blob: 3a25ca91b5d3acf929c4aad244c8e084722f3b45 [file] [log] [blame]
/*
* Copyright (c) 2020 Amarula Solutions.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_sdmmc
#include <zephyr/devicetree.h>
#include <zephyr/drivers/disk.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/logging/log.h>
#include <soc.h>
#include <stm32_ll_rcc.h>
LOG_MODULE_REGISTER(stm32_sdmmc, CONFIG_SDMMC_LOG_LEVEL);
#ifndef MMC_TypeDef
#define MMC_TypeDef SDMMC_TypeDef
#endif
#ifndef SDMMC_BUS_WIDE_1B
#define SDMMC_BUS_WIDE_1B SDIO_BUS_WIDE_1B
#endif
#ifndef SDMMC_BUS_WIDE_4B
#define SDMMC_BUS_WIDE_4B SDIO_BUS_WIDE_4B
#endif
#ifndef SDMMC_BUS_WIDE_8B
#define SDMMC_BUS_WIDE_8B SDIO_BUS_WIDE_8B
#endif
typedef void (*irq_config_func_t)(const struct device *dev);
struct stm32_sdmmc_priv {
irq_config_func_t irq_config;
struct k_sem thread_lock;
struct k_sem sync;
SD_HandleTypeDef hsd;
int status;
struct k_work work;
struct gpio_callback cd_cb;
struct {
const char *name;
const struct device *port;
int pin;
int flags;
} cd;
struct {
const char *name;
const struct device *port;
int pin;
int flags;
} pe;
struct stm32_pclken pclken;
const struct pinctrl_dev_config *pcfg;
};
#ifdef CONFIG_SDMMC_STM32_HWFC
static void stm32_sdmmc_fc_enable(struct stm32_sdmmc_priv *priv)
{
MMC_TypeDef *sdmmcx = priv->hsd.Instance;
sdmmcx->CLKCR |= SDMMC_CLKCR_HWFC_EN;
}
#endif
static void stm32_sdmmc_isr(const struct device *dev)
{
struct stm32_sdmmc_priv *priv = dev->data;
HAL_SD_IRQHandler(&priv->hsd);
}
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
{
struct stm32_sdmmc_priv *priv =
CONTAINER_OF(hsd, struct stm32_sdmmc_priv, hsd);
priv->status = hsd->ErrorCode;
k_sem_give(&priv->sync);
}
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
{
struct stm32_sdmmc_priv *priv =
CONTAINER_OF(hsd, struct stm32_sdmmc_priv, hsd);
priv->status = hsd->ErrorCode;
k_sem_give(&priv->sync);
}
void HAL_SD_ErrorCallback(SD_HandleTypeDef *hsd)
{
struct stm32_sdmmc_priv *priv =
CONTAINER_OF(hsd, struct stm32_sdmmc_priv, hsd);
priv->status = hsd->ErrorCode;
k_sem_give(&priv->sync);
}
static int stm32_sdmmc_clock_enable(struct stm32_sdmmc_priv *priv)
{
const struct device *clock;
#if CONFIG_SOC_SERIES_STM32L4X
LL_RCC_PLLSAI1_Disable();
/* Configure PLLSA11 to enable 48M domain */
LL_RCC_PLLSAI1_ConfigDomain_48M(LL_RCC_PLLSOURCE_HSI,
LL_RCC_PLLM_DIV_1,
8, LL_RCC_PLLSAI1Q_DIV_8);
/* Enable PLLSA1 */
LL_RCC_PLLSAI1_Enable();
/* Enable PLLSAI1 output mapped on 48MHz domain clock */
LL_RCC_PLLSAI1_EnableDomain_48M();
/* Wait for PLLSA1 ready flag */
while (LL_RCC_PLLSAI1_IsReady() != 1)
;
LL_RCC_SetSDMMCClockSource(LL_RCC_SDMMC1_CLKSOURCE_PLLSAI1);
#endif
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
/* Enable the APB clock for stm32_sdmmc */
return clock_control_on(clock, (clock_control_subsys_t *)&priv->pclken);
}
static int stm32_sdmmc_clock_disable(struct stm32_sdmmc_priv *priv)
{
const struct device *clock;
clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
return clock_control_off(clock,
(clock_control_subsys_t *)&priv->pclken);
}
static int stm32_sdmmc_access_init(struct disk_info *disk)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
int err;
if (priv->status == DISK_STATUS_OK) {
return 0;
}
if (priv->status == DISK_STATUS_NOMEDIA) {
return -ENODEV;
}
err = stm32_sdmmc_clock_enable(priv);
if (err) {
LOG_ERR("failed to init clocks");
return err;
}
err = HAL_SD_Init(&priv->hsd);
if (err != HAL_OK) {
LOG_ERR("failed to init stm32_sdmmc");
return -EIO;
}
#ifdef CONFIG_SDMMC_STM32_HWFC
stm32_sdmmc_fc_enable(priv);
#endif
priv->status = DISK_STATUS_OK;
return 0;
}
static void stm32_sdmmc_access_deinit(struct stm32_sdmmc_priv *priv)
{
HAL_SD_DeInit(&priv->hsd);
stm32_sdmmc_clock_disable(priv);
}
static int stm32_sdmmc_access_status(struct disk_info *disk)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
return priv->status;
}
static int stm32_sdmmc_access_read(struct disk_info *disk, uint8_t *data_buf,
uint32_t start_sector, uint32_t num_sector)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
int err;
k_sem_take(&priv->thread_lock, K_FOREVER);
err = HAL_SD_ReadBlocks_IT(&priv->hsd, data_buf, start_sector,
num_sector);
if (err != HAL_OK) {
LOG_ERR("sd read block failed %d", err);
err = -EIO;
goto end;
}
k_sem_take(&priv->sync, K_FOREVER);
if (priv->status != DISK_STATUS_OK) {
LOG_ERR("sd read error %d", priv->status);
err = -EIO;
goto end;
}
while (HAL_SD_GetCardState(&priv->hsd) != HAL_SD_CARD_TRANSFER) {
}
end:
k_sem_give(&priv->thread_lock);
return err;
}
static int stm32_sdmmc_access_write(struct disk_info *disk,
const uint8_t *data_buf,
uint32_t start_sector, uint32_t num_sector)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
int err;
k_sem_take(&priv->thread_lock, K_FOREVER);
err = HAL_SD_WriteBlocks_IT(&priv->hsd, (uint8_t *)data_buf, start_sector,
num_sector);
if (err != HAL_OK) {
LOG_ERR("sd write block failed %d", err);
err = -EIO;
goto end;
}
k_sem_take(&priv->sync, K_FOREVER);
if (priv->status != DISK_STATUS_OK) {
LOG_ERR("sd write error %d", priv->status);
err = -EIO;
goto end;
}
while (HAL_SD_GetCardState(&priv->hsd) != HAL_SD_CARD_TRANSFER) {
}
end:
k_sem_give(&priv->thread_lock);
return err;
}
static int stm32_sdmmc_access_ioctl(struct disk_info *disk, uint8_t cmd,
void *buff)
{
const struct device *dev = disk->dev;
struct stm32_sdmmc_priv *priv = dev->data;
HAL_SD_CardInfoTypeDef info;
int err;
switch (cmd) {
case DISK_IOCTL_GET_SECTOR_COUNT:
err = HAL_SD_GetCardInfo(&priv->hsd, &info);
if (err != HAL_OK) {
return -EIO;
}
*(uint32_t *)buff = info.LogBlockNbr;
break;
case DISK_IOCTL_GET_SECTOR_SIZE:
err = HAL_SD_GetCardInfo(&priv->hsd, &info);
if (err != HAL_OK) {
return -EIO;
}
*(uint32_t *)buff = info.LogBlockSize;
break;
case DISK_IOCTL_GET_ERASE_BLOCK_SZ:
*(uint32_t *)buff = 1;
break;
case DISK_IOCTL_CTRL_SYNC:
/* we use a blocking API, so nothing to do for sync */
break;
default:
return -EINVAL;
}
return 0;
}
static const struct disk_operations stm32_sdmmc_ops = {
.init = stm32_sdmmc_access_init,
.status = stm32_sdmmc_access_status,
.read = stm32_sdmmc_access_read,
.write = stm32_sdmmc_access_write,
.ioctl = stm32_sdmmc_access_ioctl,
};
static struct disk_info stm32_sdmmc_info = {
.name = CONFIG_SDMMC_VOLUME_NAME,
.ops = &stm32_sdmmc_ops,
};
/*
* Check if the card is present or not. If no card detect gpio is set, assume
* the card is present. If reading the gpio fails for some reason, assume the
* card is there.
*/
static bool stm32_sdmmc_card_present(struct stm32_sdmmc_priv *priv)
{
int err;
if (!priv->cd.name) {
return true;
}
err = gpio_pin_get(priv->cd.port, priv->cd.pin);
if (err < 0) {
LOG_WRN("reading card detect failed %d", err);
return true;
}
return err;
}
static void stm32_sdmmc_cd_handler(struct k_work *item)
{
struct stm32_sdmmc_priv *priv = CONTAINER_OF(item,
struct stm32_sdmmc_priv,
work);
if (stm32_sdmmc_card_present(priv)) {
LOG_DBG("card inserted");
priv->status = DISK_STATUS_UNINIT;
} else {
LOG_DBG("card removed");
stm32_sdmmc_access_deinit(priv);
priv->status = DISK_STATUS_NOMEDIA;
}
}
static void stm32_sdmmc_cd_callback(const struct device *gpiodev,
struct gpio_callback *cb,
uint32_t pin)
{
struct stm32_sdmmc_priv *priv = CONTAINER_OF(cb,
struct stm32_sdmmc_priv,
cd_cb);
k_work_submit(&priv->work);
}
static int stm32_sdmmc_card_detect_init(struct stm32_sdmmc_priv *priv)
{
int err;
if (!priv->cd.name) {
return 0;
}
priv->cd.port = device_get_binding(priv->cd.name);
if (!priv->cd.port) {
return -ENODEV;
}
gpio_init_callback(&priv->cd_cb, stm32_sdmmc_cd_callback,
1 << priv->cd.pin);
err = gpio_add_callback(priv->cd.port, &priv->cd_cb);
if (err) {
return err;
}
err = gpio_pin_configure(priv->cd.port, priv->cd.pin,
priv->cd.flags | GPIO_INPUT);
if (err) {
goto remove_callback;
}
err = gpio_pin_interrupt_configure(priv->cd.port, priv->cd.pin,
GPIO_INT_EDGE_BOTH);
if (err) {
goto unconfigure_pin;
}
return 0;
unconfigure_pin:
gpio_pin_configure(priv->cd.port, priv->cd.pin, GPIO_DISCONNECTED);
remove_callback:
gpio_remove_callback(priv->cd.port, &priv->cd_cb);
return err;
}
static int stm32_sdmmc_card_detect_uninit(struct stm32_sdmmc_priv *priv)
{
if (!priv->cd.name) {
return 0;
}
gpio_pin_interrupt_configure(priv->cd.port, priv->cd.pin,
GPIO_INT_MODE_DISABLED);
gpio_pin_configure(priv->cd.port, priv->cd.pin, GPIO_DISCONNECTED);
gpio_remove_callback(priv->cd.port, &priv->cd_cb);
return 0;
}
static int stm32_sdmmc_pwr_init(struct stm32_sdmmc_priv *priv)
{
int err;
if (!priv->pe.name) {
return 0;
}
priv->pe.port = device_get_binding(priv->pe.name);
if (!priv->pe.port) {
return -ENODEV;
}
err = gpio_pin_configure(priv->pe.port, priv->pe.pin,
priv->pe.flags | GPIO_OUTPUT_ACTIVE);
if (err) {
return err;
}
k_sleep(K_MSEC(50));
return 0;
}
static int stm32_sdmmc_pwr_uninit(struct stm32_sdmmc_priv *priv)
{
if (!priv->pe.name) {
return 0;
}
gpio_pin_configure(priv->pe.port, priv->pe.pin, GPIO_DISCONNECTED);
return 0;
}
static int disk_stm32_sdmmc_init(const struct device *dev)
{
struct stm32_sdmmc_priv *priv = dev->data;
int err;
k_work_init(&priv->work, stm32_sdmmc_cd_handler);
/* Configure dt provided device signals when available */
err = pinctrl_apply_state(priv->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
priv->irq_config(dev);
/* Initialize semaphores */
k_sem_init(&priv->thread_lock, 1, 1);
k_sem_init(&priv->sync, 0, 1);
err = stm32_sdmmc_card_detect_init(priv);
if (err) {
return err;
}
err = stm32_sdmmc_pwr_init(priv);
if (err) {
goto err_card_detect;
}
if (stm32_sdmmc_card_present(priv)) {
priv->status = DISK_STATUS_UNINIT;
} else {
priv->status = DISK_STATUS_NOMEDIA;
}
stm32_sdmmc_info.dev = dev;
err = disk_access_register(&stm32_sdmmc_info);
if (err) {
goto err_pwr;
}
return 0;
err_pwr:
stm32_sdmmc_pwr_uninit(priv);
err_card_detect:
stm32_sdmmc_card_detect_uninit(priv);
return err;
}
#if DT_NODE_HAS_STATUS(DT_DRV_INST(0), okay)
PINCTRL_DT_INST_DEFINE(0);
static void stm32_sdmmc_irq_config_func(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
stm32_sdmmc_isr, DEVICE_DT_INST_GET(0),
0);
irq_enable(DT_INST_IRQN(0));
}
#if DT_INST_PROP(0, bus_width) == 1
#define SDMMC_BUS_WIDTH SDMMC_BUS_WIDE_1B
#elif DT_INST_PROP(0, bus_width) == 4
#define SDMMC_BUS_WIDTH SDMMC_BUS_WIDE_4B
#elif DT_INST_PROP(0, bus_width) == 8
#define SDMMC_BUS_WIDTH SDMMC_BUS_WIDE_8B
#endif /* DT_INST_PROP(0, bus_width) */
static struct stm32_sdmmc_priv stm32_sdmmc_priv_1 = {
.irq_config = stm32_sdmmc_irq_config_func,
.hsd = {
.Instance = (MMC_TypeDef *)DT_INST_REG_ADDR(0),
.Init.BusWide = SDMMC_BUS_WIDTH,
},
#if DT_INST_NODE_HAS_PROP(0, cd_gpios)
.cd = {
.name = DT_INST_GPIO_LABEL(0, cd_gpios),
.pin = DT_INST_GPIO_PIN(0, cd_gpios),
.flags = DT_INST_GPIO_FLAGS(0, cd_gpios),
},
#endif
#if DT_INST_NODE_HAS_PROP(0, pwr_gpios)
.pe = {
.name = DT_INST_GPIO_LABEL(0, pwr_gpios),
.pin = DT_INST_GPIO_PIN(0, pwr_gpios),
.flags = DT_INST_GPIO_FLAGS(0, pwr_gpios),
},
#endif
.pclken = {
.bus = DT_INST_CLOCKS_CELL(0, bus),
.enr = DT_INST_CLOCKS_CELL(0, bits),
},
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};
DEVICE_DT_INST_DEFINE(0, disk_stm32_sdmmc_init, NULL,
&stm32_sdmmc_priv_1, NULL, POST_KERNEL,
CONFIG_SDMMC_INIT_PRIORITY,
NULL);
#endif