| /* |
| * Copyright (c) 2018 STMicroelectronics |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_i2s |
| |
| #include <string.h> |
| #include <zephyr/drivers/dma.h> |
| #include <zephyr/drivers/i2s.h> |
| #include <zephyr/drivers/dma/dma_stm32.h> |
| #include <soc.h> |
| #include <stm32_ll_rcc.h> |
| #include <stm32_ll_spi.h> |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/cache.h> |
| |
| #include "i2s_ll_stm32.h" |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| LOG_MODULE_REGISTER(i2s_ll_stm32); |
| |
| #define MODULO_INC(val, max) { val = (++val < max) ? val : 0; } |
| |
| static unsigned int div_round_closest(uint32_t dividend, uint32_t divisor) |
| { |
| return (dividend + (divisor / 2U)) / divisor; |
| } |
| |
| static bool queue_is_empty(struct ring_buf *rb) |
| { |
| unsigned int key; |
| |
| key = irq_lock(); |
| |
| if (rb->tail != rb->head) { |
| /* Ring buffer is not empty */ |
| irq_unlock(key); |
| return false; |
| } |
| |
| irq_unlock(key); |
| |
| return true; |
| } |
| |
| /* |
| * Get data from the queue |
| */ |
| static int queue_get(struct ring_buf *rb, void **mem_block, size_t *size) |
| { |
| unsigned int key; |
| |
| key = irq_lock(); |
| |
| if (queue_is_empty(rb) == true) { |
| irq_unlock(key); |
| return -ENOMEM; |
| } |
| |
| *mem_block = rb->buf[rb->tail].mem_block; |
| *size = rb->buf[rb->tail].size; |
| MODULO_INC(rb->tail, rb->len); |
| |
| irq_unlock(key); |
| |
| return 0; |
| } |
| |
| /* |
| * Put data in the queue |
| */ |
| static int queue_put(struct ring_buf *rb, void *mem_block, size_t size) |
| { |
| uint16_t head_next; |
| unsigned int key; |
| |
| key = irq_lock(); |
| |
| head_next = rb->head; |
| MODULO_INC(head_next, rb->len); |
| |
| if (head_next == rb->tail) { |
| /* Ring buffer is full */ |
| irq_unlock(key); |
| return -ENOMEM; |
| } |
| |
| rb->buf[rb->head].mem_block = mem_block; |
| rb->buf[rb->head].size = size; |
| rb->head = head_next; |
| |
| irq_unlock(key); |
| |
| return 0; |
| } |
| |
| static int i2s_stm32_enable_clock(const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| const struct device *clk; |
| int ret; |
| |
| clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| |
| if (!device_is_ready(clk)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| ret = clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]); |
| if (ret != 0) { |
| LOG_ERR("Could not enable I2S clock"); |
| return -EIO; |
| } |
| |
| if (cfg->pclk_len > 1) { |
| /* Enable I2S clock source */ |
| ret = clock_control_configure(clk, |
| (clock_control_subsys_t)&cfg->pclken[1], |
| NULL); |
| if (ret < 0) { |
| LOG_ERR("Could not configure I2S domain clock"); |
| return -EIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int i2s_stm32_set_clock(const struct device *dev, |
| uint32_t bit_clk_freq) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| uint32_t freq_in = 0U; |
| uint8_t i2s_div, i2s_odd; |
| |
| if (cfg->pclk_len > 1) { |
| /* Handle multiple clock sources */ |
| if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t)&cfg->pclken[1], |
| &freq_in) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate(pclken[1])"); |
| return -EIO; |
| } |
| } else { |
| /* Handle single clock source */ |
| if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
| (clock_control_subsys_t)&cfg->pclken[0], |
| &freq_in) < 0) { |
| LOG_ERR("Failed call clock_control_get_rate(pclken[0])"); |
| return -EIO; |
| } |
| } |
| /* |
| * The ratio between input clock (I2SxClk) and output |
| * clock on the pad (I2S_CK) is obtained using the |
| * following formula: |
| * (i2s_div * 2) + i2s_odd |
| */ |
| i2s_div = div_round_closest(freq_in, bit_clk_freq); |
| i2s_odd = (i2s_div & 0x1) ? 1 : 0; |
| i2s_div >>= 1; |
| |
| /* i2s_div == 0 || i2s_div == 1 are forbidden */ |
| if (i2s_div < 2U) { |
| LOG_ERR("The linear prescaler value is unsupported"); |
| return -EINVAL; |
| } |
| |
| LOG_DBG("i2s_div: %d - i2s_odd: %d", i2s_div, i2s_odd); |
| |
| LL_I2S_SetPrescalerLinear(cfg->i2s, i2s_div); |
| LL_I2S_SetPrescalerParity(cfg->i2s, i2s_odd); |
| |
| return 0; |
| } |
| |
| static int i2s_stm32_configure(const struct device *dev, enum i2s_dir dir, |
| const struct i2s_config *i2s_cfg) |
| { |
| const struct i2s_stm32_cfg *const cfg = dev->config; |
| struct i2s_stm32_data *const dev_data = dev->data; |
| /* For words greater than 16-bit the channel length is considered 32-bit */ |
| const uint32_t channel_length = i2s_cfg->word_size > 16U ? 32U : 16U; |
| /* |
| * comply with the i2s_config driver remark: |
| * When I2S data format is selected parameter channels is ignored, |
| * number of words in a frame is always 2. |
| */ |
| const uint32_t num_channels = |
| ((i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) == I2S_FMT_DATA_FORMAT_I2S) |
| ? 2U |
| : i2s_cfg->channels; |
| struct stream *stream; |
| uint32_t bit_clk_freq; |
| bool enable_mck; |
| int ret; |
| |
| if (dir == I2S_DIR_RX) { |
| stream = &dev_data->rx; |
| } else if (dir == I2S_DIR_TX) { |
| stream = &dev_data->tx; |
| } else if (dir == I2S_DIR_BOTH) { |
| return -ENOSYS; |
| } else { |
| LOG_ERR("Either RX or TX direction must be selected"); |
| return -EINVAL; |
| } |
| |
| if (stream->state != I2S_STATE_NOT_READY && |
| stream->state != I2S_STATE_READY) { |
| LOG_ERR("invalid state"); |
| return -EINVAL; |
| } |
| |
| stream->master = true; |
| if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE || |
| i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) { |
| stream->master = false; |
| } |
| |
| if (i2s_cfg->frame_clk_freq == 0U) { |
| stream->queue_drop(stream); |
| memset(&stream->cfg, 0, sizeof(struct i2s_config)); |
| stream->state = I2S_STATE_NOT_READY; |
| return 0; |
| } |
| |
| memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config)); |
| |
| /* conditions to enable master clock output */ |
| enable_mck = stream->master && cfg->master_clk_sel; |
| |
| /* set I2S bitclock */ |
| bit_clk_freq = i2s_cfg->frame_clk_freq * |
| channel_length * num_channels; |
| |
| if (enable_mck) { |
| /* |
| * Compensate for the master clock dividers. |
| * MCK = N * CK, where N: |
| * 8 when the channel frame is 16-bit wide |
| * 4 when the channel frame is 32-bit wide |
| */ |
| bit_clk_freq *= channel_length == 16U ? 4U * 2U : 4U; |
| } |
| |
| ret = i2s_stm32_set_clock(dev, bit_clk_freq); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* set I2S Master Clock output in the MCK pin, enabled in the DT */ |
| if (enable_mck) { |
| LL_I2S_EnableMasterClock(cfg->i2s); |
| } else { |
| LL_I2S_DisableMasterClock(cfg->i2s); |
| } |
| |
| /* |
| * set I2S Data Format |
| * 16-bit data extended on 32-bit channel length excluded |
| */ |
| if (i2s_cfg->word_size == 16U) { |
| LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_16B); |
| } else if (i2s_cfg->word_size == 24U) { |
| LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_24B); |
| } else if (i2s_cfg->word_size == 32U) { |
| LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_32B); |
| } else { |
| LOG_ERR("invalid word size"); |
| return -EINVAL; |
| } |
| |
| /* set I2S Standard */ |
| switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) { |
| case I2S_FMT_DATA_FORMAT_I2S: |
| LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PHILIPS); |
| break; |
| |
| case I2S_FMT_DATA_FORMAT_PCM_SHORT: |
| LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_SHORT); |
| break; |
| |
| case I2S_FMT_DATA_FORMAT_PCM_LONG: |
| LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_LONG); |
| break; |
| |
| case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED: |
| LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_MSB); |
| break; |
| |
| case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED: |
| LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_LSB); |
| break; |
| |
| default: |
| LOG_ERR("Unsupported I2S data format"); |
| return -EINVAL; |
| } |
| |
| /* set I2S clock polarity */ |
| if ((i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) == I2S_FMT_BIT_CLK_INV) |
| LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_HIGH); |
| else |
| LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_LOW); |
| |
| stream->state = I2S_STATE_READY; |
| return 0; |
| } |
| |
| static int i2s_stm32_trigger(const struct device *dev, enum i2s_dir dir, |
| enum i2s_trigger_cmd cmd) |
| { |
| struct i2s_stm32_data *const dev_data = dev->data; |
| const struct i2s_stm32_cfg *const cfg = dev->config; |
| struct stream *stream; |
| unsigned int key; |
| int ret; |
| |
| if (dir == I2S_DIR_RX) { |
| stream = &dev_data->rx; |
| } else if (dir == I2S_DIR_TX) { |
| stream = &dev_data->tx; |
| } else if (dir == I2S_DIR_BOTH) { |
| return -ENOSYS; |
| } else { |
| LOG_ERR("Either RX or TX direction must be selected"); |
| return -EINVAL; |
| } |
| |
| switch (cmd) { |
| case I2S_TRIGGER_START: |
| if (stream->state != I2S_STATE_READY) { |
| LOG_ERR("START trigger: invalid state %d", |
| stream->state); |
| return -EIO; |
| } |
| |
| __ASSERT_NO_MSG(stream->mem_block == NULL); |
| |
| ret = stream->stream_start(stream, dev); |
| if (ret < 0) { |
| LOG_ERR("START trigger failed %d", ret); |
| return ret; |
| } |
| |
| stream->state = I2S_STATE_RUNNING; |
| stream->last_block = false; |
| break; |
| |
| case I2S_TRIGGER_STOP: |
| key = irq_lock(); |
| if (stream->state != I2S_STATE_RUNNING) { |
| irq_unlock(key); |
| LOG_ERR("STOP trigger: invalid state"); |
| return -EIO; |
| } |
| do_trigger_stop: |
| if (ll_func_i2s_dma_busy(cfg->i2s)) { |
| stream->state = I2S_STATE_STOPPING; |
| /* |
| * Indicate that the transition to I2S_STATE_STOPPING |
| * is triggered by STOP command |
| */ |
| stream->tx_stop_for_drain = false; |
| } else { |
| stream->stream_disable(stream, dev); |
| stream->state = I2S_STATE_READY; |
| stream->last_block = true; |
| } |
| irq_unlock(key); |
| break; |
| |
| case I2S_TRIGGER_DRAIN: |
| key = irq_lock(); |
| if (stream->state != I2S_STATE_RUNNING) { |
| irq_unlock(key); |
| LOG_ERR("DRAIN trigger: invalid state"); |
| return -EIO; |
| } |
| |
| if (dir == I2S_DIR_TX) { |
| if ((queue_is_empty(&stream->mem_block_queue) == false) || |
| (ll_func_i2s_dma_busy(cfg->i2s))) { |
| stream->state = I2S_STATE_STOPPING; |
| /* |
| * Indicate that the transition to I2S_STATE_STOPPING |
| * is triggered by DRAIN command |
| */ |
| stream->tx_stop_for_drain = true; |
| } else { |
| stream->stream_disable(stream, dev); |
| stream->state = I2S_STATE_READY; |
| } |
| } else if (dir == I2S_DIR_RX) { |
| goto do_trigger_stop; |
| } else { |
| LOG_ERR("Unavailable direction"); |
| return -EINVAL; |
| } |
| irq_unlock(key); |
| break; |
| |
| case I2S_TRIGGER_DROP: |
| if (stream->state == I2S_STATE_NOT_READY) { |
| LOG_ERR("DROP trigger: invalid state"); |
| return -EIO; |
| } |
| stream->stream_disable(stream, dev); |
| stream->queue_drop(stream); |
| stream->state = I2S_STATE_READY; |
| break; |
| |
| case I2S_TRIGGER_PREPARE: |
| if (stream->state != I2S_STATE_ERROR) { |
| LOG_ERR("PREPARE trigger: invalid state"); |
| return -EIO; |
| } |
| stream->state = I2S_STATE_READY; |
| stream->queue_drop(stream); |
| break; |
| |
| default: |
| LOG_ERR("Unsupported trigger command"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int i2s_stm32_read(const struct device *dev, void **mem_block, |
| size_t *size) |
| { |
| struct i2s_stm32_data *const dev_data = dev->data; |
| int ret; |
| |
| if (dev_data->rx.state == I2S_STATE_NOT_READY) { |
| LOG_DBG("invalid state"); |
| return -EIO; |
| } |
| |
| if (dev_data->rx.state != I2S_STATE_ERROR) { |
| ret = k_sem_take(&dev_data->rx.sem, |
| SYS_TIMEOUT_MS(dev_data->rx.cfg.timeout)); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| /* Get data from the beginning of RX queue */ |
| ret = queue_get(&dev_data->rx.mem_block_queue, mem_block, size); |
| if (ret < 0) { |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int i2s_stm32_write(const struct device *dev, void *mem_block, |
| size_t size) |
| { |
| struct i2s_stm32_data *const dev_data = dev->data; |
| int ret; |
| |
| if (dev_data->tx.state != I2S_STATE_RUNNING && |
| dev_data->tx.state != I2S_STATE_READY) { |
| LOG_DBG("invalid state"); |
| return -EIO; |
| } |
| |
| ret = k_sem_take(&dev_data->tx.sem, |
| SYS_TIMEOUT_MS(dev_data->tx.cfg.timeout)); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* Add data to the end of the TX queue */ |
| return queue_put(&dev_data->tx.mem_block_queue, mem_block, size); |
| } |
| |
| static const struct i2s_driver_api i2s_stm32_driver_api = { |
| .configure = i2s_stm32_configure, |
| .read = i2s_stm32_read, |
| .write = i2s_stm32_write, |
| .trigger = i2s_stm32_trigger, |
| }; |
| |
| #define STM32_DMA_NUM_CHANNELS 8 |
| static const struct device *active_dma_rx_channel[STM32_DMA_NUM_CHANNELS]; |
| static const struct device *active_dma_tx_channel[STM32_DMA_NUM_CHANNELS]; |
| |
| static int reload_dma(const struct device *dev_dma, uint32_t channel, |
| struct dma_config *dcfg, void *src, void *dst, |
| uint32_t blk_size) |
| { |
| int ret; |
| |
| ret = dma_reload(dev_dma, channel, (uint32_t)src, (uint32_t)dst, blk_size); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = dma_start(dev_dma, channel); |
| |
| return ret; |
| } |
| |
| static int start_dma(const struct device *dev_dma, uint32_t channel, |
| struct dma_config *dcfg, void *src, |
| bool src_addr_increment, void *dst, |
| bool dst_addr_increment, uint8_t fifo_threshold, |
| uint32_t blk_size) |
| { |
| struct dma_block_config blk_cfg; |
| int ret; |
| |
| memset(&blk_cfg, 0, sizeof(blk_cfg)); |
| blk_cfg.block_size = blk_size; |
| blk_cfg.source_address = (uint32_t)src; |
| blk_cfg.dest_address = (uint32_t)dst; |
| if (src_addr_increment) { |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| if (dst_addr_increment) { |
| blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| blk_cfg.fifo_mode_control = fifo_threshold; |
| |
| dcfg->head_block = &blk_cfg; |
| |
| ret = dma_config(dev_dma, channel, dcfg); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = dma_start(dev_dma, channel); |
| |
| return ret; |
| } |
| |
| static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel); |
| static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel); |
| static void rx_stream_disable(struct stream *stream, const struct device *dev); |
| static void tx_stream_disable(struct stream *stream, const struct device *dev); |
| |
| /* This function is executed in the interrupt context */ |
| static void dma_rx_callback(const struct device *dma_dev, void *arg, |
| uint32_t channel, int status) |
| { |
| const struct device *dev = get_dev_from_rx_dma_channel(channel); |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| struct i2s_stm32_data *const dev_data = dev->data; |
| struct stream *stream = &dev_data->rx; |
| void *mblk_tmp; |
| int ret; |
| |
| if (status < 0) { |
| ret = -EIO; |
| stream->state = I2S_STATE_ERROR; |
| goto rx_disable; |
| } |
| |
| __ASSERT_NO_MSG(stream->mem_block != NULL); |
| |
| /* Stop reception if there was an error */ |
| if (stream->state == I2S_STATE_ERROR) { |
| goto rx_disable; |
| } |
| |
| mblk_tmp = stream->mem_block; |
| |
| /* Prepare to receive the next data block */ |
| ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block, |
| K_NO_WAIT); |
| if (ret < 0) { |
| stream->state = I2S_STATE_ERROR; |
| goto rx_disable; |
| } |
| |
| ret = reload_dma(stream->dev_dma, stream->dma_channel, |
| &stream->dma_cfg, |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| (void *)LL_SPI_DMA_GetRxRegAddr(cfg->i2s), |
| #else |
| (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), |
| #endif |
| stream->mem_block, |
| stream->cfg.block_size); |
| if (ret < 0) { |
| LOG_DBG("Failed to start RX DMA transfer: %d", ret); |
| goto rx_disable; |
| } |
| |
| /* Assure cache coherency after DMA write operation */ |
| sys_cache_data_invd_range(mblk_tmp, stream->cfg.block_size); |
| |
| /* All block data received */ |
| ret = queue_put(&stream->mem_block_queue, mblk_tmp, |
| stream->cfg.block_size); |
| if (ret < 0) { |
| stream->state = I2S_STATE_ERROR; |
| goto rx_disable; |
| } |
| k_sem_give(&stream->sem); |
| |
| /* Stop reception if we were requested */ |
| if (stream->state == I2S_STATE_STOPPING) { |
| stream->state = I2S_STATE_READY; |
| goto rx_disable; |
| } |
| |
| return; |
| |
| rx_disable: |
| rx_stream_disable(stream, dev); |
| } |
| |
| static void dma_tx_callback(const struct device *dma_dev, void *arg, |
| uint32_t channel, int status) |
| { |
| const struct device *dev = get_dev_from_tx_dma_channel(channel); |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| struct i2s_stm32_data *const dev_data = dev->data; |
| struct stream *stream = &dev_data->tx; |
| size_t mem_block_size; |
| int ret; |
| |
| if (status < 0) { |
| ret = -EIO; |
| stream->state = I2S_STATE_ERROR; |
| goto tx_disable; |
| } |
| |
| __ASSERT_NO_MSG(stream->mem_block != NULL); |
| |
| /* All block data sent */ |
| k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block); |
| stream->mem_block = NULL; |
| |
| /* Stop transmission if there was an error */ |
| if (stream->state == I2S_STATE_ERROR) { |
| LOG_ERR("TX error detected"); |
| goto tx_disable; |
| } |
| |
| /* Check if we finished transferring one block and stopping is requested */ |
| if ((stream->state == I2S_STATE_STOPPING) && (status == DMA_STATUS_COMPLETE)) { |
| /* |
| * Check if all tx samples have been completely handled |
| * as stated in zephyr i2s specification, in case of DRAIN command |
| * send all data in the transmit queue and stop the transmission. |
| */ |
| if (queue_is_empty(&stream->mem_block_queue) == true) { |
| stream->queue_drop(stream); |
| stream->state = I2S_STATE_READY; |
| goto tx_disable; |
| } else if (stream->tx_stop_for_drain == false) { |
| /* |
| * In case of STOP command, just stop the transmission |
| * at the current. The transmission can be resumed. |
| */ |
| stream->state = I2S_STATE_READY; |
| goto tx_disable; |
| } |
| /* else: DRAIN trigger -> continue TX normally until queue is empty */ |
| } |
| |
| /* Stop transmission if we were requested */ |
| if (stream->last_block) { |
| stream->state = I2S_STATE_READY; |
| goto tx_disable; |
| } |
| |
| /* Prepare to send the next data block */ |
| ret = queue_get(&stream->mem_block_queue, &stream->mem_block, |
| &mem_block_size); |
| if (ret < 0) { |
| if (stream->state == I2S_STATE_STOPPING) { |
| stream->state = I2S_STATE_READY; |
| } else { |
| stream->state = I2S_STATE_ERROR; |
| } |
| goto tx_disable; |
| } |
| k_sem_give(&stream->sem); |
| |
| /* Assure cache coherency before DMA read operation */ |
| sys_cache_data_flush_range(stream->mem_block, mem_block_size); |
| |
| ret = reload_dma(stream->dev_dma, stream->dma_channel, |
| &stream->dma_cfg, |
| stream->mem_block, |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| (void *)LL_SPI_DMA_GetTxRegAddr(cfg->i2s), |
| #else |
| (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), |
| #endif |
| mem_block_size); |
| if (ret < 0) { |
| LOG_DBG("Failed to start TX DMA transfer: %d", ret); |
| goto tx_disable; |
| } |
| |
| return; |
| |
| tx_disable: |
| tx_stream_disable(stream, dev); |
| } |
| |
| static uint32_t i2s_stm32_irq_count; |
| static uint32_t i2s_stm32_irq_ovr_count; |
| static uint32_t i2s_stm32_irq_udr_count; |
| |
| static void i2s_stm32_isr(const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| |
| /* OVR error must be explicitly cleared */ |
| if (LL_I2S_IsActiveFlag_OVR(cfg->i2s)) { |
| i2s_stm32_irq_ovr_count++; |
| LL_I2S_ClearFlag_OVR(cfg->i2s); |
| } |
| |
| /* NOTE: UDR error must be explicitly cleared on STM32H7 */ |
| if (LL_I2S_IsActiveFlag_UDR(cfg->i2s)) { |
| i2s_stm32_irq_udr_count++; |
| LL_I2S_ClearFlag_UDR(cfg->i2s); |
| } |
| |
| i2s_stm32_irq_count++; |
| } |
| |
| static int i2s_stm32_initialize(const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| struct i2s_stm32_data *const dev_data = dev->data; |
| struct stream *stream = &dev_data->tx; |
| int ret, i; |
| |
| /* Initialize the variable used to handle the TX */ |
| stream->tx_stop_for_drain = false; |
| |
| /* Enable I2S clock propagation */ |
| ret = i2s_stm32_enable_clock(dev); |
| if (ret < 0) { |
| LOG_ERR("%s: clock enabling failed: %d", __func__, ret); |
| return -EIO; |
| } |
| |
| /* Configure dt provided device signals when available */ |
| ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (ret < 0) { |
| LOG_ERR("I2S pinctrl setup failed (%d)", ret); |
| return ret; |
| } |
| |
| cfg->irq_config(dev); |
| |
| k_sem_init(&dev_data->rx.sem, 0, CONFIG_I2S_STM32_RX_BLOCK_COUNT); |
| k_sem_init(&dev_data->tx.sem, CONFIG_I2S_STM32_TX_BLOCK_COUNT, |
| CONFIG_I2S_STM32_TX_BLOCK_COUNT); |
| |
| for (i = 0; i < STM32_DMA_NUM_CHANNELS; i++) { |
| active_dma_rx_channel[i] = NULL; |
| active_dma_tx_channel[i] = NULL; |
| } |
| |
| /* Get the binding to the DMA device */ |
| if (!device_is_ready(dev_data->tx.dev_dma)) { |
| LOG_ERR("%s device not ready", dev_data->tx.dev_dma->name); |
| return -ENODEV; |
| } |
| if (!device_is_ready(dev_data->rx.dev_dma)) { |
| LOG_ERR("%s device not ready", dev_data->rx.dev_dma->name); |
| return -ENODEV; |
| } |
| |
| LOG_INF("%s inited", dev->name); |
| |
| return 0; |
| } |
| |
| static int rx_stream_start(struct stream *stream, const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| int ret; |
| |
| ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block, |
| K_NO_WAIT); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (stream->master) { |
| LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_RX); |
| } else { |
| LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_RX); |
| } |
| |
| /* remember active RX DMA channel (used in callback) */ |
| active_dma_rx_channel[stream->dma_channel] = dev; |
| |
| ret = start_dma(stream->dev_dma, stream->dma_channel, |
| &stream->dma_cfg, |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| (void *)LL_SPI_DMA_GetRxRegAddr(cfg->i2s), |
| #else |
| (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), |
| #endif |
| stream->src_addr_increment, stream->mem_block, |
| stream->dst_addr_increment, stream->fifo_threshold, |
| stream->cfg.block_size); |
| if (ret < 0) { |
| LOG_ERR("Failed to start RX DMA transfer: %d", ret); |
| return ret; |
| } |
| |
| LL_I2S_EnableDMAReq_RX(cfg->i2s); |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| LL_I2S_EnableIT_OVR(cfg->i2s); |
| LL_I2S_EnableIT_UDR(cfg->i2s); |
| LL_I2S_EnableIT_FRE(cfg->i2s); |
| LL_I2S_Enable(cfg->i2s); |
| LL_SPI_StartMasterTransfer(cfg->i2s); |
| #else |
| LL_I2S_EnableIT_ERR(cfg->i2s); |
| LL_I2S_Enable(cfg->i2s); |
| #endif |
| |
| |
| return 0; |
| } |
| |
| static int tx_stream_start(struct stream *stream, const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| size_t mem_block_size; |
| int ret; |
| |
| ret = queue_get(&stream->mem_block_queue, &stream->mem_block, |
| &mem_block_size); |
| if (ret < 0) { |
| return ret; |
| } |
| k_sem_give(&stream->sem); |
| |
| /* Assure cache coherency before DMA read operation */ |
| sys_cache_data_flush_range(stream->mem_block, mem_block_size); |
| |
| if (stream->master) { |
| LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_TX); |
| } else { |
| LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_TX); |
| } |
| |
| /* remember active TX DMA channel (used in callback) */ |
| active_dma_tx_channel[stream->dma_channel] = dev; |
| |
| ret = start_dma(stream->dev_dma, stream->dma_channel, |
| &stream->dma_cfg, |
| stream->mem_block, stream->src_addr_increment, |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| (void *)LL_SPI_DMA_GetTxRegAddr(cfg->i2s), |
| #else |
| (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), |
| #endif |
| stream->dst_addr_increment, stream->fifo_threshold, |
| stream->cfg.block_size); |
| if (ret < 0) { |
| LOG_ERR("Failed to start TX DMA transfer: %d", ret); |
| return ret; |
| } |
| |
| LL_I2S_EnableDMAReq_TX(cfg->i2s); |
| |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| LL_I2S_EnableIT_OVR(cfg->i2s); |
| LL_I2S_EnableIT_UDR(cfg->i2s); |
| LL_I2S_EnableIT_FRE(cfg->i2s); |
| |
| LL_I2S_Enable(cfg->i2s); |
| LL_SPI_StartMasterTransfer(cfg->i2s); |
| #else |
| LL_I2S_EnableIT_ERR(cfg->i2s); |
| LL_I2S_Enable(cfg->i2s); |
| #endif |
| |
| return 0; |
| } |
| |
| static void rx_stream_disable(struct stream *stream, const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| |
| LL_I2S_DisableDMAReq_RX(cfg->i2s); |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| LL_I2S_DisableIT_OVR(cfg->i2s); |
| LL_I2S_DisableIT_UDR(cfg->i2s); |
| LL_I2S_DisableIT_FRE(cfg->i2s); |
| #else |
| LL_I2S_DisableIT_ERR(cfg->i2s); |
| #endif |
| |
| dma_stop(stream->dev_dma, stream->dma_channel); |
| if (stream->mem_block != NULL) { |
| k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block); |
| stream->mem_block = NULL; |
| } |
| |
| LL_I2S_Disable(cfg->i2s); |
| |
| active_dma_rx_channel[stream->dma_channel] = NULL; |
| } |
| |
| static void tx_stream_disable(struct stream *stream, const struct device *dev) |
| { |
| const struct i2s_stm32_cfg *cfg = dev->config; |
| |
| LL_I2S_DisableDMAReq_TX(cfg->i2s); |
| #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) |
| LL_I2S_DisableIT_OVR(cfg->i2s); |
| LL_I2S_DisableIT_UDR(cfg->i2s); |
| LL_I2S_DisableIT_FRE(cfg->i2s); |
| #else |
| LL_I2S_DisableIT_ERR(cfg->i2s); |
| #endif |
| |
| dma_stop(stream->dev_dma, stream->dma_channel); |
| if (stream->mem_block != NULL) { |
| k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block); |
| stream->mem_block = NULL; |
| } |
| |
| /* Wait for TX queue to drain before disabling */ |
| k_busy_wait(100); |
| LL_I2S_Disable(cfg->i2s); |
| |
| active_dma_tx_channel[stream->dma_channel] = NULL; |
| } |
| |
| static void rx_queue_drop(struct stream *stream) |
| { |
| size_t size; |
| void *mem_block; |
| |
| while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) { |
| k_mem_slab_free(stream->cfg.mem_slab, mem_block); |
| } |
| |
| k_sem_reset(&stream->sem); |
| } |
| |
| static void tx_queue_drop(struct stream *stream) |
| { |
| size_t size; |
| void *mem_block; |
| unsigned int n = 0U; |
| |
| while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) { |
| k_mem_slab_free(stream->cfg.mem_slab, mem_block); |
| n++; |
| } |
| |
| for (; n > 0; n--) { |
| k_sem_give(&stream->sem); |
| } |
| } |
| |
| static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel) |
| { |
| return active_dma_rx_channel[dma_channel]; |
| } |
| |
| static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel) |
| { |
| return active_dma_tx_channel[dma_channel]; |
| } |
| |
| /* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ |
| #define I2S_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
| .dir = { \ |
| .dev_dma = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ |
| .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
| .dma_cfg = { \ |
| .block_count = 2, \ |
| .dma_slot = STM32_DMA_SLOT(index, dir, slot),\ |
| .channel_direction = src_dev##_TO_##dest_dev, \ |
| .source_data_size = 2, /* 16bit default */ \ |
| .dest_data_size = 2, /* 16bit default */ \ |
| .source_burst_length = 1, /* SINGLE transfer */ \ |
| .dest_burst_length = 1, \ |
| .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
| .dma_callback = dma_##dir##_callback, \ |
| }, \ |
| .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
| STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
| .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
| STM32_DMA_FEATURES(index, dir)), \ |
| .stream_start = dir##_stream_start, \ |
| .stream_disable = dir##_stream_disable, \ |
| .queue_drop = dir##_queue_drop, \ |
| .mem_block_queue.buf = dir##_##index##_ring_buf, \ |
| .mem_block_queue.len = ARRAY_SIZE(dir##_##index##_ring_buf) \ |
| } |
| |
| #define I2S_STM32_INIT(index) \ |
| \ |
| static void i2s_stm32_irq_config_func_##index(const struct device *dev);\ |
| \ |
| PINCTRL_DT_INST_DEFINE(index); \ |
| \ |
| static const struct stm32_pclken clk_##index[] = \ |
| STM32_DT_INST_CLOCKS(index); \ |
| \ |
| static const struct i2s_stm32_cfg i2s_stm32_config_##index = { \ |
| .i2s = (SPI_TypeDef *)DT_INST_REG_ADDR(index), \ |
| .pclken = clk_##index, \ |
| .pclk_len = DT_INST_NUM_CLOCKS(index), \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ |
| .irq_config = i2s_stm32_irq_config_func_##index, \ |
| .master_clk_sel = DT_INST_PROP(index, mck_enabled) \ |
| }; \ |
| \ |
| struct queue_item rx_##index##_ring_buf[CONFIG_I2S_STM32_RX_BLOCK_COUNT + 1];\ |
| struct queue_item tx_##index##_ring_buf[CONFIG_I2S_STM32_TX_BLOCK_COUNT + 1];\ |
| \ |
| static struct i2s_stm32_data i2s_stm32_data_##index = { \ |
| UTIL_AND(DT_INST_DMAS_HAS_NAME(index, rx), \ |
| I2S_DMA_CHANNEL_INIT(index, rx, RX, PERIPHERAL, MEMORY)),\ |
| UTIL_AND(DT_INST_DMAS_HAS_NAME(index, tx), \ |
| I2S_DMA_CHANNEL_INIT(index, tx, TX, MEMORY, PERIPHERAL)),\ |
| }; \ |
| DEVICE_DT_INST_DEFINE(index, \ |
| &i2s_stm32_initialize, NULL, \ |
| &i2s_stm32_data_##index, \ |
| &i2s_stm32_config_##index, POST_KERNEL, \ |
| CONFIG_I2S_INIT_PRIORITY, &i2s_stm32_driver_api); \ |
| \ |
| static void i2s_stm32_irq_config_func_##index(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(index), \ |
| DT_INST_IRQ(index, priority), \ |
| i2s_stm32_isr, DEVICE_DT_INST_GET(index), 0); \ |
| irq_enable(DT_INST_IRQN(index)); \ |
| } |
| |
| DT_INST_FOREACH_STATUS_OKAY(I2S_STM32_INIT) |