blob: c2261af5de4e7799ed647a412684236803f18883 [file] [log] [blame]
/*
* Copyright (c) 2019 Intel Corporation
* Copyright (c) 2020 acontis technologies GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT pcie_controller
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pcie, LOG_LEVEL_ERR);
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/sys/check.h>
#include <stdbool.h>
#include <zephyr/drivers/pcie/pcie.h>
#include <zephyr/sys/iterable_sections.h>
#ifdef CONFIG_ACPI
#include <zephyr/acpi/acpi.h>
#endif
#if CONFIG_PCIE_MSI
#include <zephyr/drivers/pcie/msi.h>
#endif
#ifdef CONFIG_PCIE_CONTROLLER
#include <zephyr/drivers/pcie/controller.h>
#endif
#ifdef CONFIG_PCIE_PRT
/* platform interrupt are hardwired or can be dynamically allocated. */
static bool prt_en;
#endif
/* functions documented in drivers/pcie/pcie.h */
void pcie_set_cmd(pcie_bdf_t bdf, uint32_t bits, bool on)
{
uint32_t cmdstat;
cmdstat = pcie_conf_read(bdf, PCIE_CONF_CMDSTAT);
if (on) {
cmdstat |= bits;
} else {
cmdstat &= ~bits;
}
pcie_conf_write(bdf, PCIE_CONF_CMDSTAT, cmdstat);
}
uint32_t pcie_get_cap(pcie_bdf_t bdf, uint32_t cap_id)
{
uint32_t reg = 0U;
uint32_t data;
data = pcie_conf_read(bdf, PCIE_CONF_CMDSTAT);
if ((data & PCIE_CONF_CMDSTAT_CAPS) != 0U) {
data = pcie_conf_read(bdf, PCIE_CONF_CAPPTR);
reg = PCIE_CONF_CAPPTR_FIRST(data);
}
while (reg != 0U) {
data = pcie_conf_read(bdf, reg);
if (PCIE_CONF_CAP_ID(data) == cap_id) {
break;
}
reg = PCIE_CONF_CAP_NEXT(data);
}
return reg;
}
uint32_t pcie_get_ext_cap(pcie_bdf_t bdf, uint32_t cap_id)
{
unsigned int reg = PCIE_CONF_EXT_CAPPTR; /* Start at end of the PCI configuration space */
uint32_t data;
while (reg != 0U) {
data = pcie_conf_read(bdf, reg);
if (!data || data == 0xffffffffU) {
return 0;
}
if (PCIE_CONF_EXT_CAP_ID(data) == cap_id) {
break;
}
reg = PCIE_CONF_EXT_CAP_NEXT(data) >> 2;
if (reg < PCIE_CONF_EXT_CAPPTR) {
return 0;
}
}
return reg;
}
/**
* @brief Get the BAR at a specific BAR index
*
* @param bdf the PCI(e) endpoint
* @param bar_index 0-based BAR index
* @param bar Pointer to struct pcie_bar
* @param io true for I/O BARs, false otherwise
* @return true if the BAR was found and is valid, false otherwise
*/
static bool pcie_get_bar(pcie_bdf_t bdf,
unsigned int bar_index,
struct pcie_bar *bar,
bool io)
{
uint32_t reg = bar_index + PCIE_CONF_BAR0;
uint32_t cmd_reg;
bool ret = false;
#ifdef CONFIG_PCIE_CONTROLLER
const struct device *dev;
#endif
uintptr_t phys_addr;
size_t size;
#ifdef CONFIG_PCIE_CONTROLLER
dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_pcie_controller));
if (!dev) {
LOG_ERR("Failed to get PCIe root complex");
return false;
}
#endif
if (reg > PCIE_CONF_BAR5) {
return false;
}
phys_addr = pcie_conf_read(bdf, reg);
#ifndef CONFIG_PCIE_CONTROLLER
if ((PCIE_CONF_BAR_MEM(phys_addr) && io) || (PCIE_CONF_BAR_IO(phys_addr) && !io)) {
return false;
}
#endif
if (PCIE_CONF_BAR_INVAL_FLAGS(phys_addr)) {
/* Discard on invalid flags */
return false;
}
cmd_reg = pcie_conf_read(bdf, PCIE_CONF_CMDSTAT);
/* IO/memory decode should be disabled before sizing/update BAR. */
pcie_conf_write(bdf, PCIE_CONF_CMDSTAT,
cmd_reg & (~(PCIE_CONF_CMDSTAT_IO | PCIE_CONF_CMDSTAT_MEM)));
pcie_conf_write(bdf, reg, 0xFFFFFFFFU);
size = pcie_conf_read(bdf, reg);
pcie_conf_write(bdf, reg, (uint32_t)phys_addr);
if (IS_ENABLED(CONFIG_64BIT) && PCIE_CONF_BAR_64(phys_addr)) {
reg++;
phys_addr |= ((uint64_t)pcie_conf_read(bdf, reg)) << 32;
if ((PCIE_CONF_BAR_ADDR(phys_addr) == PCIE_CONF_BAR_INVAL64) ||
(PCIE_CONF_BAR_ADDR(phys_addr) == PCIE_CONF_BAR_NONE)) {
/* Discard on invalid address */
goto err_exit;
}
pcie_conf_write(bdf, reg, 0xFFFFFFFFU);
size |= ((uint64_t)pcie_conf_read(bdf, reg)) << 32;
pcie_conf_write(bdf, reg, (uint32_t)((uint64_t)phys_addr >> 32));
} else if ((PCIE_CONF_BAR_ADDR(phys_addr) == PCIE_CONF_BAR_INVAL) ||
(PCIE_CONF_BAR_ADDR(phys_addr) == PCIE_CONF_BAR_NONE)) {
/* Discard on invalid address */
goto err_exit;
}
if (PCIE_CONF_BAR_IO(phys_addr)) {
size = PCIE_CONF_BAR_IO_ADDR(size);
if (size == 0) {
/* Discard on invalid size */
goto err_exit;
}
} else {
size = PCIE_CONF_BAR_ADDR(size);
if (size == 0) {
/* Discard on invalid size */
goto err_exit;
}
}
#ifdef CONFIG_PCIE_CONTROLLER
/* Translate to physical memory address from bus address */
if (!pcie_ctrl_region_translate(dev, bdf, PCIE_CONF_BAR_MEM(phys_addr),
PCIE_CONF_BAR_64(phys_addr),
PCIE_CONF_BAR_MEM(phys_addr) ?
PCIE_CONF_BAR_ADDR(phys_addr)
: PCIE_CONF_BAR_IO_ADDR(phys_addr),
&bar->phys_addr)) {
goto err_exit;
}
#else
bar->phys_addr = PCIE_CONF_BAR_ADDR(phys_addr);
#endif /* CONFIG_PCIE_CONTROLLER */
bar->size = size & ~(size-1);
ret = true;
err_exit:
pcie_conf_write(bdf, PCIE_CONF_CMDSTAT, cmd_reg);
return ret;
}
/**
* @brief Probe the nth BAR assigned to an endpoint.
*
* A PCI(e) endpoint has 0 or more BARs. This function
* allows the caller to enumerate them by calling with index=0..n.
* Value of n has to be below 6, as there is a maximum of 6 BARs. The indices
* are order-preserving with respect to the endpoint BARs: e.g., index 0
* will return the lowest-numbered BAR on the endpoint.
*
* @param bdf the PCI(e) endpoint
* @param index (0-based) index
* @param bar Pointer to struct pcie_bar
* @param io true for I/O BARs, false otherwise
* @return true if the BAR was found and is valid, false otherwise
*/
static bool pcie_probe_bar(pcie_bdf_t bdf,
unsigned int index,
struct pcie_bar *bar,
bool io)
{
uint32_t reg;
for (reg = PCIE_CONF_BAR0;
(index > 0) && (reg <= PCIE_CONF_BAR5); reg++, index--) {
uintptr_t addr = pcie_conf_read(bdf, reg);
if (PCIE_CONF_BAR_MEM(addr) && PCIE_CONF_BAR_64(addr)) {
reg++;
}
}
if (index != 0) {
return false;
}
return pcie_get_bar(bdf, reg - PCIE_CONF_BAR0, bar, io);
}
bool pcie_get_mbar(pcie_bdf_t bdf,
unsigned int bar_index,
struct pcie_bar *mbar)
{
return pcie_get_bar(bdf, bar_index, mbar, false);
}
bool pcie_probe_mbar(pcie_bdf_t bdf,
unsigned int index,
struct pcie_bar *mbar)
{
return pcie_probe_bar(bdf, index, mbar, false);
}
bool pcie_get_iobar(pcie_bdf_t bdf,
unsigned int bar_index,
struct pcie_bar *iobar)
{
return pcie_get_bar(bdf, bar_index, iobar, true);
}
bool pcie_probe_iobar(pcie_bdf_t bdf,
unsigned int index,
struct pcie_bar *iobar)
{
return pcie_probe_bar(bdf, index, iobar, true);
}
#ifndef CONFIG_PCIE_CONTROLLER
unsigned int pcie_alloc_irq(pcie_bdf_t bdf)
{
unsigned int irq;
uint32_t data;
data = pcie_conf_read(bdf, PCIE_CONF_INTR);
irq = PCIE_CONF_INTR_IRQ(data);
if ((irq == PCIE_CONF_INTR_IRQ_NONE) ||
(irq >= CONFIG_MAX_IRQ_LINES) ||
arch_irq_is_used(irq)) {
/* In some platforms, PCI interrupts are hardwired to specific interrupt inputs
* on the interrupt controller and are not configurable. Hence we need to retrieve
* IRQ from acpi. But if it is configurable then we allocate irq dynamically.
*/
#ifdef CONFIG_PCIE_PRT
if (prt_en) {
irq = acpi_legacy_irq_get(bdf);
} else {
irq = arch_irq_allocate();
}
#else
irq = arch_irq_allocate();
#endif
if (irq == UINT_MAX) {
return PCIE_CONF_INTR_IRQ_NONE;
}
data &= ~0xffU;
data |= irq;
pcie_conf_write(bdf, PCIE_CONF_INTR, data);
} else {
arch_irq_set_used(irq);
}
return irq;
}
#endif /* CONFIG_PCIE_CONTROLLER */
unsigned int pcie_get_irq(pcie_bdf_t bdf)
{
uint32_t data = pcie_conf_read(bdf, PCIE_CONF_INTR);
return PCIE_CONF_INTR_IRQ(data);
}
bool pcie_connect_dynamic_irq(pcie_bdf_t bdf,
unsigned int irq,
unsigned int priority,
void (*routine)(const void *parameter),
const void *parameter,
uint32_t flags)
{
#if defined(CONFIG_PCIE_MSI) && defined(CONFIG_PCIE_MSI_MULTI_VECTOR)
if (pcie_is_msi(bdf)) {
msi_vector_t vector;
if ((pcie_msi_vectors_allocate(bdf, priority,
&vector, 1) == 0) ||
!pcie_msi_vector_connect(bdf, &vector,
routine, parameter, flags)) {
return false;
}
} else
#endif /* CONFIG_PCIE_MSI && CONFIG_PCIE_MSI_MULTI_VECTOR */
{
if (irq_connect_dynamic(irq, priority, routine,
parameter, flags) < 0) {
return false;
}
}
return true;
}
void pcie_irq_enable(pcie_bdf_t bdf, unsigned int irq)
{
#if CONFIG_PCIE_MSI
if (pcie_msi_enable(bdf, NULL, 1, irq)) {
return;
}
#endif
irq_enable(irq);
}
static bool scan_flag(const struct pcie_scan_opt *opt, uint32_t flag)
{
return ((opt->flags & flag) != 0U);
}
/* Forward declaration needed since scanning a device may reveal a bridge */
static bool scan_bus(uint8_t bus, const struct pcie_scan_opt *opt);
static bool scan_dev(uint8_t bus, uint8_t dev, const struct pcie_scan_opt *opt)
{
for (uint8_t func = 0; func <= PCIE_MAX_FUNC; func++) {
pcie_bdf_t bdf = PCIE_BDF(bus, dev, func);
uint32_t secondary = 0;
uint32_t id, type;
bool do_cb;
id = pcie_conf_read(bdf, PCIE_CONF_ID);
if (!PCIE_ID_IS_VALID(id)) {
continue;
}
type = pcie_conf_read(bdf, PCIE_CONF_TYPE);
switch (PCIE_CONF_TYPE_GET(type)) {
case PCIE_CONF_TYPE_STANDARD:
do_cb = true;
break;
case PCIE_CONF_TYPE_PCI_BRIDGE:
if (scan_flag(opt, PCIE_SCAN_RECURSIVE)) {
uint32_t num = pcie_conf_read(bdf,
PCIE_BUS_NUMBER);
secondary = PCIE_BUS_SECONDARY_NUMBER(num);
}
__fallthrough;
default:
do_cb = scan_flag(opt, PCIE_SCAN_CB_ALL);
break;
}
if (do_cb && !opt->cb(bdf, id, opt->cb_data)) {
return false;
}
if (scan_flag(opt, PCIE_SCAN_RECURSIVE) && secondary != 0) {
if (!scan_bus(secondary, opt)) {
return false;
}
}
/* Only function 0 is valid for non-multifunction devices */
if (func == 0 && !PCIE_CONF_MULTIFUNCTION(type)) {
break;
}
}
return true;
}
static bool scan_bus(uint8_t bus, const struct pcie_scan_opt *opt)
{
for (uint8_t dev = 0; dev <= PCIE_MAX_DEV; dev++) {
if (!scan_dev(bus, dev, opt)) {
return false;
}
}
return true;
}
int pcie_scan(const struct pcie_scan_opt *opt)
{
uint32_t type;
bool multi;
CHECKIF(opt->cb == NULL) {
return -EINVAL;
}
type = pcie_conf_read(PCIE_HOST_CONTROLLER(0), PCIE_CONF_TYPE);
multi = PCIE_CONF_MULTIFUNCTION(type);
if (opt->bus == 0 && scan_flag(opt, PCIE_SCAN_RECURSIVE) && multi) {
/* Each function on the host controller represents a portential bus */
for (uint8_t bus = 0; bus <= PCIE_MAX_FUNC; bus++) {
pcie_bdf_t bdf = PCIE_HOST_CONTROLLER(bus);
if (pcie_conf_read(bdf, PCIE_CONF_ID) == PCIE_ID_NONE) {
continue;
}
if (!scan_bus(bus, opt)) {
break;
}
}
} else {
/* Single PCI host controller */
scan_bus(opt->bus, opt);
}
return 0;
}
struct scan_data {
size_t found;
size_t max_dev;
};
static bool pcie_dev_cb(pcie_bdf_t bdf, pcie_id_t id, void *cb_data)
{
struct scan_data *data = cb_data;
STRUCT_SECTION_FOREACH(pcie_dev, dev) {
if (dev->bdf != PCIE_BDF_NONE) {
continue;
}
if (dev->id != id) {
continue;
}
uint32_t class_rev = pcie_conf_read(bdf, PCIE_CONF_CLASSREV);
if (dev->class_rev == (class_rev & dev->class_rev_mask)) {
dev->bdf = bdf;
dev->class_rev = class_rev;
data->found++;
break;
}
}
/* Continue if we've not yet found all devices */
return (data->found != data->max_dev);
}
static int pcie_init(void)
{
struct scan_data data;
struct pcie_scan_opt opt = {
.cb = pcie_dev_cb,
.cb_data = &data,
.flags = PCIE_SCAN_RECURSIVE,
};
#ifdef CONFIG_PCIE_PRT
const char *hid, *uid = ACPI_DT_UID(DT_DRV_INST(0));
int ret;
BUILD_ASSERT(ACPI_DT_HAS_HID(DT_DRV_INST(0)),
"No HID property for PCIe devicetree node");
hid = ACPI_DT_HID(DT_DRV_INST(0));
ret = acpi_legacy_irq_init(hid, uid);
if (!ret) {
prt_en = true;
} else {
__ASSERT(ret == -ENOENT, "Error retrieve interrupt routing table!");
}
#endif
STRUCT_SECTION_COUNT(pcie_dev, &data.max_dev);
/* Don't bother calling pcie_scan() if there are no devices to look for */
if (data.max_dev == 0) {
return 0;
}
data.found = 0;
pcie_scan(&opt);
return 0;
}
/*
* If a pcie controller is employed, pcie_scan() depends on it for working.
* Thus, pcie must be bumped to the next level
*/
#ifdef CONFIG_PCIE_CONTROLLER
#define PCIE_SYS_INIT_LEVEL PRE_KERNEL_2
#else
#define PCIE_SYS_INIT_LEVEL PRE_KERNEL_1
#endif
SYS_INIT(pcie_init, PCIE_SYS_INIT_LEVEL, CONFIG_PCIE_INIT_PRIORITY);