| /* |
| * Copyright (c) 2019 Intel Corporation. |
| * Copyright (c) 2023 Microchip Technology Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT microchip_xec_adc |
| |
| #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(adc_mchp_xec); |
| |
| #include <zephyr/drivers/adc.h> |
| #ifdef CONFIG_SOC_SERIES_MEC172X |
| #include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h> |
| #endif |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/pm/device.h> |
| #include <zephyr/pm/policy.h> |
| #include <soc.h> |
| #include <errno.h> |
| #include <zephyr/irq.h> |
| |
| #define ADC_CONTEXT_USES_KERNEL_TIMER |
| #include "adc_context.h" |
| |
| #define XEC_ADC_VREF_ANALOG 3300 |
| |
| /* ADC Control Register */ |
| #define XEC_ADC_CTRL_SINGLE_DONE_STATUS BIT(7) |
| #define XEC_ADC_CTRL_REPEAT_DONE_STATUS BIT(6) |
| #define XER_ADC_CTRL_SOFT_RESET BIT(4) |
| #define XEC_ADC_CTRL_POWER_SAVER_DIS BIT(3) |
| #define XEC_ADC_CTRL_START_REPEAT BIT(2) |
| #define XEC_ADC_CTRL_START_SINGLE BIT(1) |
| #define XEC_ADC_CTRL_ACTIVATE BIT(0) |
| |
| /* ADC implements two interrupt signals: |
| * One-shot(single) conversion of a set of channels |
| * Repeat conversion of a set of channels |
| * Channel sets for single and repeat may be different. |
| */ |
| enum adc_pm_policy_state_flag { |
| ADC_PM_POLICY_STATE_SINGLE_FLAG, |
| ADC_PM_POLICY_STATE_REPEAT_FLAG, |
| ADC_PM_POLICY_STATE_FLAG_COUNT, |
| }; |
| |
| |
| struct adc_xec_regs { |
| uint32_t control_reg; |
| uint32_t delay_reg; |
| uint32_t status_reg; |
| uint32_t single_reg; |
| uint32_t repeat_reg; |
| uint32_t channel_read_reg[8]; |
| uint32_t unused[18]; |
| uint32_t config_reg; |
| uint32_t vref_channel_reg; |
| uint32_t vref_control_reg; |
| uint32_t sar_control_reg; |
| }; |
| |
| struct adc_xec_config { |
| struct adc_xec_regs *regs; |
| |
| uint8_t girq_single; |
| uint8_t girq_single_pos; |
| uint8_t girq_repeat; |
| uint8_t girq_repeat_pos; |
| uint8_t pcr_regidx; |
| uint8_t pcr_bitpos; |
| const struct pinctrl_dev_config *pcfg; |
| }; |
| |
| struct adc_xec_data { |
| struct adc_context ctx; |
| const struct device *adc_dev; |
| uint16_t *buffer; |
| uint16_t *repeat_buffer; |
| #ifdef CONFIG_PM_DEVICE |
| ATOMIC_DEFINE(pm_policy_state_flag, ADC_PM_POLICY_STATE_FLAG_COUNT); |
| #endif |
| }; |
| |
| #ifdef CONFIG_PM_DEVICE |
| static void adc_xec_pm_policy_state_lock_get(struct adc_xec_data *data, |
| enum adc_pm_policy_state_flag flag) |
| { |
| if (atomic_test_and_set_bit(data->pm_policy_state_flag, flag) == 0) { |
| pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| } |
| } |
| |
| static void adc_xec_pm_policy_state_lock_put(struct adc_xec_data *data, |
| enum adc_pm_policy_state_flag flag) |
| { |
| if (atomic_test_and_clear_bit(data->pm_policy_state_flag, flag) == 1) { |
| pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
| } |
| } |
| #endif |
| |
| static void adc_context_start_sampling(struct adc_context *ctx) |
| { |
| struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx); |
| const struct device *adc_dev = data->adc_dev; |
| const struct adc_xec_config * const devcfg = adc_dev->config; |
| struct adc_xec_regs *regs = devcfg->regs; |
| |
| data->repeat_buffer = data->buffer; |
| |
| #ifdef CONFIG_PM_DEVICE |
| adc_xec_pm_policy_state_lock_get(data, ADC_PM_POLICY_STATE_SINGLE_FLAG); |
| #endif |
| regs->single_reg = ctx->sequence.channels; |
| regs->control_reg |= XEC_ADC_CTRL_START_SINGLE; |
| } |
| |
| static void adc_context_update_buffer_pointer(struct adc_context *ctx, |
| bool repeat_sampling) |
| { |
| struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx); |
| |
| if (repeat_sampling) { |
| data->buffer = data->repeat_buffer; |
| } |
| } |
| |
| static int adc_xec_channel_setup(const struct device *dev, |
| const struct adc_channel_cfg *channel_cfg) |
| { |
| const struct adc_xec_config *const cfg = dev->config; |
| struct adc_xec_regs * const regs = cfg->regs; |
| uint32_t areg; |
| |
| if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { |
| return -EINVAL; |
| } |
| |
| if (channel_cfg->channel_id >= MCHP_ADC_MAX_CHAN) { |
| return -EINVAL; |
| } |
| |
| if (channel_cfg->gain != ADC_GAIN_1) { |
| return -EINVAL; |
| } |
| |
| /* Setup VREF */ |
| areg = regs->vref_channel_reg; |
| areg &= ~MCHP_ADC_CH_VREF_SEL_MASK(channel_cfg->channel_id); |
| |
| if (channel_cfg->reference == ADC_REF_INTERNAL) { |
| areg |= MCHP_ADC_CH_VREF_SEL_PAD(channel_cfg->channel_id); |
| } else if (channel_cfg->reference == ADC_REF_EXTERNAL0) { |
| areg |= MCHP_ADC_CH_VREF_SEL_GPIO(channel_cfg->channel_id); |
| } else { |
| return -EINVAL; |
| } |
| |
| regs->vref_channel_reg = areg; |
| |
| /* Differential mode? */ |
| areg = regs->sar_control_reg; |
| areg &= ~BIT(MCHP_ADC_SAR_CTRL_SELDIFF_POS); |
| if (channel_cfg->differential != 0) { |
| areg |= MCHP_ADC_SAR_CTRL_SELDIFF_EN; |
| } |
| regs->sar_control_reg = areg; |
| |
| return 0; |
| } |
| |
| static bool adc_xec_validate_buffer_size(const struct adc_sequence *sequence) |
| { |
| int chan_count = 0; |
| size_t buff_need; |
| uint32_t chan_mask; |
| |
| for (chan_mask = 0x80; chan_mask != 0; chan_mask >>= 1) { |
| if (chan_mask & sequence->channels) { |
| chan_count++; |
| } |
| } |
| |
| buff_need = chan_count * sizeof(uint16_t); |
| |
| if (sequence->options) { |
| buff_need *= 1 + sequence->options->extra_samplings; |
| } |
| |
| if (buff_need > sequence->buffer_size) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int adc_xec_start_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| const struct adc_xec_config *const cfg = dev->config; |
| struct adc_xec_regs * const regs = cfg->regs; |
| struct adc_xec_data * const data = dev->data; |
| uint32_t sar_ctrl; |
| |
| if (sequence->channels & ~BIT_MASK(MCHP_ADC_MAX_CHAN)) { |
| LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels); |
| return -EINVAL; |
| } |
| |
| if (sequence->channels == 0UL) { |
| LOG_ERR("No channel selected"); |
| return -EINVAL; |
| } |
| |
| if (!adc_xec_validate_buffer_size(sequence)) { |
| LOG_ERR("Incorrect buffer size"); |
| return -ENOMEM; |
| } |
| |
| /* Setup ADC resolution */ |
| sar_ctrl = regs->sar_control_reg; |
| sar_ctrl &= ~(MCHP_ADC_SAR_CTRL_RES_MASK | |
| (1 << MCHP_ADC_SAR_CTRL_SHIFTD_POS)); |
| |
| if (sequence->resolution == 12) { |
| sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_12_BITS; |
| } else if (sequence->resolution == 10) { |
| sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_10_BITS; |
| sar_ctrl |= MCHP_ADC_SAR_CTRL_SHIFTD_EN; |
| } else { |
| return -EINVAL; |
| } |
| |
| regs->sar_control_reg = sar_ctrl; |
| |
| data->buffer = sequence->buffer; |
| |
| adc_context_start_read(&data->ctx, sequence); |
| |
| return adc_context_wait_for_completion(&data->ctx); |
| } |
| |
| static int adc_xec_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| struct adc_xec_data * const data = dev->data; |
| int error; |
| |
| adc_context_lock(&data->ctx, false, NULL); |
| error = adc_xec_start_read(dev, sequence); |
| adc_context_release(&data->ctx, error); |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_ADC_ASYNC |
| static int adc_xec_read_async(const struct device *dev, |
| const struct adc_sequence *sequence, |
| struct k_poll_signal *async) |
| { |
| struct adc_xec_data * const data = dev->data; |
| int error; |
| |
| adc_context_lock(&data->ctx, true, async); |
| error = adc_xec_start_read(dev, sequence); |
| adc_context_release(&data->ctx, error); |
| |
| return error; |
| } |
| #endif /* CONFIG_ADC_ASYNC */ |
| |
| static void xec_adc_get_sample(const struct device *dev) |
| { |
| const struct adc_xec_config *const cfg = dev->config; |
| struct adc_xec_regs * const regs = cfg->regs; |
| struct adc_xec_data * const data = dev->data; |
| uint32_t idx; |
| uint32_t channels = regs->status_reg; |
| uint32_t ch_status = channels; |
| uint32_t bit; |
| |
| /* |
| * Using the enabled channel bit set, from |
| * lowest channel number to highest, find out |
| * which channel is enabled and copy the ADC |
| * values from hardware registers to the data |
| * buffer. |
| */ |
| bit = find_lsb_set(channels); |
| while (bit != 0) { |
| idx = bit - 1; |
| |
| *data->buffer = (uint16_t)regs->channel_read_reg[idx]; |
| data->buffer++; |
| |
| channels &= ~BIT(idx); |
| bit = find_lsb_set(channels); |
| } |
| |
| /* Clear the status register */ |
| regs->status_reg = ch_status; |
| } |
| |
| #ifdef CONFIG_SOC_SERIES_MEC172X |
| static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| mchp_xec_ecia_girq_src_clr(girq_idx, girq_posn); |
| } |
| |
| static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| mchp_xec_ecia_girq_src_en(girq_idx, girq_posn); |
| } |
| |
| static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| mchp_xec_ecia_girq_src_dis(girq_idx, girq_posn); |
| } |
| #else |
| |
| static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| MCHP_GIRQ_SRC(girq_idx) = BIT(girq_posn); |
| } |
| |
| static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn); |
| } |
| |
| static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn) |
| { |
| MCHP_GIRQ_ENCLR(girq_idx) = MCHP_KBC_IBF_GIRQ; |
| } |
| #endif |
| |
| static void adc_xec_single_isr(const struct device *dev) |
| { |
| const struct adc_xec_config *const cfg = dev->config; |
| struct adc_xec_regs * const regs = cfg->regs; |
| struct adc_xec_data * const data = dev->data; |
| uint32_t ctrl; |
| |
| /* Clear START_SINGLE bit and clear SINGLE_DONE_STATUS */ |
| ctrl = regs->control_reg; |
| ctrl &= ~XEC_ADC_CTRL_START_SINGLE; |
| ctrl |= XEC_ADC_CTRL_SINGLE_DONE_STATUS; |
| regs->control_reg = ctrl; |
| |
| /* Also clear GIRQ source status bit */ |
| adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos); |
| |
| xec_adc_get_sample(dev); |
| |
| #ifdef CONFIG_PM_DEVICE |
| adc_xec_pm_policy_state_lock_put(data, ADC_PM_POLICY_STATE_SINGLE_FLAG); |
| #endif |
| |
| adc_context_on_sampling_done(&data->ctx, dev); |
| |
| LOG_DBG("ADC ISR triggered."); |
| } |
| |
| |
| #ifdef CONFIG_PM_DEVICE |
| static int adc_xec_pm_action(const struct device *dev, enum pm_device_action action) |
| { |
| const struct adc_xec_config *const devcfg = dev->config; |
| struct adc_xec_regs * const adc_regs = devcfg->regs; |
| int ret; |
| |
| switch (action) { |
| case PM_DEVICE_ACTION_RESUME: |
| ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); |
| /* ADC activate */ |
| adc_regs->control_reg |= XEC_ADC_CTRL_ACTIVATE; |
| break; |
| case PM_DEVICE_ACTION_SUSPEND: |
| /* ADC deactivate */ |
| adc_regs->control_reg &= ~(XEC_ADC_CTRL_ACTIVATE); |
| /* If application does not want to turn off ADC pins it will |
| * not define pinctrl-1 for this node. |
| */ |
| ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); |
| if (ret == -ENOENT) { /* pinctrl-1 does not exist. */ |
| ret = 0; |
| } |
| break; |
| default: |
| ret = -ENOTSUP; |
| } |
| |
| return ret; |
| } |
| #endif /* CONFIG_PM_DEVICE */ |
| |
| struct adc_driver_api adc_xec_api = { |
| .channel_setup = adc_xec_channel_setup, |
| .read = adc_xec_read, |
| #if defined(CONFIG_ADC_ASYNC) |
| .read_async = adc_xec_read_async, |
| #endif |
| .ref_internal = XEC_ADC_VREF_ANALOG, |
| }; |
| |
| /* ADC Config Register */ |
| #define XEC_ADC_CFG_CLK_VAL(clk_time) ( \ |
| (clk_time << MCHP_ADC_CFG_CLK_LO_TIME_POS) | \ |
| (clk_time << MCHP_ADC_CFG_CLK_HI_TIME_POS)) |
| |
| static int adc_xec_init(const struct device *dev) |
| { |
| const struct adc_xec_config *const cfg = dev->config; |
| struct adc_xec_regs * const regs = cfg->regs; |
| struct adc_xec_data * const data = dev->data; |
| int ret; |
| |
| data->adc_dev = dev; |
| |
| ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (ret != 0) { |
| LOG_ERR("XEC ADC V2 pinctrl setup failed (%d)", ret); |
| return ret; |
| } |
| |
| regs->config_reg = XEC_ADC_CFG_CLK_VAL(DT_INST_PROP(0, clktime)); |
| |
| regs->control_reg = XEC_ADC_CTRL_ACTIVATE |
| | XEC_ADC_CTRL_POWER_SAVER_DIS |
| | XEC_ADC_CTRL_SINGLE_DONE_STATUS |
| | XEC_ADC_CTRL_REPEAT_DONE_STATUS; |
| |
| adc_xec_girq_dis(cfg->girq_repeat, cfg->girq_repeat_pos); |
| adc_xec_girq_clr(cfg->girq_repeat, cfg->girq_repeat_pos); |
| adc_xec_girq_dis(cfg->girq_single, cfg->girq_single_pos); |
| adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos); |
| adc_xec_girq_en(cfg->girq_single, cfg->girq_single_pos); |
| |
| IRQ_CONNECT(DT_INST_IRQN(0), |
| DT_INST_IRQ(0, priority), |
| adc_xec_single_isr, DEVICE_DT_INST_GET(0), 0); |
| irq_enable(DT_INST_IRQN(0)); |
| |
| adc_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| PINCTRL_DT_INST_DEFINE(0); |
| |
| static struct adc_xec_config adc_xec_dev_cfg_0 = { |
| .regs = (struct adc_xec_regs *)(DT_INST_REG_ADDR(0)), |
| .girq_single = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 0)), |
| .girq_single_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 1)), |
| .girq_repeat = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 2)), |
| .girq_repeat_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 3)), |
| .pcr_regidx = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 0)), |
| .pcr_bitpos = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 1)), |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), |
| }; |
| |
| static struct adc_xec_data adc_xec_dev_data_0 = { |
| ADC_CONTEXT_INIT_TIMER(adc_xec_dev_data_0, ctx), |
| ADC_CONTEXT_INIT_LOCK(adc_xec_dev_data_0, ctx), |
| ADC_CONTEXT_INIT_SYNC(adc_xec_dev_data_0, ctx), |
| }; |
| |
| PM_DEVICE_DT_INST_DEFINE(0, adc_xec_pm_action); |
| |
| DEVICE_DT_INST_DEFINE(0, adc_xec_init, PM_DEVICE_DT_INST_GET(0), |
| &adc_xec_dev_data_0, &adc_xec_dev_cfg_0, |
| PRE_KERNEL_1, CONFIG_ADC_INIT_PRIORITY, |
| &adc_xec_api); |