_read(pkt, (uint8_t *)buf + recv_len, read_len)) {
errno = ENOBUFS;
return -1;
}
recv_len += read_len;
if (!(flags & ZSOCK_MSG_PEEK)) {
if (release_pkt) {
/* Finished processing head pkt in
* the fifo. Drop it from there.
*/
k_fifo_get(&ctx->recv_q, K_NO_WAIT);
if (net_pkt_eof(pkt)) {
sock_set_eof(ctx);
}
if (IS_ENABLED(CONFIG_NET_PKT_RXTIME_STATS)) {
net_socket_update_tc_rx_time(
pkt, k_cycle_get_32());
}
net_pkt_unref(pkt);
}
} else {
net_pkt_cursor_restore(pkt, &backup);
}
/* Update the timeout value in case loop is repeated. */
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT) &&
!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
int64_t remaining = end - sys_clock_tick_get();
if (remaining <= 0) {
timeout = K_NO_WAIT;
} else {
timeout = Z_TIMEOUT_TICKS(remaining);
}
}
} while ((recv_len == 0) || (waitall && (recv_len < max_len)));
if (!(flags & ZSOCK_MSG_PEEK)) {
net_context_update_recv_wnd(ctx, recv_len);
}
return recv_len;
}
ssize_t zsock_recvfrom_ctx(struct net_context *ctx, void *buf, size_t max_len,
int flags,
struct sockaddr *src_addr, socklen_t *addrlen)
{
enum net_sock_type sock_type = net_context_get_type(ctx);
if (max_len == 0) {
return 0;
}
if (sock_type == SOCK_DGRAM) {
return zsock_recv_dgram(ctx, buf, max_len, flags, src_addr, addrlen);
} else if (sock_type == SOCK_STREAM) {
return zsock_recv_stream(ctx, buf, max_len, flags);
} else {
__ASSERT(0, "Unknown socket type");
}
return 0;
}
ssize_t z_impl_zsock_recvfrom(int sock, void *buf, size_t max_len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen)
{
VTABLE_CALL(recvfrom, sock, buf, max_len, flags, src_addr, addrlen);
}
#ifdef CONFIG_USERSPACE
ssize_t z_vrfy_zsock_recvfrom(int sock, void *buf, size_t max_len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen)
{
socklen_t addrlen_copy;
ssize_t ret;
if (Z_SYSCALL_MEMORY_WRITE(buf, max_len)) {
errno = EFAULT;
return -1;
}
if (addrlen) {
Z_OOPS(z_user_from_copy(&addrlen_copy, addrlen,
sizeof(socklen_t)));
}
Z_OOPS(src_addr && Z_SYSCALL_MEMORY_WRITE(src_addr, addrlen_copy));
ret = z_impl_zsock_recvfrom(sock, (void *)buf, max_len, flags,
(struct sockaddr *)src_addr,
addrlen ? &addrlen_copy : NULL);
if (addrlen) {
Z_OOPS(z_user_to_copy(addrlen, &addrlen_copy,
sizeof(socklen_t)));
}
return ret;
}
#include <syscalls/zsock_recvfrom_mrsh.c>
#endif /* CONFIG_USERSPACE */
/* As this is limited function, we don't follow POSIX signature, with
* "..." instead of last arg.
*/
int z_impl_zsock_fcntl(int sock, int cmd, int flags)
{
const struct socket_op_vtable *vtable;
struct k_mutex *lock;
void *obj;
int ret;
obj = get_sock_vtable(sock, &vtable, &lock);
if (obj == NULL) {
errno = EBADF;
return -1;
}
(void)k_mutex_lock(lock, K_FOREVER);
ret = z_fdtable_call_ioctl((const struct fd_op_vtable *)vtable,
obj, cmd, flags);
k_mutex_unlock(lock);
return ret;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_fcntl(int sock, int cmd, int flags)
{
return z_impl_zsock_fcntl(sock, cmd, flags);
}
#include <syscalls/zsock_fcntl_mrsh.c>
#endif
static int zsock_poll_prepare_ctx(struct net_context *ctx,
struct zsock_pollfd *pfd,
struct k_poll_event **pev,
struct k_poll_event *pev_end)
{
if (pfd->events & ZSOCK_POLLIN) {
if (*pev == pev_end) {
return -ENOMEM;
}
(*pev)->obj = &ctx->recv_q;
(*pev)->type = K_POLL_TYPE_FIFO_DATA_AVAILABLE;
(*pev)->mode = K_POLL_MODE_NOTIFY_ONLY;
(*pev)->state = K_POLL_STATE_NOT_READY;
(*pev)++;
}
if (pfd->events & ZSOCK_POLLOUT) {
if (IS_ENABLED(CONFIG_NET_NATIVE_TCP) &&
net_context_get_type(ctx) == SOCK_STREAM) {
if (*pev == pev_end) {
return -ENOMEM;
}
(*pev)->obj = net_tcp_tx_sem_get(ctx);
(*pev)->type = K_POLL_TYPE_SEM_AVAILABLE;
(*pev)->mode = K_POLL_MODE_NOTIFY_ONLY;
(*pev)->state = K_POLL_STATE_NOT_READY;
(*pev)++;
} else {
return -EALREADY;
}
}
/* If socket is already in EOF or error, it can be reported
* immediately, so we tell poll() to short-circuit wait.
*/
if (sock_is_eof(ctx) || sock_is_error(ctx)) {
return -EALREADY;
}
return 0;
}
static int zsock_poll_update_ctx(struct net_context *ctx,
struct zsock_pollfd *pfd,
struct k_poll_event **pev)
{
ARG_UNUSED(ctx);
if (pfd->events & ZSOCK_POLLIN) {
if ((*pev)->state != K_POLL_STATE_NOT_READY || sock_is_eof(ctx)) {
pfd->revents |= ZSOCK_POLLIN;
}
(*pev)++;
}
if (pfd->events & ZSOCK_POLLOUT) {
if (IS_ENABLED(CONFIG_NET_NATIVE_TCP) &&
net_context_get_type(ctx) == SOCK_STREAM) {
if ((*pev)->state != K_POLL_STATE_NOT_READY &&
!sock_is_eof(ctx)) {
pfd->revents |= ZSOCK_POLLOUT;
}
(*pev)++;
} else {
pfd->revents |= ZSOCK_POLLOUT;
}
}
if (sock_is_error(ctx)) {
pfd->revents |= ZSOCK_POLLERR;
}
if (sock_is_eof(ctx)) {
pfd->revents |= ZSOCK_POLLHUP;
}
return 0;
}
static inline int time_left(uint32_t start, uint32_t timeout)
{
uint32_t elapsed = k_uptime_get_32() - start;
return timeout - elapsed;
}
int zsock_poll_internal(struct zsock_pollfd *fds, int nfds, k_timeout_t timeout)
{
bool retry;
int ret = 0;
int i;
struct zsock_pollfd *pfd;
struct k_poll_event poll_events[CONFIG_NET_SOCKETS_POLL_MAX];
struct k_poll_event *pev;
struct k_poll_event *pev_end = poll_events + ARRAY_SIZE(poll_events);
const struct fd_op_vtable *vtable;
struct k_mutex *lock;
uint64_t end;
bool offload = false;
const struct fd_op_vtable *offl_vtable = NULL;
void *offl_ctx = NULL;
end = sys_clock_timeout_end_calc(timeout);
pev = poll_events;
for (pfd = fds, i = nfds; i--; pfd++) {
void *ctx;
int result;
/* Per POSIX, negative fd's are just ignored */
if (pfd->fd < 0) {
continue;
}
ctx = get_sock_vtable(pfd->fd,
(const struct socket_op_vtable **)&vtable,
&lock);
if (ctx == NULL) {
/* Will set POLLNVAL in return loop */
continue;
}
(void)k_mutex_lock(lock, K_FOREVER);
result = z_fdtable_call_ioctl(vtable, ctx,
ZFD_IOCTL_POLL_PREPARE,
pfd, &pev, pev_end);
if (result == -EALREADY) {
/* If POLL_PREPARE returned with EALREADY, it means
* it already detected that some socket is ready. In
* this case, we still perform a k_poll to pick up
* as many events as possible, but without any wait.
*/
timeout = K_NO_WAIT;
result = 0;
} else if (result == -EXDEV) {
/* If POLL_PREPARE returned EXDEV, it means
* it detected an offloaded socket.
* If offloaded socket is used with native TLS, the TLS
* wrapper for the offloaded poll will be used.
* In case the fds array contains a mixup of offloaded
* and non-offloaded sockets, the offloaded poll handler
* shall return an error.
*/
offload = true;
if (offl_vtable == NULL || net_socket_is_tls(ctx)) {
offl_vtable = vtable;
offl_ctx = ctx;
}
result = 0;
}
k_mutex_unlock(lock);
if (result < 0) {
errno = -result;
return -1;
}
}
if (offload) {
int poll_timeout;
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
poll_timeout = SYS_FOREVER_MS;
} else {
poll_timeout = k_ticks_to_ms_floor32(timeout.ticks);
}
return z_fdtable_call_ioctl(offl_vtable, offl_ctx,
ZFD_IOCTL_POLL_OFFLOAD,
fds, nfds, poll_timeout);
}
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT) &&
!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
int64_t remaining = end - sys_clock_tick_get();
if (remaining <= 0) {
timeout = K_NO_WAIT;
} else {
timeout = Z_TIMEOUT_TICKS(remaining);
}
}
do {
ret = k_poll(poll_events, pev - poll_events, timeout);
/* EAGAIN when timeout expired, EINTR when cancelled (i.e. EOF) */
if (ret != 0 && ret != -EAGAIN && ret != -EINTR) {
errno = -ret;
return -1;
}
retry = false;
ret = 0;
pev = poll_events;
for (pfd = fds, i = nfds; i--; pfd++) {
void *ctx;
int result;
pfd->revents = 0;
if (pfd->fd < 0) {
continue;
}
ctx = get_sock_vtable(
pfd->fd,
(const struct socket_op_vtable **)&vtable,
&lock);
if (ctx == NULL) {
pfd->revents = ZSOCK_POLLNVAL;
ret++;
continue;
}
(void)k_mutex_lock(lock, K_FOREVER);
result = z_fdtable_call_ioctl(vtable, ctx,
ZFD_IOCTL_POLL_UPDATE,
pfd, &pev);
k_mutex_unlock(lock);
if (result == -EAGAIN) {
retry = true;
continue;
} else if (result != 0) {
errno = -result;
return -1;
}
if (pfd->revents != 0) {
ret++;
}
}
if (retry) {
if (ret > 0) {
break;
}
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
break;
}
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
int64_t remaining = end - sys_clock_tick_get();
if (remaining <= 0) {
break;
} else {
timeout = Z_TIMEOUT_TICKS(remaining);
}
}
}
} while (retry);
return ret;
}
int z_impl_zsock_poll(struct zsock_pollfd *fds, int nfds, int poll_timeout)
{
k_timeout_t timeout;
if (poll_timeout < 0) {
timeout = K_FOREVER;
} else {
timeout = K_MSEC(poll_timeout);
}
return zsock_poll_internal(fds, nfds, timeout);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_poll(struct zsock_pollfd *fds,
int nfds, int timeout)
{
struct zsock_pollfd *fds_copy;
size_t fds_size;
int ret;
/* Copy fds array from user mode */
if (size_mul_overflow(nfds, sizeof(struct zsock_pollfd), &fds_size)) {
errno = EFAULT;
return -1;
}
fds_copy = z_user_alloc_from_copy((void *)fds, fds_size);
if (!fds_copy) {
errno = ENOMEM;
return -1;
}
ret = z_impl_zsock_poll(fds_copy, nfds, timeout);
if (ret >= 0) {
z_user_to_copy((void *)fds, fds_copy, fds_size);
}
k_free(fds_copy);
return ret;
}
#include <syscalls/zsock_poll_mrsh.c>
#endif
int z_impl_zsock_inet_pton(sa_family_t family, const char *src, void *dst)
{
if (net_addr_pton(family, src, dst) == 0) {
return 1;
} else {
return 0;
}
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_inet_pton(sa_family_t family,
const char *src, void *dst)
{
int dst_size;
char src_copy[NET_IPV6_ADDR_LEN];
char dst_copy[sizeof(struct in6_addr)];
int ret;
switch (family) {
case AF_INET:
dst_size = sizeof(struct in_addr);
break;
case AF_INET6:
dst_size = sizeof(struct in6_addr);
break;
default:
errno = EAFNOSUPPORT;
return -1;
}
Z_OOPS(z_user_string_copy(src_copy, (char *)src, sizeof(src_copy)));
ret = z_impl_zsock_inet_pton(family, src_copy, dst_copy);
Z_OOPS(z_user_to_copy(dst, dst_copy, dst_size));
return ret;
}
#include <syscalls/zsock_inet_pton_mrsh.c>
#endif
int zsock_getsockopt_ctx(struct net_context *ctx, int level, int optname,
void *optval, socklen_t *optlen)
{
int ret;
switch (level) {
case SOL_SOCKET:
switch (optname) {
case SO_TYPE: {
int type = (int)net_context_get_type(ctx);
if (*optlen != sizeof(type)) {
errno = EINVAL;
return -1;
}
*(int *)optval = type;
return 0;
}
case SO_TXTIME:
if (IS_ENABLED(CONFIG_NET_CONTEXT_TXTIME)) {
ret = net_context_get_option(ctx,
NET_OPT_TXTIME,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_PROTOCOL: {
int proto = (int)net_context_get_proto(ctx);
if (*optlen != sizeof(proto)) {
errno = EINVAL;
return -1;
}
*(int *)optval = proto;
return 0;
}
break;
case SO_RCVBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_RCVBUF)) {
ret = net_context_get_option(ctx,
NET_OPT_RCVBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SNDBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_SNDBUF)) {
ret = net_context_get_option(ctx,
NET_OPT_SNDBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
case IPPROTO_TCP:
switch (optname) {
case TCP_NODELAY:
ret = net_tcp_get_option(ctx, TCP_OPT_NODELAY, optval, optlen);
return ret;
}
}
errno = ENOPROTOOPT;
return -1;
}
int z_impl_zsock_getsockopt(int sock, int level, int optname,
void *optval, socklen_t *optlen)
{
VTABLE_CALL(getsockopt, sock, level, optname, optval, optlen);
}
#ifdef CONFIG_USERSPACE
int z_vrfy_zsock_getsockopt(int sock, int level, int optname,
void *optval, socklen_t *optlen)
{
socklen_t kernel_optlen = *(socklen_t *)optlen;
void *kernel_optval;
int ret;
if (Z_SYSCALL_MEMORY_WRITE(optval, kernel_optlen)) {
errno = -EPERM;
return -1;
}
kernel_optval = z_user_alloc_from_copy((const void *)optval,
kernel_optlen);
Z_OOPS(!kernel_optval);
ret = z_impl_zsock_getsockopt(sock, level, optname,
kernel_optval, &kernel_optlen);
Z_OOPS(z_user_to_copy((void *)optval, kernel_optval, kernel_optlen));
Z_OOPS(z_user_to_copy((void *)optlen, &kernel_optlen,
sizeof(socklen_t)));
k_free(kernel_optval);
return ret;
}
#include <syscalls/zsock_getsockopt_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_setsockopt_ctx(struct net_context *ctx, int level, int optname,
const void *optval, socklen_t optlen)
{
int ret;
switch (level) {
case SOL_SOCKET:
switch (optname) {
case SO_RCVBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_RCVBUF)) {
ret = net_context_set_option(ctx,
NET_OPT_RCVBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SNDBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_SNDBUF)) {
ret = net_context_set_option(ctx,
NET_OPT_SNDBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_REUSEADDR:
/* Ignore for now. Provided to let port
* existing apps.
*/
return 0;
case SO_PRIORITY:
if (IS_ENABLED(CONFIG_NET_CONTEXT_PRIORITY)) {
ret = net_context_set_option(ctx,
NET_OPT_PRIORITY,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_RCVTIMEO:
if (IS_ENABLED(CONFIG_NET_CONTEXT_RCVTIMEO)) {
const struct zsock_timeval *tv = optval;
k_timeout_t timeout;
if (optlen != sizeof(struct zsock_timeval)) {
errno = EINVAL;
return -1;
}
if (tv->tv_sec == 0 && tv->tv_usec == 0) {
timeout = K_FOREVER;
} else {
timeout = K_USEC(tv->tv_sec * 1000000ULL
+ tv->tv_usec);
}
ret = net_context_set_option(ctx,
NET_OPT_RCVTIMEO,
&timeout,
sizeof(timeout));
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SNDTIMEO:
if (IS_ENABLED(CONFIG_NET_CONTEXT_SNDTIMEO)) {
const struct zsock_timeval *tv = optval;
k_timeout_t timeout;
if (optlen != sizeof(struct zsock_timeval)) {
errno = EINVAL;
return -1;
}
if (tv->tv_sec == 0 && tv->tv_usec == 0) {
timeout = K_FOREVER;
} else {
timeout = K_USEC(tv->tv_sec * 1000000ULL
+ tv->tv_usec);
}
ret = net_context_set_option(ctx,
NET_OPT_SNDTIMEO,
&timeout,
sizeof(timeout));
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_TXTIME:
if (IS_ENABLED(CONFIG_NET_CONTEXT_TXTIME)) {
ret = net_context_set_option(ctx,
NET_OPT_TXTIME,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SOCKS5:
if (IS_ENABLED(CONFIG_SOCKS)) {
ret = net_context_set_option(ctx,
NET_OPT_SOCKS5,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
net_context_set_proxy_enabled(ctx, true);
return 0;
}
break;
case SO_BINDTODEVICE: {
struct net_if *iface;
const struct device *dev;
const struct ifreq *ifreq = optval;
if (net_context_get_family(ctx) != AF_INET &&
net_context_get_family(ctx) != AF_INET6) {
errno = EAFNOSUPPORT;
return -1;
}
/* optlen equal to 0 or empty interface name should
* remove the binding.
*/
if ((optlen == 0) || (ifreq != NULL &&
strlen(ifreq->ifr_name) == 0)) {
ctx->flags &= ~NET_CONTEXT_BOUND_TO_IFACE;
return 0;
}
if ((ifreq == NULL) || (optlen != sizeof(*ifreq))) {
errno = EINVAL;
return -1;
}
dev = device_get_binding(ifreq->ifr_name);
if (dev == NULL) {
errno = ENODEV;
return -1;
}
iface = net_if_lookup_by_dev(dev);
if (iface == NULL) {
errno = ENODEV;
return -1;
}
net_context_set_iface(ctx, iface);
ctx->flags |= NET_CONTEXT_BOUND_TO_IFACE;
return 0;
}
}
break;
case IPPROTO_TCP:
switch (optname) {
case TCP_NODELAY:
ret = net_tcp_set_option(ctx,
TCP_OPT_NODELAY, optval, optlen);
return ret;
}
break;
case IPPROTO_IPV6:
switch (optname) {
case IPV6_V6ONLY:
/* Ignore for now. Provided to let port
* existing apps.
*/
return 0;
}
break;
}
errno = ENOPROTOOPT;
return -1;
}
int z_impl_zsock_setsockopt(int sock, int level, int optname,
const void *optval, socklen_t optlen)
{
VTABLE_CALL(setsockopt, sock, level, optname, optval, optlen);
}
#ifdef CONFIG_USERSPACE
int z_vrfy_zsock_setsockopt(int sock, int level, int optname,
const void *optval, socklen_t optlen)
{
void *kernel_optval;
int ret;
kernel_optval = z_user_alloc_from_copy((const void *)optval, optlen);
Z_OOPS(!kernel_optval);
ret = z_impl_zsock_setsockopt(sock, level, optname,
kernel_optval, optlen);
k_free(kernel_optval);
return ret;
}
#include <syscalls/zsock_setsockopt_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_getpeername_ctx(struct net_context *ctx, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t newlen = 0;
if (addr == NULL || addrlen == NULL) {
SET_ERRNO(-EINVAL);
}
if (!(ctx->flags & NET_CONTEXT_REMOTE_ADDR_SET)) {
SET_ERRNO(-ENOTCONN);
}
if (net_context_get_type(ctx) == SOCK_STREAM &&
net_context_get_state(ctx) != NET_CONTEXT_CONNECTED) {
SET_ERRNO(-ENOTCONN);
}
if (IS_ENABLED(CONFIG_NET_IPV4) && ctx->remote.sa_family == AF_INET) {
struct sockaddr_in addr4 = { 0 };
addr4.sin_family = AF_INET;
addr4.sin_port = net_sin(&ctx->remote)->sin_port;
memcpy(&addr4.sin_addr, &net_sin(&ctx->remote)->sin_addr,
sizeof(struct in_addr));
newlen = sizeof(struct sockaddr_in);
memcpy(addr, &addr4, MIN(*addrlen, newlen));
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
ctx->remote.sa_family == AF_INET6) {
struct sockaddr_in6 addr6 = { 0 };
addr6.sin6_family = AF_INET6;
addr6.sin6_port = net_sin6(&ctx->remote)->sin6_port;
memcpy(&addr6.sin6_addr, &net_sin6(&ctx->remote)->sin6_addr,
sizeof(struct in6_addr));
newlen = sizeof(struct sockaddr_in6);
memcpy(addr, &addr6, MIN(*addrlen, newlen));
} else {
SET_ERRNO(-EINVAL);
}
*addrlen = newlen;
return 0;
}
int z_impl_zsock_getpeername(int sock, struct sockaddr *addr,
socklen_t *addrlen)
{
VTABLE_CALL(getpeername, sock, addr, addrlen);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_getpeername(int sock, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t addrlen_copy;
int ret;
Z_OOPS(z_user_from_copy(&addrlen_copy, (void *)addrlen,
sizeof(socklen_t)));
if (Z_SYSCALL_MEMORY_WRITE(addr, addrlen_copy)) {
errno = EFAULT;
return -1;
}
ret = z_impl_zsock_getpeername(sock, (struct sockaddr *)addr,
&addrlen_copy);
if (ret == 0 &&
z_user_to_copy((void *)addrlen, &addrlen_copy,
sizeof(socklen_t))) {
errno = EINVAL;
return -1;
}
return ret;
}
#include <syscalls/zsock_getpeername_mrsh.c>
#endif /* CONFIG_USERSPACE */
int zsock_getsockname_ctx(struct net_context *ctx, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t newlen = 0;
/* If we don't have a connection handler, the socket is not bound */
if (!ctx->conn_handler) {
SET_ERRNO(-EINVAL);
}
if (IS_ENABLED(CONFIG_NET_IPV4) && ctx->local.family == AF_INET) {
struct sockaddr_in addr4 = { 0 };
addr4.sin_family = AF_INET;
addr4.sin_port = net_sin_ptr(&ctx->local)->sin_port;
memcpy(&addr4.sin_addr, net_sin_ptr(&ctx->local)->sin_addr,
sizeof(struct in_addr));
newlen = sizeof(struct sockaddr_in);
memcpy(addr, &addr4, MIN(*addrlen, newlen));
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
ctx->local.family == AF_INET6) {
struct sockaddr_in6 addr6 = { 0 };
addr6.sin6_family = AF_INET6;
addr6.sin6_port = net_sin6_ptr(&ctx->local)->sin6_port;
memcpy(&addr6.sin6_addr, net_sin6_ptr(&ctx->local)->sin6_addr,
sizeof(struct in6_addr));
newlen = sizeof(struct sockaddr_in6);
memcpy(addr, &addr6, MIN(*addrlen, newlen));
} else {
SET_ERRNO(-EINVAL);
}
*addrlen = newlen;
return 0;
}
int z_impl_zsock_getsockname(int sock, struct sockaddr *addr,
socklen_t *addrlen)
{
VTABLE_CALL(getsockname, sock, addr, addrlen);
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zsock_getsockname(int sock, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t addrlen_copy;
int ret;
Z_OOPS(z_user_from_copy(&addrlen_copy, (void *)addrlen,
sizeof(socklen_t)));
if (Z_SYSCALL_MEMORY_WRITE(addr, addrlen_copy)) {
errno = EFAULT;
return -1;
}
ret = z_impl_zsock_getsockname(sock, (struct sockaddr *)addr,
&addrlen_copy);
if (ret == 0 &&
z_user_to_copy((void *)addrlen, &addrlen_copy,
sizeof(socklen_t))) {
errno = EINVAL;
return -1;
}
return ret;
}
#include <syscalls/zsock_getsockname_mrsh.c>
#endif /* CONFIG_USERSPACE */
static ssize_t sock_read_vmeth(void *obj, void *buffer, size_t count)
{
return zsock_recvfrom_ctx(obj, buffer, count, 0, NULL, 0);
}
static ssize_t sock_write_vmeth(void *obj, const void *buffer, size_t count)
{
return zsock_sendto_ctx(obj, buffer, count, 0, NULL, 0);
}
static void zsock_ctx_set_lock(struct net_context *ctx, struct k_mutex *lock)
{
ctx->cond.lock = lock;
}
static int sock_ioctl_vmeth(void *obj, unsigned int request, va_list args)
{
switch (request) {
/* In Zephyr, fcntl() is just an alias of ioctl(). */
case F_GETFL:
if (sock_is_nonblock(obj)) {
return O_NONBLOCK;
}
return 0;
case F_SETFL: {
int flags;
flags = va_arg(args, int);
if (flags & O_NONBLOCK) {
sock_set_flag(obj, SOCK_NONBLOCK, SOCK_NONBLOCK);
} else {
sock_set_flag(obj, SOCK_NONBLOCK, 0);
}
return 0;
}
case ZFD_IOCTL_POLL_PREPARE: {
struct zsock_pollfd *pfd;
struct k_poll_event **pev;
struct k_poll_event *pev_end;
pfd = va_arg(args, struct zsock_pollfd *);
pev = va_arg(args, struct k_poll_event **);
pev_end = va_arg(args, struct k_poll_event *);
return zsock_poll_prepare_ctx(obj, pfd, pev, pev_end);
}
case ZFD_IOCTL_POLL_UPDATE: {
struct zsock_pollfd *pfd;
struct k_poll_event **pev;
pfd = va_arg(args, struct zsock_pollfd *);
pev = va_arg(args, struct k_poll_event **);
return zsock_poll_update_ctx(obj, pfd, pev);
}
case ZFD_IOCTL_SET_LOCK: {
struct k_mutex *lock;
lock = va_arg(args, struct k_mutex *);
zsock_ctx_set_lock(obj, lock);
return 0;
}
default:
errno = EOPNOTSUPP;
return -1;
}
}
static int sock_shutdown_vmeth(void *obj, int how)
{
return zsock_shutdown_ctx(obj, how);
}
static int sock_bind_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return zsock_bind_ctx(obj, addr, addrlen);
}
static int sock_connect_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return zsock_connect_ctx(obj, addr, addrlen);
}
static int sock_listen_vmeth(void *obj, int backlog)
{
return zsock_listen_ctx(obj, backlog);
}
static int sock_accept_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return zsock_accept_ctx(obj, addr, addrlen);
}
static ssize_t sock_sendto_vmeth(void *obj, const void *buf, size_t len,
int flags, const struct sockaddr *dest_addr,
socklen_t addrlen)
{
return zsock_sendto_ctx(obj, buf, len, flags, dest_addr, addrlen);
}
static ssize_t sock_sendmsg_vmeth(void *obj, const struct msghdr *msg,
int flags)
{
return zsock_sendmsg_ctx(obj, msg, flags);
}
static ssize_t sock_recvfrom_vmeth(void *obj, void *buf, size_t max_len,
int flags, struct sockaddr *src_addr,
socklen_t *addrlen)
{
return zsock_recvfrom_ctx(obj, buf, max_len, flags,
src_addr, addrlen);
}
static int sock_getsockopt_vmeth(void *obj, int level, int optname,
void *optval, socklen_t *optlen)
{
return zsock_getsockopt_ctx(obj, level, optname, optval, optlen);
}
static int sock_setsockopt_vmeth(void *obj, int level, int optname,
const void *optval, socklen_t optlen)
{
return zsock_setsockopt_ctx(obj, level, optname, optval, optlen);
}
static int sock_close_vmeth(void *obj)
{
return zsock_close_ctx(obj);
}
static int sock_getpeername_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return zsock_getpeername_ctx(obj, addr, addrlen);
}
static int sock_getsockname_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return zsock_getsockname_ctx(obj, addr, addrlen);
}
const struct socket_op_vtable sock_fd_op_vtable = {
.fd_vtable = {
.read = sock_read_vmeth,
.write = sock_write_vmeth,
.close = sock_close_vmeth,
.ioctl = sock_ioctl_vmeth,
},
.shutdown = sock_shutdown_vmeth,
.bind = sock_bind_vmeth,
.connect = sock_connect_vmeth,
.listen = sock_listen_vmeth,
.accept = sock_accept_vmeth,
.sendto = sock_sendto_vmeth,
.sendmsg = sock_sendmsg_vmeth,
.recvfrom = sock_recvfrom_vmeth,
.getsockopt = sock_getsockopt_vmeth,
.setsockopt = sock_setsockopt_vmeth,
.getpeername = sock_getpeername_vmeth,
.getsockname = sock_getsockname_vmeth,
};
#if defined(CONFIG_NET_NATIVE)
static bool inet_is_supported(int family, int type, int proto)
{
if (family != AF_INET && family != AF_INET6) {
return false;
}
return true;
}
NET_SOCKET_REGISTER(af_inet46, NET_SOCKET_DEFAULT_PRIO, AF_UNSPEC,
inet_is_supported, zsock_socket_internal);
#endif /* CONFIG_NET_NATIVE */