blob: 82093876b8caa10f04b4270101bc7d14b9ed1279 [file] [log] [blame]
/* ST Microelectronics ISM330DHCX 6-axis IMU sensor driver
*
* Copyright (c) 2020 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/ism330dhcx.pdf
*/
#define DT_DRV_COMPAT st_ism330dhcx
#include <zephyr/drivers/sensor.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include "ism330dhcx.h"
LOG_MODULE_REGISTER(ISM330DHCX, CONFIG_SENSOR_LOG_LEVEL);
static const uint16_t ism330dhcx_odr_map[] = {0, 12, 26, 52, 104, 208, 416, 833,
1660, 3330, 6660};
static int ism330dhcx_freq_to_odr_val(uint16_t freq)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(ism330dhcx_odr_map); i++) {
if (freq == ism330dhcx_odr_map[i]) {
return i;
}
}
return -EINVAL;
}
static int ism330dhcx_odr_to_freq_val(uint16_t odr)
{
/* for valid index, return value from map */
if (odr < ARRAY_SIZE(ism330dhcx_odr_map)) {
return ism330dhcx_odr_map[odr];
}
/* invalid index, return last entry */
return ism330dhcx_odr_map[ARRAY_SIZE(ism330dhcx_odr_map) - 1];
}
static const uint16_t ism330dhcx_accel_fs_map[] = {2, 16, 4, 8};
static const uint16_t ism330dhcx_accel_fs_sens[] = {1, 8, 2, 4};
static int ism330dhcx_accel_range_to_fs_val(int32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(ism330dhcx_accel_fs_map); i++) {
if (range == ism330dhcx_accel_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
static const uint16_t ism330dhcx_gyro_fs_map[] = {250, 500, 1000, 2000, 125};
static const uint16_t ism330dhcx_gyro_fs_sens[] = {2, 4, 8, 16, 1};
static int ism330dhcx_gyro_range_to_fs_val(int32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(ism330dhcx_gyro_fs_map); i++) {
if (range == ism330dhcx_gyro_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
static inline int ism330dhcx_reboot(const struct device *dev)
{
struct ism330dhcx_data *data = dev->data;
if (ism330dhcx_boot_set(data->ctx, 1) < 0) {
return -EIO;
}
/* Wait sensor turn-on time as per datasheet */
k_busy_wait(35 * USEC_PER_MSEC);
return 0;
}
static int ism330dhcx_accel_set_fs_raw(const struct device *dev, uint8_t fs)
{
struct ism330dhcx_data *data = dev->data;
if (ism330dhcx_xl_full_scale_set(data->ctx, fs) < 0) {
return -EIO;
}
data->accel_fs = fs;
return 0;
}
static int ism330dhcx_accel_set_odr_raw(const struct device *dev, uint8_t odr)
{
struct ism330dhcx_data *data = dev->data;
if (ism330dhcx_xl_data_rate_set(data->ctx, odr) < 0) {
return -EIO;
}
data->accel_freq = ism330dhcx_odr_to_freq_val(odr);
return 0;
}
static int ism330dhcx_gyro_set_fs_raw(const struct device *dev, uint8_t fs)
{
struct ism330dhcx_data *data = dev->data;
if (ism330dhcx_gy_full_scale_set(data->ctx, fs) < 0) {
return -EIO;
}
return 0;
}
static int ism330dhcx_gyro_set_odr_raw(const struct device *dev, uint8_t odr)
{
struct ism330dhcx_data *data = dev->data;
if (ism330dhcx_gy_data_rate_set(data->ctx, odr) < 0) {
return -EIO;
}
return 0;
}
static int ism330dhcx_accel_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = ism330dhcx_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (ism330dhcx_accel_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
return 0;
}
static int ism330dhcx_accel_range_set(const struct device *dev, int32_t range)
{
int fs;
struct ism330dhcx_data *data = dev->data;
fs = ism330dhcx_accel_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (ism330dhcx_accel_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
data->acc_gain = (ism330dhcx_accel_fs_sens[fs] * GAIN_UNIT_XL);
return 0;
}
static int ism330dhcx_accel_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_FULL_SCALE:
return ism330dhcx_accel_range_set(dev, sensor_ms2_to_g(val));
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return ism330dhcx_accel_odr_set(dev, val->val1);
default:
LOG_DBG("Accel attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int ism330dhcx_gyro_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = ism330dhcx_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (ism330dhcx_gyro_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
return 0;
}
static int ism330dhcx_gyro_range_set(const struct device *dev, int32_t range)
{
int fs;
struct ism330dhcx_data *data = dev->data;
fs = ism330dhcx_gyro_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (ism330dhcx_gyro_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
data->gyro_gain = (ism330dhcx_gyro_fs_sens[fs] * GAIN_UNIT_G);
return 0;
}
static int ism330dhcx_gyro_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_FULL_SCALE:
return ism330dhcx_gyro_range_set(dev, sensor_rad_to_degrees(val));
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return ism330dhcx_gyro_odr_set(dev, val->val1);
default:
LOG_DBG("Gyro attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int ism330dhcx_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
return ism330dhcx_accel_config(dev, chan, attr, val);
case SENSOR_CHAN_GYRO_XYZ:
return ism330dhcx_gyro_config(dev, chan, attr, val);
#if defined(CONFIG_ISM330DHCX_SENSORHUB)
case SENSOR_CHAN_MAGN_XYZ:
case SENSOR_CHAN_PRESS:
case SENSOR_CHAN_HUMIDITY:
return ism330dhcx_shub_config(dev, chan, attr, val);
#endif /* CONFIG_ISM330DHCX_SENSORHUB */
default:
LOG_WRN("attr_set() not supported on this channel.");
return -ENOTSUP;
}
return 0;
}
static int ism330dhcx_sample_fetch_accel(const struct device *dev)
{
struct ism330dhcx_data *data = dev->data;
int16_t buf[3];
if (ism330dhcx_acceleration_raw_get(data->ctx, buf) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
data->acc[0] = sys_le16_to_cpu(buf[0]);
data->acc[1] = sys_le16_to_cpu(buf[1]);
data->acc[2] = sys_le16_to_cpu(buf[2]);
return 0;
}
static int ism330dhcx_sample_fetch_gyro(const struct device *dev)
{
struct ism330dhcx_data *data = dev->data;
int16_t buf[3];
if (ism330dhcx_angular_rate_raw_get(data->ctx, buf) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
data->gyro[0] = sys_le16_to_cpu(buf[0]);
data->gyro[1] = sys_le16_to_cpu(buf[1]);
data->gyro[2] = sys_le16_to_cpu(buf[2]);
return 0;
}
#if defined(CONFIG_ISM330DHCX_ENABLE_TEMP)
static int ism330dhcx_sample_fetch_temp(const struct device *dev)
{
struct ism330dhcx_data *data = dev->data;
int16_t buf;
if (ism330dhcx_temperature_raw_get(data->ctx, &buf) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
data->temp_sample = sys_le16_to_cpu(buf);
return 0;
}
#endif
#if defined(CONFIG_ISM330DHCX_SENSORHUB)
static int ism330dhcx_sample_fetch_shub(const struct device *dev)
{
if (ism330dhcx_shub_fetch_external_devs(dev) < 0) {
LOG_DBG("failed to read ext shub devices");
return -EIO;
}
return 0;
}
#endif /* CONFIG_ISM330DHCX_SENSORHUB */
static int ism330dhcx_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
ism330dhcx_sample_fetch_accel(dev);
#if defined(CONFIG_ISM330DHCX_SENSORHUB)
ism330dhcx_sample_fetch_shub(dev);
#endif
break;
case SENSOR_CHAN_GYRO_XYZ:
ism330dhcx_sample_fetch_gyro(dev);
break;
#if defined(CONFIG_ISM330DHCX_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
ism330dhcx_sample_fetch_temp(dev);
break;
#endif
case SENSOR_CHAN_ALL:
ism330dhcx_sample_fetch_accel(dev);
ism330dhcx_sample_fetch_gyro(dev);
#if defined(CONFIG_ISM330DHCX_ENABLE_TEMP)
ism330dhcx_sample_fetch_temp(dev);
#endif
#if defined(CONFIG_ISM330DHCX_SENSORHUB)
ism330dhcx_sample_fetch_shub(dev);
#endif
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void ism330dhcx_accel_convert(struct sensor_value *val, int raw_val,
uint32_t sensitivity)
{
int64_t dval;
/* Sensitivity is exposed in ug/LSB */
/* Convert to m/s^2 */
dval = (int64_t)(raw_val) * sensitivity * SENSOR_G_DOUBLE;
val->val1 = (int32_t)(dval / 1000000);
val->val2 = (int32_t)(dval % 1000000);
}
static inline int ism330dhcx_accel_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct ism330dhcx_data *data,
uint32_t sensitivity)
{
uint8_t i;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
ism330dhcx_accel_convert(val, data->acc[0], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Y:
ism330dhcx_accel_convert(val, data->acc[1], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Z:
ism330dhcx_accel_convert(val, data->acc[2], sensitivity);
break;
case SENSOR_CHAN_ACCEL_XYZ:
for (i = 0; i < 3; i++) {
ism330dhcx_accel_convert(val++, data->acc[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int ism330dhcx_accel_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct ism330dhcx_data *data)
{
return ism330dhcx_accel_get_channel(chan, val, data, data->acc_gain);
}
static inline void ism330dhcx_gyro_convert(struct sensor_value *val, int raw_val,
uint32_t sensitivity)
{
int64_t dval;
/* Sensitivity is exposed in udps/LSB */
/* Convert to rad/s */
dval = (int64_t)(raw_val) * sensitivity * SENSOR_DEG2RAD_DOUBLE;
val->val1 = (int32_t)(dval / 1000000);
val->val2 = (int32_t)(dval % 1000000);
}
static inline int ism330dhcx_gyro_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct ism330dhcx_data *data,
uint32_t sensitivity)
{
uint8_t i;
switch (chan) {
case SENSOR_CHAN_GYRO_X:
ism330dhcx_gyro_convert(val, data->gyro[0], sensitivity);
break;
case SENSOR_CHAN_GYRO_Y:
ism330dhcx_gyro_convert(val, data->gyro[1], sensitivity);
break;
case SENSOR_CHAN_GYRO_Z:
ism330dhcx_gyro_convert(val, data->gyro[2], sensitivity);
break;
case SENSOR_CHAN_GYRO_XYZ:
for (i = 0; i < 3; i++) {
ism330dhcx_gyro_convert(val++, data->gyro[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int ism330dhcx_gyro_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct ism330dhcx_data *data)
{
return ism330dhcx_gyro_get_channel(chan, val, data, data->gyro_gain);
}
#if defined(CONFIG_ISM330DHCX_ENABLE_TEMP)
static void ism330dhcx_gyro_channel_get_temp(struct sensor_value *val,
struct ism330dhcx_data *data)
{
/* val = temp_sample / 256 + 25 */
val->val1 = data->temp_sample / 256 + 25;
val->val2 = (data->temp_sample % 256) * (1000000 / 256);
}
#endif
#if defined(CONFIG_ISM330DHCX_SENSORHUB)
static inline void ism330dhcx_magn_convert(struct sensor_value *val, int raw_val,
uint16_t sensitivity)
{
double dval;
/* Sensitivity is exposed in mgauss/LSB */
dval = (double)(raw_val * sensitivity);
val->val1 = (int32_t)dval / 1000000;
val->val2 = (int32_t)dval % 1000000;
}
static inline int ism330dhcx_magn_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct ism330dhcx_data *data)
{
int16_t sample[3];
int idx;
idx = ism330dhcx_shub_get_idx(SENSOR_CHAN_MAGN_XYZ);
if (idx < 0) {
LOG_DBG("external magn not supported");
return -ENOTSUP;
}
sample[0] = (int16_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8));
sample[1] = (int16_t)(data->ext_data[idx][2] |
(data->ext_data[idx][3] << 8));
sample[2] = (int16_t)(data->ext_data[idx][4] |
(data->ext_data[idx][5] << 8));
switch (chan) {
case SENSOR_CHAN_MAGN_X:
ism330dhcx_magn_convert(val, sample[0], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_Y:
ism330dhcx_magn_convert(val, sample[1], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_Z:
ism330dhcx_magn_convert(val, sample[2], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_XYZ:
ism330dhcx_magn_convert(val, sample[0], data->magn_gain);
ism330dhcx_magn_convert(val + 1, sample[1], data->magn_gain);
ism330dhcx_magn_convert(val + 2, sample[2], data->magn_gain);
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void ism330dhcx_hum_convert(struct sensor_value *val,
struct ism330dhcx_data *data)
{
float rh;
int16_t raw_val;
struct hts221_data *ht = &data->hts221;
int idx;
idx = ism330dhcx_shub_get_idx(SENSOR_CHAN_HUMIDITY);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = ((int16_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8)));
/* find relative humidty by linear interpolation */
rh = (ht->y1 - ht->y0) * raw_val + ht->x1 * ht->y0 - ht->x0 * ht->y1;
rh /= (ht->x1 - ht->x0);
/* convert humidity to integer and fractional part */
val->val1 = rh;
val->val2 = rh * 1000000;
}
static inline void ism330dhcx_press_convert(struct sensor_value *val,
struct ism330dhcx_data *data)
{
int32_t raw_val;
int idx;
idx = ism330dhcx_shub_get_idx(SENSOR_CHAN_PRESS);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = (int32_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8) |
(data->ext_data[idx][2] << 16));
/* Pressure sensitivity is 4096 LSB/hPa */
/* Convert raw_val to val in kPa */
val->val1 = (raw_val >> 12) / 10;
val->val2 = (raw_val >> 12) % 10 * 100000 +
(((int32_t)((raw_val) & 0x0FFF) * 100000L) >> 12);
}
static inline void ism330dhcx_temp_convert(struct sensor_value *val,
struct ism330dhcx_data *data)
{
int16_t raw_val;
int idx;
idx = ism330dhcx_shub_get_idx(SENSOR_CHAN_PRESS);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = (int16_t)(data->ext_data[idx][3] |
(data->ext_data[idx][4] << 8));
/* Temperature sensitivity is 100 LSB/deg C */
val->val1 = raw_val / 100;
val->val2 = (int32_t)raw_val % 100 * (10000);
}
#endif
static int ism330dhcx_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct ism330dhcx_data *data = dev->data;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
ism330dhcx_accel_channel_get(chan, val, data);
break;
case SENSOR_CHAN_GYRO_X:
case SENSOR_CHAN_GYRO_Y:
case SENSOR_CHAN_GYRO_Z:
case SENSOR_CHAN_GYRO_XYZ:
ism330dhcx_gyro_channel_get(chan, val, data);
break;
#if defined(CONFIG_ISM330DHCX_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
ism330dhcx_gyro_channel_get_temp(val, data);
break;
#endif
#if defined(CONFIG_ISM330DHCX_SENSORHUB)
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
case SENSOR_CHAN_MAGN_Z:
case SENSOR_CHAN_MAGN_XYZ:
ism330dhcx_magn_get_channel(chan, val, data);
break;
case SENSOR_CHAN_HUMIDITY:
ism330dhcx_hum_convert(val, data);
break;
case SENSOR_CHAN_PRESS:
ism330dhcx_press_convert(val, data);
break;
case SENSOR_CHAN_AMBIENT_TEMP:
ism330dhcx_temp_convert(val, data);
break;
#endif
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api ism330dhcx_api_funcs = {
.attr_set = ism330dhcx_attr_set,
#if CONFIG_ISM330DHCX_TRIGGER
.trigger_set = ism330dhcx_trigger_set,
#endif
.sample_fetch = ism330dhcx_sample_fetch,
.channel_get = ism330dhcx_channel_get,
};
static int ism330dhcx_init_chip(const struct device *dev)
{
const struct ism330dhcx_config * const cfg = dev->config;
struct ism330dhcx_data *ism330dhcx = dev->data;
uint8_t chip_id;
ism330dhcx->dev = dev;
if (ism330dhcx_device_id_get(ism330dhcx->ctx, &chip_id) < 0) {
LOG_DBG("Failed reading chip id");
return -EIO;
}
LOG_INF("chip id 0x%x", chip_id);
if (chip_id != ISM330DHCX_ID) {
LOG_DBG("Invalid chip id 0x%x", chip_id);
return -EIO;
}
/* reset device */
if (ism330dhcx_reset_set(ism330dhcx->ctx, 1) < 0) {
return -EIO;
}
k_busy_wait(100);
LOG_DBG("accel range is %d", cfg->accel_range);
if (ism330dhcx_accel_range_set(dev, cfg->accel_range) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
LOG_DBG("accel odr is %d", cfg->accel_odr);
if (ism330dhcx_accel_set_odr_raw(dev, cfg->accel_odr) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
LOG_DBG("gyro range is %d", cfg->gyro_range);
if (ism330dhcx_gyro_range_set(dev, cfg->gyro_range) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
LOG_DBG("gyro odr is %d", cfg->gyro_odr);
ism330dhcx->gyro_freq = ism330dhcx_odr_to_freq_val(cfg->gyro_odr);
if (ism330dhcx_gyro_set_odr_raw(dev, cfg->gyro_odr) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
/* Set FIFO bypass mode */
if (ism330dhcx_fifo_mode_set(ism330dhcx->ctx, ISM330DHCX_BYPASS_MODE) < 0) {
LOG_DBG("failed to set FIFO mode");
return -EIO;
}
if (ism330dhcx_block_data_update_set(ism330dhcx->ctx, 1) < 0) {
LOG_DBG("failed to set BDU mode");
return -EIO;
}
return 0;
}
static struct ism330dhcx_data ism330dhcx_data;
static const struct ism330dhcx_config ism330dhcx_config = {
.bus_name = DT_INST_BUS_LABEL(0),
.accel_odr = DT_INST_PROP(0, accel_odr),
.accel_range = DT_INST_PROP(0, accel_range),
.gyro_odr = DT_INST_PROP(0, gyro_odr),
.gyro_range = DT_INST_PROP(0, gyro_range),
#if DT_ANY_INST_ON_BUS_STATUS_OKAY(spi)
.bus_init = ism330dhcx_spi_init,
.spi = SPI_DT_SPEC_INST_GET(0, SPI_OP_MODE_MASTER | SPI_MODE_CPOL |
SPI_MODE_CPHA | SPI_WORD_SET(8), 0),
#elif DT_ANY_INST_ON_BUS_STATUS_OKAY(i2c)
.bus_init = ism330dhcx_i2c_init,
.i2c_slv_addr = DT_INST_REG_ADDR(0),
#else
#error "BUS MACRO NOT DEFINED IN DTS"
#endif
#ifdef CONFIG_ISM330DHCX_TRIGGER
/* One gpio pin declared in DTS */
.int_gpio_port = DT_INST_GPIO_LABEL(0, drdy_gpios),
.int_gpio_pin = DT_INST_GPIO_PIN(0, drdy_gpios),
.int_gpio_flags = DT_INST_GPIO_FLAGS(0, drdy_gpios),
.int_pin = DT_INST_PROP(0, int_pin),
#endif /* CONFIG_ISM330DHCX_TRIGGER */
};
static int ism330dhcx_init(const struct device *dev)
{
const struct ism330dhcx_config * const config = dev->config;
struct ism330dhcx_data *data = dev->data;
data->bus = device_get_binding(config->bus_name);
if (!data->bus) {
LOG_DBG("master not found: %s",
config->bus_name);
return -EINVAL;
}
config->bus_init(dev);
if (ism330dhcx_init_chip(dev) < 0) {
LOG_DBG("failed to initialize chip");
return -EIO;
}
#ifdef CONFIG_ISM330DHCX_TRIGGER
if (ism330dhcx_init_interrupt(dev) < 0) {
LOG_ERR("Failed to initialize interrupt.");
return -EIO;
}
#endif
#ifdef CONFIG_ISM330DHCX_SENSORHUB
if (ism330dhcx_shub_init(dev) < 0) {
LOG_DBG("failed to initialize external chip");
return -EIO;
}
#endif
return 0;
}
static struct ism330dhcx_data ism330dhcx_data;
DEVICE_DT_INST_DEFINE(0, ism330dhcx_init, NULL,
&ism330dhcx_data, &ism330dhcx_config, POST_KERNEL,
CONFIG_SENSOR_INIT_PRIORITY, &ism330dhcx_api_funcs);