blob: 8a7b74eea8f75707122c54905fdd7f159a590b19 [file] [log] [blame]
/*
* Copyright (c) 2010, 2012-2015 Wind River Systems, Inc.
* Copyright (c) 2020 Intel Corp.
* Copyright (c) 2021 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Microchip XEC UART Serial Driver
*
* This is the driver for the Microchip XEC MCU UART. It is NS16550 compatible.
*
*/
#define DT_DRV_COMPAT microchip_xec_uart
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/types.h>
#include <soc.h>
#include <zephyr/init.h>
#include <zephyr/toolchain.h>
#include <zephyr/linker/sections.h>
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/sys/sys_io.h>
#include <zephyr/spinlock.h>
BUILD_ASSERT(IS_ENABLED(CONFIG_SOC_SERIES_MEC172X),
"XEC UART driver only support MEC172x at this time");
/* Clock source is 1.8432 MHz derived from PLL 48 MHz */
#define XEC_UART_CLK_SRC_1P8M 0
/* Clock source is PLL 48 MHz output */
#define XEC_UART_CLK_SRC_48M 1
/* Clock source is the UART_CLK alternate pin function. */
#define XEC_UART_CLK_SRC_EXT_PIN 2
/* register definitions */
#define REG_THR 0x00 /* Transmitter holding reg. */
#define REG_RDR 0x00 /* Receiver data reg. */
#define REG_BRDL 0x00 /* Baud rate divisor (LSB) */
#define REG_BRDH 0x01 /* Baud rate divisor (MSB) */
#define REG_IER 0x01 /* Interrupt enable reg. */
#define REG_IIR 0x02 /* Interrupt ID reg. */
#define REG_FCR 0x02 /* FIFO control reg. */
#define REG_LCR 0x03 /* Line control reg. */
#define REG_MDC 0x04 /* Modem control reg. */
#define REG_LSR 0x05 /* Line status reg. */
#define REG_MSR 0x06 /* Modem status reg. */
#define REG_SCR 0x07 /* scratch register */
#define REG_LD_ACTV 0x330 /* Logical Device activate */
#define REG_LD_CFG 0x3f0 /* Logical Device configuration */
/* equates for interrupt enable register */
#define IER_RXRDY 0x01 /* receiver data ready */
#define IER_TBE 0x02 /* transmit bit enable */
#define IER_LSR 0x04 /* line status interrupts */
#define IER_MSI 0x08 /* modem status interrupts */
/* equates for interrupt identification register */
#define IIR_MSTAT 0x00 /* modem status interrupt */
#define IIR_NIP 0x01 /* no interrupt pending */
#define IIR_THRE 0x02 /* transmit holding register empty interrupt */
#define IIR_RBRF 0x04 /* receiver buffer register full interrupt */
#define IIR_LS 0x06 /* receiver line status interrupt */
#define IIR_MASK 0x07 /* interrupt id bits mask */
#define IIR_ID 0x06 /* interrupt ID mask without NIP */
/* equates for FIFO control register */
#define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */
#define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */
#define FCR_XMITCLR 0x04 /* clear XMIT FIFO */
/*
* Per PC16550D (Literature Number: SNLS378B):
*
* RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in
* the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1
* character in the RCVR FIFO or RCVR holding register, the
* RXRDY pin (29) will be low active. Once it is activated the
* RXRDY pin will go inactive when there are no more charac-
* ters in the FIFO or holding register.
*
* RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the
* FCR3 = 1 and the trigger level or the timeout has been
* reached, the RXRDY pin will go low active. Once it is acti-
* vated it will go inactive when there are no more characters
* in the FIFO or holding register.
*
* TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the
* FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac-
* ters in the XMIT FIFO or XMIT holding register, the TXRDY
* pin (24) will be low active. Once it is activated the TXRDY
* pin will go inactive after the first character is loaded into the
* XMIT FIFO or holding register.
*
* TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when
* FCR3 = 1 and there are no characters in the XMIT FIFO, the
* TXRDY pin will go low active. This pin will become inactive
* when the XMIT FIFO is completely full.
*/
#define FCR_MODE0 0x00 /* set receiver in mode 0 */
#define FCR_MODE1 0x08 /* set receiver in mode 1 */
/* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */
#define FCR_FIFO_1 0x00 /* 1 byte in RCVR FIFO */
#define FCR_FIFO_4 0x40 /* 4 bytes in RCVR FIFO */
#define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */
#define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */
/* constants for line control register */
#define LCR_CS5 0x00 /* 5 bits data size */
#define LCR_CS6 0x01 /* 6 bits data size */
#define LCR_CS7 0x02 /* 7 bits data size */
#define LCR_CS8 0x03 /* 8 bits data size */
#define LCR_2_STB 0x04 /* 2 stop bits */
#define LCR_1_STB 0x00 /* 1 stop bit */
#define LCR_PEN 0x08 /* parity enable */
#define LCR_PDIS 0x00 /* parity disable */
#define LCR_EPS 0x10 /* even parity select */
#define LCR_SP 0x20 /* stick parity select */
#define LCR_SBRK 0x40 /* break control bit */
#define LCR_DLAB 0x80 /* divisor latch access enable */
/* constants for the modem control register */
#define MCR_DTR 0x01 /* dtr output */
#define MCR_RTS 0x02 /* rts output */
#define MCR_OUT1 0x04 /* output #1 */
#define MCR_OUT2 0x08 /* output #2 */
#define MCR_LOOP 0x10 /* loop back */
#define MCR_AFCE 0x20 /* auto flow control enable */
/* constants for line status register */
#define LSR_RXRDY 0x01 /* receiver data available */
#define LSR_OE 0x02 /* overrun error */
#define LSR_PE 0x04 /* parity error */
#define LSR_FE 0x08 /* framing error */
#define LSR_BI 0x10 /* break interrupt */
#define LSR_EOB_MASK 0x1E /* Error or Break mask */
#define LSR_THRE 0x20 /* transmit holding register empty */
#define LSR_TEMT 0x40 /* transmitter empty */
/* constants for modem status register */
#define MSR_DCTS 0x01 /* cts change */
#define MSR_DDSR 0x02 /* dsr change */
#define MSR_DRI 0x04 /* ring change */
#define MSR_DDCD 0x08 /* data carrier change */
#define MSR_CTS 0x10 /* complement of cts */
#define MSR_DSR 0x20 /* complement of dsr */
#define MSR_RI 0x40 /* complement of ring signal */
#define MSR_DCD 0x80 /* complement of dcd */
#define IIRC(dev) (((struct uart_xec_dev_data *)(dev)->data)->iir_cache)
/* device config */
struct uart_xec_device_config {
struct uart_regs *regs;
uint32_t sys_clk_freq;
uint8_t girq_id;
uint8_t girq_pos;
uint8_t pcr_idx;
uint8_t pcr_bitpos;
const struct pinctrl_dev_config *pcfg;
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
uart_irq_config_func_t irq_config_func;
#endif
};
/** Device data structure */
struct uart_xec_dev_data {
struct uart_config uart_config;
struct k_spinlock lock;
uint8_t fcr_cache; /**< cache of FCR write only register */
uint8_t iir_cache; /**< cache of IIR since it clears when read */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t cb; /**< Callback function pointer */
void *cb_data; /**< Callback function arg */
#endif
};
static const struct uart_driver_api uart_xec_driver_api;
static void set_baud_rate(const struct device *dev, uint32_t baud_rate)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data * const dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
uint32_t divisor; /* baud rate divisor */
uint8_t lcr_cache;
if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) {
/*
* calculate baud rate divisor. a variant of
* (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5)
*/
divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3))
/ baud_rate) >> 4;
/* set the DLAB to access the baud rate divisor registers */
lcr_cache = regs->LCR;
regs->LCR = LCR_DLAB | lcr_cache;
regs->RTXB = (unsigned char)(divisor & 0xff);
/* bit[7]=0 1.8MHz clock source, =1 48MHz clock source */
regs->IER = (unsigned char)((divisor >> 8) & 0x7f);
/* restore the DLAB to access the baud rate divisor registers */
regs->LCR = lcr_cache;
dev_data->uart_config.baudrate = baud_rate;
}
}
/*
* Configure UART.
* MCHP XEC UART defaults to reset if external Host VCC_PWRGD is inactive.
* We must change the UART reset signal to XEC VTR_PWRGD. Make sure UART
* clock source is an internal clock and UART pins are not inverted.
*/
static int uart_xec_configure(const struct device *dev,
const struct uart_config *cfg)
{
struct uart_xec_dev_data * const dev_data = dev->data;
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_regs *regs = dev_cfg->regs;
uint8_t lcr_cache;
/* temp for return value if error occurs in this locked region */
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
ARG_UNUSED(dev_data);
dev_data->fcr_cache = 0U;
dev_data->iir_cache = 0U;
/* XEC UART specific configuration and enable */
regs->CFG_SEL &= ~(MCHP_UART_LD_CFG_RESET_VCC |
MCHP_UART_LD_CFG_EXTCLK | MCHP_UART_LD_CFG_INVERT);
/* set activate to enable clocks */
regs->ACTV |= MCHP_UART_LD_ACTIVATE;
set_baud_rate(dev, cfg->baudrate);
/* Local structure to hold temporary values */
struct uart_config uart_cfg;
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
uart_cfg.data_bits = LCR_CS5;
break;
case UART_CFG_DATA_BITS_6:
uart_cfg.data_bits = LCR_CS6;
break;
case UART_CFG_DATA_BITS_7:
uart_cfg.data_bits = LCR_CS7;
break;
case UART_CFG_DATA_BITS_8:
uart_cfg.data_bits = LCR_CS8;
break;
default:
ret = -ENOTSUP;
goto out;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uart_cfg.stop_bits = LCR_1_STB;
break;
case UART_CFG_STOP_BITS_2:
uart_cfg.stop_bits = LCR_2_STB;
break;
default:
ret = -ENOTSUP;
goto out;
}
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
uart_cfg.parity = LCR_PDIS;
break;
case UART_CFG_PARITY_EVEN:
uart_cfg.parity = LCR_EPS;
break;
default:
ret = -ENOTSUP;
goto out;
}
dev_data->uart_config = *cfg;
/* data bits, stop bits, parity, clear DLAB */
regs->LCR = uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity;
regs->MCR = MCR_OUT2 | MCR_RTS | MCR_DTR;
/*
* Program FIFO: enabled, mode 0
* generate the interrupt at 8th byte
* Clear TX and RX FIFO
*/
dev_data->fcr_cache = FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR |
FCR_XMITCLR;
regs->IIR_FCR = dev_data->fcr_cache;
/* clear the port */
lcr_cache = regs->LCR;
regs->LCR = LCR_DLAB | lcr_cache;
regs->SCR = regs->RTXB;
regs->LCR = lcr_cache;
/* disable interrupts */
regs->IER = 0;
out:
k_spin_unlock(&dev_data->lock, key);
return ret;
};
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_xec_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_xec_dev_data *data = dev->data;
cfg->baudrate = data->uart_config.baudrate;
cfg->parity = data->uart_config.parity;
cfg->stop_bits = data->uart_config.stop_bits;
cfg->data_bits = data->uart_config.data_bits;
cfg->flow_ctrl = data->uart_config.flow_ctrl;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
/**
* @brief Initialize individual UART port
*
* This routine is called to reset the chip in a quiescent state.
*
* @param dev UART device struct
*
* @return 0 if successful, failed otherwise
*/
static int uart_xec_init(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
int ret;
ret = z_mchp_xec_pcr_periph_sleep(dev_cfg->pcr_idx,
dev_cfg->pcr_bitpos, 0);
if (ret != 0) {
return ret;
}
ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
return ret;
}
ret = uart_xec_configure(dev, &dev_data->uart_config);
if (ret != 0) {
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
dev_cfg->irq_config_func(dev);
#endif
return 0;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_xec_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
int ret = -1;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
if ((regs->LSR & LSR_RXRDY) != 0) {
/* got a character */
*c = regs->RTXB;
ret = 0;
}
k_spin_unlock(&dev_data->lock, key);
return ret;
}
/**
* @brief Output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* If the hardware flow control is enabled then the handshake signal CTS has to
* be asserted in order to send a character.
*
* @param dev UART device struct
* @param c Character to send
*/
static void uart_xec_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
while ((regs->LSR & LSR_THRE) == 0) {
;
}
regs->RTXB = c;
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Check if an error was received
*
* @param dev UART device struct
*
* @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING,
* UART_BREAK if an error was detected, 0 otherwise.
*/
static int uart_xec_err_check(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
int check = regs->LSR & LSR_EOB_MASK;
k_spin_unlock(&dev_data->lock, key);
return check >> 1;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
*
* @param dev UART device struct
* @param tx_data Data to transmit
* @param size Number of bytes to send
*
* @return Number of bytes sent
*/
static int uart_xec_fifo_fill(const struct device *dev, const uint8_t *tx_data,
int size)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
int i;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
for (i = 0; (i < size) && (regs->LSR & LSR_THRE) != 0; i++) {
regs->RTXB = tx_data[i];
}
k_spin_unlock(&dev_data->lock, key);
return i;
}
/**
* @brief Read data from FIFO
*
* @param dev UART device struct
* @param rxData Data container
* @param size Container size
*
* @return Number of bytes read
*/
static int uart_xec_fifo_read(const struct device *dev, uint8_t *rx_data,
const int size)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
int i;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
for (i = 0; (i < size) && (regs->LSR & LSR_RXRDY) != 0; i++) {
rx_data[i] = regs->RTXB;
}
k_spin_unlock(&dev_data->lock, key);
return i;
}
/**
* @brief Enable TX interrupt in IER
*
* @param dev UART device struct
*/
static void uart_xec_irq_tx_enable(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
regs->IER |= IER_TBE;
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Disable TX interrupt in IER
*
* @param dev UART device struct
*/
static void uart_xec_irq_tx_disable(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
regs->IER &= ~(IER_TBE);
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Check if Tx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_xec_irq_tx_ready(const struct device *dev)
{
struct uart_xec_dev_data *dev_data = dev->data;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0;
k_spin_unlock(&dev_data->lock, key);
return ret;
}
/**
* @brief Check if nothing remains to be transmitted
*
* @param dev UART device struct
*
* @return 1 if nothing remains to be transmitted, 0 otherwise
*/
static int uart_xec_irq_tx_complete(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
int ret = ((regs->LSR & (LSR_TEMT | LSR_THRE))
== (LSR_TEMT | LSR_THRE)) ? 1 : 0;
k_spin_unlock(&dev_data->lock, key);
return ret;
}
/**
* @brief Enable RX interrupt in IER
*
* @param dev UART device struct
*/
static void uart_xec_irq_rx_enable(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
regs->IER |= IER_RXRDY;
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Disable RX interrupt in IER
*
* @param dev UART device struct
*/
static void uart_xec_irq_rx_disable(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
regs->IER &= ~(IER_RXRDY);
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_xec_irq_rx_ready(const struct device *dev)
{
struct uart_xec_dev_data *dev_data = dev->data;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0;
k_spin_unlock(&dev_data->lock, key);
return ret;
}
/**
* @brief Enable error interrupt in IER
*
* @param dev UART device struct
*/
static void uart_xec_irq_err_enable(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
regs->IER |= IER_LSR;
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Disable error interrupt in IER
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static void uart_xec_irq_err_disable(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
regs->IER &= ~(IER_LSR);
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Check if any IRQ is pending
*
* @param dev UART device struct
*
* @return 1 if an IRQ is pending, 0 otherwise
*/
static int uart_xec_irq_is_pending(const struct device *dev)
{
struct uart_xec_dev_data *dev_data = dev->data;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0;
k_spin_unlock(&dev_data->lock, key);
return ret;
}
/**
* @brief Update cached contents of IIR
*
* @param dev UART device struct
*
* @return Always 1
*/
static int uart_xec_irq_update(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
IIRC(dev) = regs->IIR_FCR;
k_spin_unlock(&dev_data->lock, key);
return 1;
}
/**
* @brief Set the callback function pointer for IRQ.
*
* @param dev UART device struct
* @param cb Callback function pointer.
*/
static void uart_xec_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_xec_dev_data * const dev_data = dev->data;
k_spinlock_key_t key = k_spin_lock(&dev_data->lock);
dev_data->cb = cb;
dev_data->cb_data = cb_data;
k_spin_unlock(&dev_data->lock, key);
}
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param arg Argument to ISR.
*/
static void uart_xec_isr(const struct device *dev)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data * const dev_data = dev->data;
if (dev_data->cb) {
dev_data->cb(dev, dev_data->cb_data);
}
/* clear ECIA GIRQ R/W1C status bit after UART status cleared */
mchp_xec_ecia_girq_src_clr(dev_cfg->girq_id, dev_cfg->girq_pos);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_XEC_LINE_CTRL
/**
* @brief Manipulate line control for UART.
*
* @param dev UART device struct
* @param ctrl The line control to be manipulated
* @param val Value to set the line control
*
* @return 0 if successful, failed otherwise
*/
static int uart_xec_line_ctrl_set(const struct device *dev,
uint32_t ctrl, uint32_t val)
{
const struct uart_xec_device_config * const dev_cfg = dev->config;
struct uart_xec_dev_data *dev_data = dev->data;
struct uart_regs *regs = dev_cfg->regs;
uint32_t mdc, chg;
k_spinlock_key_t key;
switch (ctrl) {
case UART_LINE_CTRL_BAUD_RATE:
set_baud_rate(dev, val);
return 0;
case UART_LINE_CTRL_RTS:
case UART_LINE_CTRL_DTR:
key = k_spin_lock(&dev_data->lock);
mdc = regs->MCR;
if (ctrl == UART_LINE_CTRL_RTS) {
chg = MCR_RTS;
} else {
chg = MCR_DTR;
}
if (val) {
mdc |= chg;
} else {
mdc &= ~(chg);
}
regs->MCR = mdc;
k_spin_unlock(&dev_data->lock, key);
return 0;
}
return -ENOTSUP;
}
#endif /* CONFIG_UART_XEC_LINE_CTRL */
static const struct uart_driver_api uart_xec_driver_api = {
.poll_in = uart_xec_poll_in,
.poll_out = uart_xec_poll_out,
.err_check = uart_xec_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_xec_configure,
.config_get = uart_xec_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_xec_fifo_fill,
.fifo_read = uart_xec_fifo_read,
.irq_tx_enable = uart_xec_irq_tx_enable,
.irq_tx_disable = uart_xec_irq_tx_disable,
.irq_tx_ready = uart_xec_irq_tx_ready,
.irq_tx_complete = uart_xec_irq_tx_complete,
.irq_rx_enable = uart_xec_irq_rx_enable,
.irq_rx_disable = uart_xec_irq_rx_disable,
.irq_rx_ready = uart_xec_irq_rx_ready,
.irq_err_enable = uart_xec_irq_err_enable,
.irq_err_disable = uart_xec_irq_err_disable,
.irq_is_pending = uart_xec_irq_is_pending,
.irq_update = uart_xec_irq_update,
.irq_callback_set = uart_xec_irq_callback_set,
#endif
#ifdef CONFIG_UART_XEC_LINE_CTRL
.line_ctrl_set = uart_xec_line_ctrl_set,
#endif
};
#define DEV_CONFIG_REG_INIT(n) \
.regs = (struct uart_regs *)(DT_INST_REG_ADDR(n)),
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define DEV_CONFIG_IRQ_FUNC_INIT(n) \
.irq_config_func = irq_config_func##n,
#define UART_XEC_IRQ_FUNC_DECLARE(n) \
static void irq_config_func##n(const struct device *dev);
#define UART_XEC_IRQ_FUNC_DEFINE(n) \
static void irq_config_func##n(const struct device *dev) \
{ \
ARG_UNUSED(dev); \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
uart_xec_isr, DEVICE_DT_INST_GET(n), \
0); \
irq_enable(DT_INST_IRQN(n)); \
mchp_xec_ecia_girq_src_en(DT_INST_PROP_BY_IDX(n, girqs, 0), \
DT_INST_PROP_BY_IDX(n, girqs, 1)); \
}
#else
/* !CONFIG_UART_INTERRUPT_DRIVEN */
#define DEV_CONFIG_IRQ_FUNC_INIT(n)
#define UART_XEC_IRQ_FUNC_DECLARE(n)
#define UART_XEC_IRQ_FUNC_DEFINE(n)
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define DEV_DATA_FLOW_CTRL(n) \
DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE)
#define UART_XEC_DEVICE_INIT(n) \
\
PINCTRL_DT_INST_DEFINE(n); \
\
UART_XEC_IRQ_FUNC_DECLARE(n); \
\
static const struct uart_xec_device_config uart_xec_dev_cfg_##n = { \
DEV_CONFIG_REG_INIT(n) \
.sys_clk_freq = DT_INST_PROP(n, clock_frequency), \
.girq_id = DT_INST_PROP_BY_IDX(n, girqs, 0), \
.girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1), \
.pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0), \
.pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
DEV_CONFIG_IRQ_FUNC_INIT(n) \
}; \
static struct uart_xec_dev_data uart_xec_dev_data_##n = { \
.uart_config.baudrate = DT_INST_PROP_OR(n, current_speed, 0), \
.uart_config.parity = UART_CFG_PARITY_NONE, \
.uart_config.stop_bits = UART_CFG_STOP_BITS_1, \
.uart_config.data_bits = UART_CFG_DATA_BITS_8, \
.uart_config.flow_ctrl = DEV_DATA_FLOW_CTRL(n), \
}; \
DEVICE_DT_INST_DEFINE(n, &uart_xec_init, NULL, \
&uart_xec_dev_data_##n, \
&uart_xec_dev_cfg_##n, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_xec_driver_api); \
UART_XEC_IRQ_FUNC_DEFINE(n)
DT_INST_FOREACH_STATUS_OKAY(UART_XEC_DEVICE_INIT)