| /* |
| * Copyright 2023-2024 NXP |
| * Copyright (c) 2020 Toby Firth |
| * |
| * Based on adc_mcux_adc16.c and adc_mcux_adc12.c, which are: |
| * Copyright (c) 2017-2018, NXP |
| * Copyright (c) 2019 Vestas Wind Systems A/S |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT nxp_lpc_lpadc |
| |
| #include <errno.h> |
| #include <zephyr/drivers/adc.h> |
| #include <zephyr/sys/util.h> |
| #include <zephyr/drivers/regulator.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/pinctrl.h> |
| |
| #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| #include <fsl_lpadc.h> |
| LOG_MODULE_REGISTER(nxp_mcux_lpadc); |
| |
| /* |
| * Currently, no instance of the ADC IP has more than |
| * 8 channels present. Therefore, we treat channels |
| * with an index 8 or higher as a side b channel, with |
| * the channel index given by channel_num % 8 |
| */ |
| #define CHANNELS_PER_SIDE 0x8 |
| |
| #define ADC_CONTEXT_USES_KERNEL_TIMER |
| #include "adc_context.h" |
| |
| struct mcux_lpadc_config { |
| ADC_Type *base; |
| lpadc_reference_voltage_source_t voltage_ref; |
| uint8_t power_level; |
| uint32_t calibration_average; |
| uint32_t offset_a; |
| uint32_t offset_b; |
| void (*irq_config_func)(const struct device *dev); |
| const struct pinctrl_dev_config *pincfg; |
| const struct device *ref_supplies; |
| const struct device *clock_dev; |
| clock_control_subsys_t clock_subsys; |
| int32_t ref_supply_val; |
| }; |
| |
| struct mcux_lpadc_data { |
| const struct device *dev; |
| struct adc_context ctx; |
| uint16_t *buffer; |
| uint16_t *repeat_buffer; |
| uint32_t channels; |
| lpadc_conv_command_config_t cmd_config[CONFIG_LPADC_CHANNEL_COUNT]; |
| }; |
| |
| static int mcux_lpadc_acquisition_time_setup(const struct device *dev, uint16_t acq_time, |
| lpadc_conv_command_config_t *cmd) |
| { |
| const struct mcux_lpadc_config *config = dev->config; |
| uint32_t adc_freq_hz = 0; |
| uint32_t conversion_factor = 0; |
| uint32_t acquisition_time_value = ADC_ACQ_TIME_VALUE(acq_time); |
| uint8_t acquisition_time_unit = ADC_ACQ_TIME_UNIT(acq_time); |
| |
| if (ADC_ACQ_TIME_DEFAULT == acquisition_time_value) { |
| return 0; |
| } |
| |
| /* If the acquisition time is expressed in ADC ticks, then directly compare |
| * the acquisition time with configuration items (3, 5, 7, etc. ADC ticks) |
| * supported by the LPADC. The conversion factor is set to 1 (means do not need |
| * to convert configuration items from ADC ticks to nanoseconds). |
| * If the acquisition time is expressed in microseconds or nanoseconds, First |
| * calculate the ADC cycle based on the ADC clock, then convert the configuration |
| * items supported by LPADC into nanoseconds, and finally compare the acquisition |
| * time with configuration items. The conversion factor is equal to the ADC cycle |
| * (means convert configuration items from ADC ticks to nanoseconds). |
| */ |
| if (ADC_ACQ_TIME_TICKS == acquisition_time_unit) { |
| conversion_factor = 1; |
| } else { |
| if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &adc_freq_hz)) { |
| LOG_ERR("Get clock rate failed"); |
| return -EINVAL; |
| } |
| |
| conversion_factor = 1000000000 / adc_freq_hz; |
| |
| if (ADC_ACQ_TIME_MICROSECONDS == acquisition_time_unit) { |
| acquisition_time_value *= 1000; |
| } |
| } |
| |
| if ((3 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK3; |
| } else if ((5 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK5; |
| } else if ((7 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK7; |
| } else if ((11 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK11; |
| } else if ((19 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK19; |
| } else if ((35 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK35; |
| } else if ((67 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK67; |
| } else if ((131 * conversion_factor) >= acquisition_time_value) { |
| cmd->sampleTimeMode = kLPADC_SampleTimeADCK131; |
| } else { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int mcux_lpadc_channel_setup(const struct device *dev, |
| const struct adc_channel_cfg *channel_cfg) |
| { |
| const struct mcux_lpadc_config *config = dev->config; |
| const struct device *regulator = config->ref_supplies; |
| int32_t vref_uv = config->ref_supply_val * 1000; |
| struct mcux_lpadc_data *data = dev->data; |
| lpadc_conv_command_config_t *cmd; |
| uint8_t channel_side; |
| uint8_t channel_num; |
| int err; |
| |
| /* User may configure maximum number of active channels */ |
| if (channel_cfg->channel_id >= CONFIG_LPADC_CHANNEL_COUNT) { |
| LOG_ERR("Channel %d is not valid", channel_cfg->channel_id); |
| return -EINVAL; |
| } |
| |
| /* Select ADC CMD register to configure based off channel ID */ |
| cmd = &data->cmd_config[channel_cfg->channel_id]; |
| |
| /* If bit 5 of input_positive is set, then channel side B is used */ |
| channel_side = 0x20 & channel_cfg->input_positive; |
| /* Channel number is selected by lower 4 bits of input_positive */ |
| channel_num = ADC_CMDL_ADCH(channel_cfg->input_positive); |
| |
| LOG_DBG("Channel num: %u, channel side: %c", channel_num, |
| channel_side == 0 ? 'A' : 'B'); |
| |
| LPADC_GetDefaultConvCommandConfig(cmd); |
| |
| /* Configure LPADC acquisition time. */ |
| if (mcux_lpadc_acquisition_time_setup(dev, channel_cfg->acquisition_time, cmd)) { |
| LOG_ERR("LPADC acquisition time setting failed"); |
| return -EINVAL; |
| } |
| |
| if (channel_cfg->differential) { |
| /* Channel pairs must match in differential mode */ |
| if ((ADC_CMDL_ADCH(channel_cfg->input_positive)) != |
| (ADC_CMDL_ADCH(channel_cfg->input_negative))) { |
| return -ENOTSUP; |
| } |
| |
| #if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF |
| /* Check to see which channel is the positive input */ |
| if (channel_cfg->input_positive & 0x20) { |
| /* Channel B is positive side */ |
| cmd->sampleChannelMode = |
| kLPADC_SampleChannelDiffBothSideBA; |
| } else { |
| /* Channel A is positive side */ |
| cmd->sampleChannelMode = |
| kLPADC_SampleChannelDiffBothSideAB; |
| } |
| #else |
| cmd->sampleChannelMode = kLPADC_SampleChannelDiffBothSide; |
| #endif |
| } else if (channel_side != 0) { |
| cmd->sampleChannelMode = kLPADC_SampleChannelSingleEndSideB; |
| } else { |
| /* Default value for sampleChannelMode is SideA */ |
| } |
| #if defined(FSL_FEATURE_LPADC_HAS_CMDL_CSCALE) && FSL_FEATURE_LPADC_HAS_CMDL_CSCALE |
| /* |
| * The true scaling factor used by the LPADC is 30/64, instead of |
| * 1/2. Select 1/2 as this is the closest scaling factor available |
| * in Zephyr. |
| */ |
| if (channel_cfg->gain == ADC_GAIN_1_2) { |
| LOG_INF("Channel gain of 30/64 selected"); |
| cmd->sampleScaleMode = kLPADC_SamplePartScale; |
| } else if (channel_cfg->gain == ADC_GAIN_1) { |
| cmd->sampleScaleMode = kLPADC_SampleFullScale; |
| } else { |
| LOG_ERR("Invalid channel gain"); |
| return -EINVAL; |
| } |
| #else |
| if (channel_cfg->gain != ADC_GAIN_1) { |
| LOG_ERR("Invalid channel gain"); |
| return -EINVAL; |
| } |
| #endif |
| |
| /* |
| * ADC_REF_EXTERNAL1: Use SoC internal regulator as LPADC reference voltage. |
| * ADC_REF_EXTERNAL0: Use other voltage source (maybe also within the SoCs) |
| * as LPADC reference voltage, like VREFH, VDDA, etc. |
| */ |
| if (channel_cfg->reference == ADC_REF_EXTERNAL1) { |
| LOG_DBG("ref external1"); |
| if (regulator != NULL) { |
| err = regulator_set_voltage(regulator, vref_uv, vref_uv); |
| if (err < 0) { |
| return err; |
| } |
| } else { |
| return -EINVAL; |
| } |
| } else if (channel_cfg->reference == ADC_REF_EXTERNAL0) { |
| LOG_DBG("ref external0"); |
| } else { |
| LOG_DBG("ref not support"); |
| return -EINVAL; |
| } |
| |
| cmd->channelNumber = channel_num; |
| return 0; |
| } |
| |
| static int mcux_lpadc_start_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| const struct mcux_lpadc_config *config = dev->config; |
| struct mcux_lpadc_data *data = dev->data; |
| lpadc_hardware_average_mode_t hardware_average_mode; |
| uint8_t channel, last_enabled; |
| #if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) \ |
| && FSL_FEATURE_LPADC_HAS_CMDL_MODE |
| lpadc_conversion_resolution_mode_t resolution_mode; |
| |
| switch (sequence->resolution) { |
| case 12: |
| case 13: |
| resolution_mode = kLPADC_ConversionResolutionStandard; |
| break; |
| case 16: |
| resolution_mode = kLPADC_ConversionResolutionHigh; |
| break; |
| default: |
| LOG_ERR("Unsupported resolution %d", sequence->resolution); |
| return -ENOTSUP; |
| } |
| #else |
| /* If FSL_FEATURE_LPADC_HAS_CMDL_MODE is not defined |
| only 12/13 bit resolution is supported. */ |
| if (sequence->resolution != 12 && sequence->resolution != 13) { |
| LOG_ERR("Unsupported resolution %d", sequence->resolution); |
| return -ENOTSUP; |
| } |
| #endif /* FSL_FEATURE_LPADC_HAS_CMDL_MODE */ |
| |
| switch (sequence->oversampling) { |
| case 0: |
| hardware_average_mode = kLPADC_HardwareAverageCount1; |
| break; |
| case 1: |
| hardware_average_mode = kLPADC_HardwareAverageCount2; |
| break; |
| case 2: |
| hardware_average_mode = kLPADC_HardwareAverageCount4; |
| break; |
| case 3: |
| hardware_average_mode = kLPADC_HardwareAverageCount8; |
| break; |
| case 4: |
| hardware_average_mode = kLPADC_HardwareAverageCount16; |
| break; |
| case 5: |
| hardware_average_mode = kLPADC_HardwareAverageCount32; |
| break; |
| case 6: |
| hardware_average_mode = kLPADC_HardwareAverageCount64; |
| break; |
| case 7: |
| hardware_average_mode = kLPADC_HardwareAverageCount128; |
| break; |
| default: |
| LOG_ERR("Unsupported oversampling value %d", |
| sequence->oversampling); |
| return -ENOTSUP; |
| } |
| |
| /* |
| * Now, look at the selected channels to determine which ADC channels |
| * we need to configure, and set those channels up. |
| * |
| * Since this ADC supports chaining channels in hardware, we will |
| * start with the highest channel ID and work downwards, chaining |
| * channels as we go. |
| */ |
| channel = CONFIG_LPADC_CHANNEL_COUNT; |
| last_enabled = 0; |
| while (channel-- > 0) { |
| if (sequence->channels & BIT(channel)) { |
| /* Setup this channel command */ |
| #if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) && FSL_FEATURE_LPADC_HAS_CMDL_MODE |
| data->cmd_config[channel].conversionResolutionMode = |
| resolution_mode; |
| #endif |
| data->cmd_config[channel].hardwareAverageMode = |
| hardware_average_mode; |
| if (last_enabled) { |
| /* Chain channel */ |
| data->cmd_config[channel].chainedNextCommandNumber = |
| last_enabled + 1; |
| LOG_DBG("Chaining channel %u to %u", |
| channel, last_enabled); |
| } else { |
| /* End of chain */ |
| data->cmd_config[channel].chainedNextCommandNumber = 0; |
| } |
| last_enabled = channel; |
| LPADC_SetConvCommandConfig(config->base, |
| channel + 1, &data->cmd_config[channel]); |
| } |
| }; |
| |
| data->buffer = sequence->buffer; |
| |
| adc_context_start_read(&data->ctx, sequence); |
| int error = adc_context_wait_for_completion(&data->ctx); |
| |
| return error; |
| } |
| |
| static int mcux_lpadc_read_async(const struct device *dev, |
| const struct adc_sequence *sequence, |
| struct k_poll_signal *async) |
| { |
| struct mcux_lpadc_data *data = dev->data; |
| int error; |
| |
| adc_context_lock(&data->ctx, async ? true : false, async); |
| error = mcux_lpadc_start_read(dev, sequence); |
| adc_context_release(&data->ctx, error); |
| |
| return error; |
| } |
| |
| static int mcux_lpadc_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| return mcux_lpadc_read_async(dev, sequence, NULL); |
| } |
| |
| static void mcux_lpadc_start_channel(const struct device *dev) |
| { |
| const struct mcux_lpadc_config *config = dev->config; |
| struct mcux_lpadc_data *data = dev->data; |
| lpadc_conv_trigger_config_t trigger_config; |
| uint8_t first_channel; |
| |
| first_channel = find_lsb_set(data->channels) - 1; |
| |
| LOG_DBG("Starting channel %d, input %d", first_channel, |
| data->cmd_config[first_channel].channelNumber); |
| |
| LPADC_GetDefaultConvTriggerConfig(&trigger_config); |
| |
| trigger_config.targetCommandId = first_channel + 1; |
| |
| /* configures trigger0. */ |
| LPADC_SetConvTriggerConfig(config->base, 0, &trigger_config); |
| |
| /* 1 is trigger0 mask. */ |
| LPADC_DoSoftwareTrigger(config->base, 1); |
| } |
| |
| static void adc_context_start_sampling(struct adc_context *ctx) |
| { |
| struct mcux_lpadc_data *data = |
| CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx); |
| |
| data->channels = ctx->sequence.channels; |
| data->repeat_buffer = data->buffer; |
| |
| mcux_lpadc_start_channel(data->dev); |
| } |
| |
| static void adc_context_update_buffer_pointer(struct adc_context *ctx, |
| bool repeat_sampling) |
| { |
| struct mcux_lpadc_data *data = |
| CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx); |
| |
| if (repeat_sampling) { |
| data->buffer = data->repeat_buffer; |
| } |
| } |
| |
| static void mcux_lpadc_isr(const struct device *dev) |
| { |
| const struct mcux_lpadc_config *config = dev->config; |
| struct mcux_lpadc_data *data = dev->data; |
| ADC_Type *base = config->base; |
| |
| lpadc_conv_result_t conv_result; |
| lpadc_sample_channel_mode_t conv_mode; |
| int16_t result; |
| uint16_t channel; |
| |
| #if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \ |
| && (FSL_FEATURE_LPADC_FIFO_COUNT == 2U)) |
| LPADC_GetConvResult(base, &conv_result, 0U); |
| #else |
| LPADC_GetConvResult(base, &conv_result); |
| #endif /* FSL_FEATURE_LPADC_FIFO_COUNT */ |
| |
| channel = conv_result.commandIdSource - 1; |
| LOG_DBG("Finished channel %d. Raw result is 0x%04x", |
| channel, conv_result.convValue); |
| /* |
| * For 12 or 13 bit resolution the LSBs will be 0, so a bit shift |
| * is needed. For differential modes, the ADC conversion to |
| * millivolts expects to use a shift one less than the resolution. |
| * |
| * For 16 bit modes, the adc value can be left untouched. ADC |
| * API should treat the value as signed if the channel is |
| * in differential mode |
| */ |
| conv_mode = data->cmd_config[channel].sampleChannelMode; |
| if (data->ctx.sequence.resolution < 15) { |
| result = ((conv_result.convValue >> 3) & 0xFFF); |
| #if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF |
| if (conv_mode == kLPADC_SampleChannelDiffBothSideAB || |
| conv_mode == kLPADC_SampleChannelDiffBothSideBA) { |
| #else |
| if (conv_mode == kLPADC_SampleChannelDiffBothSide) { |
| #endif |
| if ((conv_result.convValue & 0x8000)) { |
| /* 13 bit mode, MSB is sign bit. (2's complement) */ |
| result -= 0x1000; |
| } |
| } |
| *data->buffer++ = result; |
| } else { |
| *data->buffer++ = conv_result.convValue; |
| } |
| |
| |
| data->channels &= ~BIT(channel); |
| |
| /* |
| * Hardware will automatically continue sampling, so no need |
| * to issue new trigger |
| */ |
| if (data->channels == 0) { |
| adc_context_on_sampling_done(&data->ctx, dev); |
| } |
| } |
| |
| static int mcux_lpadc_init(const struct device *dev) |
| { |
| const struct mcux_lpadc_config *config = dev->config; |
| struct mcux_lpadc_data *data = dev->data; |
| ADC_Type *base = config->base; |
| lpadc_config_t adc_config; |
| int err; |
| |
| err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); |
| if (err) { |
| return err; |
| } |
| |
| /* Enable necessary regulators */ |
| const struct device *regulator = config->ref_supplies; |
| |
| if (regulator != NULL) { |
| err = regulator_enable(regulator); |
| if (err) { |
| return err; |
| } |
| } |
| |
| LPADC_GetDefaultConfig(&adc_config); |
| |
| adc_config.enableAnalogPreliminary = true; |
| adc_config.referenceVoltageSource = config->voltage_ref; |
| |
| #if defined(FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS) \ |
| && FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS |
| adc_config.conversionAverageMode = config->calibration_average; |
| #endif /* FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS */ |
| |
| #if !(DT_ANY_INST_HAS_PROP_STATUS_OKAY(no_power_level)) |
| adc_config.powerLevelMode = config->power_level; |
| #endif |
| |
| LPADC_Init(base, &adc_config); |
| |
| /* Do ADC calibration. */ |
| #if defined(FSL_FEATURE_LPADC_HAS_CTRL_CALOFS) \ |
| && FSL_FEATURE_LPADC_HAS_CTRL_CALOFS |
| #if defined(FSL_FEATURE_LPADC_HAS_OFSTRIM) \ |
| && FSL_FEATURE_LPADC_HAS_OFSTRIM |
| /* Request offset calibration. */ |
| #if defined(CONFIG_LPADC_DO_OFFSET_CALIBRATION) \ |
| && CONFIG_LPADC_DO_OFFSET_CALIBRATION |
| LPADC_DoOffsetCalibration(base); |
| #else |
| LPADC_SetOffsetValue(base, |
| config->offset_a, |
| config->offset_b); |
| #endif /* DEMO_LPADC_DO_OFFSET_CALIBRATION */ |
| #endif /* FSL_FEATURE_LPADC_HAS_OFSTRIM */ |
| /* Request gain calibration. */ |
| LPADC_DoAutoCalibration(base); |
| #endif /* FSL_FEATURE_LPADC_HAS_CTRL_CALOFS */ |
| |
| #if (defined(FSL_FEATURE_LPADC_HAS_CFG_CALOFS) \ |
| && FSL_FEATURE_LPADC_HAS_CFG_CALOFS) |
| /* Do auto calibration. */ |
| LPADC_DoAutoCalibration(base); |
| #endif /* FSL_FEATURE_LPADC_HAS_CFG_CALOFS */ |
| |
| /* Enable the watermark interrupt. */ |
| #if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \ |
| && (FSL_FEATURE_LPADC_FIFO_COUNT == 2U)) |
| LPADC_EnableInterrupts(base, kLPADC_FIFO0WatermarkInterruptEnable); |
| #else |
| LPADC_EnableInterrupts(base, kLPADC_FIFOWatermarkInterruptEnable); |
| #endif /* FSL_FEATURE_LPADC_FIFO_COUNT */ |
| |
| config->irq_config_func(dev); |
| data->dev = dev; |
| |
| adc_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| static const struct adc_driver_api mcux_lpadc_driver_api = { |
| .channel_setup = mcux_lpadc_channel_setup, |
| .read = mcux_lpadc_read, |
| #ifdef CONFIG_ADC_ASYNC |
| .read_async = mcux_lpadc_read_async, |
| #endif |
| }; |
| |
| #define LPADC_MCUX_INIT(n) \ |
| \ |
| static void mcux_lpadc_config_func_##n(const struct device *dev); \ |
| \ |
| PINCTRL_DT_INST_DEFINE(n); \ |
| static const struct mcux_lpadc_config mcux_lpadc_config_##n = { \ |
| .base = (ADC_Type *)DT_INST_REG_ADDR(n), \ |
| .voltage_ref = DT_INST_PROP(n, voltage_ref), \ |
| .calibration_average = DT_INST_ENUM_IDX_OR(n, calibration_average, 0), \ |
| .power_level = DT_INST_PROP_OR(n, power_level, 0), \ |
| .offset_a = DT_INST_PROP(n, offset_value_a), \ |
| .offset_b = DT_INST_PROP(n, offset_value_b), \ |
| .irq_config_func = mcux_lpadc_config_func_##n, \ |
| .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
| .ref_supplies = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, nxp_references),\ |
| (DEVICE_DT_GET(DT_PHANDLE(DT_DRV_INST(n),\ |
| nxp_references))), (NULL)),\ |
| .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \ |
| .clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\ |
| .ref_supply_val = COND_CODE_1(\ |
| DT_INST_NODE_HAS_PROP(n, nxp_references),\ |
| (DT_PHA(DT_DRV_INST(n), nxp_references, vref_mv)), \ |
| (0)),\ |
| }; \ |
| static struct mcux_lpadc_data mcux_lpadc_data_##n = { \ |
| ADC_CONTEXT_INIT_TIMER(mcux_lpadc_data_##n, ctx), \ |
| ADC_CONTEXT_INIT_LOCK(mcux_lpadc_data_##n, ctx), \ |
| ADC_CONTEXT_INIT_SYNC(mcux_lpadc_data_##n, ctx), \ |
| }; \ |
| \ |
| DEVICE_DT_INST_DEFINE(n, \ |
| &mcux_lpadc_init, NULL, &mcux_lpadc_data_##n, \ |
| &mcux_lpadc_config_##n, POST_KERNEL, \ |
| CONFIG_ADC_INIT_PRIORITY, \ |
| &mcux_lpadc_driver_api); \ |
| \ |
| static void mcux_lpadc_config_func_##n(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(n), \ |
| DT_INST_IRQ(n, priority), mcux_lpadc_isr, \ |
| DEVICE_DT_INST_GET(n), 0); \ |
| \ |
| irq_enable(DT_INST_IRQN(n)); \ |
| } \ |
| \ |
| BUILD_ASSERT((DT_INST_PROP_OR(n, power_level, 0) >= 0) && \ |
| (DT_INST_PROP_OR(n, power_level, 0) <= 3), "power_level: wrong value"); |
| |
| DT_INST_FOREACH_STATUS_OKAY(LPADC_MCUX_INIT) |