| /* |
| * Copyright (c) 2021 Intel Corporation |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <cpuid.h> /* Header provided by the toolchain. */ |
| |
| #include <zephyr/init.h> |
| #include <zephyr/arch/x86/cpuid.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <zephyr/sys_clock.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/drivers/interrupt_controller/loapic.h> |
| #include <zephyr/irq.h> |
| |
| /* |
| * This driver is selected when either CONFIG_APIC_TIMER_TSC or |
| * CONFIG_APIC_TSC_DEADLINE_TIMER is selected. The later is preferred over |
| * the former when the TSC deadline comparator is available. |
| */ |
| BUILD_ASSERT((!IS_ENABLED(CONFIG_APIC_TIMER_TSC) && |
| IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER)) || |
| (!IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER) && |
| IS_ENABLED(CONFIG_APIC_TIMER_TSC)), |
| "one of CONFIG_APIC_TIMER_TSC or CONFIG_APIC_TSC_DEADLINE_TIMER must be set"); |
| |
| /* |
| * If the TSC deadline comparator is not supported then the ICR in one-shot |
| * mode is used as a fallback method to trigger the next timeout interrupt. |
| * Those config symbols must then be defined: |
| * |
| * CONFIG_APIC_TIMER_TSC_N=<n> |
| * CONFIG_APIC_TIMER_TSC_M=<m> |
| * |
| * These are set to indicate the ratio of the TSC frequency to the local |
| * APIC timer frequency. This can be found via CPUID 0x15 (n = EBX, m = EAX) |
| * on most CPUs. |
| */ |
| #ifdef CONFIG_APIC_TIMER_TSC |
| #define APIC_TIMER_TSC_M CONFIG_APIC_TIMER_TSC_M |
| #define APIC_TIMER_TSC_N CONFIG_APIC_TIMER_TSC_N |
| #else |
| #define APIC_TIMER_TSC_M 1 |
| #define APIC_TIMER_TSC_N 1 |
| #endif |
| |
| #define IA32_TSC_DEADLINE_MSR 0x6e0 |
| #define IA32_TSC_ADJUST_MSR 0x03b |
| |
| #define CYC_PER_TICK (uint32_t)(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ |
| / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| |
| /* the unsigned long cast limits divisors to native CPU register width */ |
| #define cycle_diff_t unsigned long |
| #define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
| |
| /* |
| * We have two constraints on the maximum number of cycles we can wait for. |
| * |
| * 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
| * |
| * 2) The number of cycles between two reports must fit in a cycle_diff_t |
| * variable before converting it to ticks. |
| * |
| * Then: |
| * |
| * 3) Pick the smallest between (1) and (2). |
| * |
| * 4) Take into account some room for the unavoidable IRQ servicing latency. |
| * Let's use 3/4 of the max range. |
| * |
| * Finally let's add the LSB value to the result so to clear out a bunch of |
| * consecutive set bits coming from the original max values to produce a |
| * nicer literal for assembly generation. |
| */ |
| #define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
| #define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
| #define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
| #define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
| #define CYCLES_MAX (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
| |
| struct apic_timer_lvt { |
| uint8_t vector : 8; |
| uint8_t unused0 : 8; |
| uint8_t masked : 1; |
| enum { ONE_SHOT, PERIODIC, TSC_DEADLINE } mode: 2; |
| uint32_t unused2 : 13; |
| }; |
| |
| static struct k_spinlock lock; |
| static uint64_t last_cycle; |
| static uint64_t last_tick; |
| static uint32_t last_elapsed; |
| static union { uint32_t val; struct apic_timer_lvt lvt; } lvt_reg; |
| |
| static ALWAYS_INLINE uint64_t rdtsc(void) |
| { |
| uint32_t hi, lo; |
| |
| __asm__ volatile("rdtsc" : "=d"(hi), "=a"(lo)); |
| return lo + (((uint64_t)hi) << 32); |
| } |
| |
| static inline void wrmsr(int32_t msr, uint64_t val) |
| { |
| uint32_t hi = (uint32_t) (val >> 32); |
| uint32_t lo = (uint32_t) val; |
| |
| __asm__ volatile("wrmsr" :: "d"(hi), "a"(lo), "c"(msr)); |
| } |
| |
| static void set_trigger(uint64_t deadline) |
| { |
| if (IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER)) { |
| wrmsr(IA32_TSC_DEADLINE_MSR, deadline); |
| } else { |
| /* use the timer ICR to trigger next interrupt */ |
| uint64_t curr_cycle = rdtsc(); |
| uint64_t delta_cycles = deadline - MIN(deadline, curr_cycle); |
| uint64_t icr = (delta_cycles * APIC_TIMER_TSC_M) / APIC_TIMER_TSC_N; |
| |
| /* cap icr to 32 bits, and not zero */ |
| icr = CLAMP(icr, 1, UINT32_MAX); |
| x86_write_loapic(LOAPIC_TIMER_ICR, icr); |
| } |
| } |
| |
| static void isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t curr_cycle = rdtsc(); |
| uint64_t delta_cycles = curr_cycle - last_cycle; |
| uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; |
| |
| last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; |
| last_tick += delta_ticks; |
| last_elapsed = 0; |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| uint64_t next_cycle = last_cycle + CYC_PER_TICK; |
| |
| set_trigger(next_cycle); |
| } |
| |
| k_spin_unlock(&lock, key); |
| sys_clock_announce(delta_ticks); |
| } |
| |
| void sys_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| ARG_UNUSED(idle); |
| |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t next_cycle; |
| |
| if (ticks == K_TICKS_FOREVER) { |
| next_cycle = last_cycle + CYCLES_MAX; |
| } else { |
| next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; |
| if ((next_cycle - last_cycle) > CYCLES_MAX) { |
| next_cycle = last_cycle + CYCLES_MAX; |
| } |
| } |
| |
| /* |
| * Interpreted strictly, the IA SDM description of the |
| * TSC_DEADLINE MSR implies that it will trigger an immediate |
| * interrupt if we try to set an expiration across the 64 bit |
| * rollover. Unfortunately there's no way to test that as on |
| * real hardware it requires more than a century of uptime, |
| * but this is cheap and safe. |
| */ |
| if (next_cycle < last_cycle) { |
| next_cycle = UINT64_MAX; |
| } |
| set_trigger(next_cycle); |
| |
| k_spin_unlock(&lock, key); |
| } |
| |
| uint32_t sys_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t curr_cycle = rdtsc(); |
| uint64_t delta_cycles = curr_cycle - last_cycle; |
| uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; |
| |
| last_elapsed = delta_ticks; |
| k_spin_unlock(&lock, key); |
| return delta_ticks; |
| } |
| |
| uint32_t sys_clock_cycle_get_32(void) |
| { |
| return (uint32_t) rdtsc(); |
| } |
| |
| uint64_t sys_clock_cycle_get_64(void) |
| { |
| return rdtsc(); |
| } |
| |
| static inline uint32_t timer_irq(void) |
| { |
| /* The Zephyr APIC API is... idiosyncratic. The timer is a |
| * "local vector table" interrupt. These aren't system IRQs |
| * presented to the IO-APIC, they're indices into a register |
| * array in the local APIC. By Zephyr convention they come |
| * after all the external IO-APIC interrupts, but that number |
| * changes depending on device configuration so we have to |
| * fetch it at runtime. The timer happens to be the first |
| * entry in the table. |
| */ |
| return z_loapic_irq_base(); |
| } |
| |
| /* The TSC_ADJUST MSR implements a synchronized offset such that |
| * multiple CPUs (within a socket, anyway) can synchronize exactly, or |
| * implement managed timing spaces for guests in a recoverable way, |
| * etc... We set it to zero on all cores for simplicity, because |
| * firmware often leaves it in an inconsistent state between cores. |
| */ |
| static void clear_tsc_adjust(void) |
| { |
| /* But don't touch it on ACRN, where an hypervisor bug |
| * confuses the APIC emulation and deadline interrupts don't |
| * arrive. |
| */ |
| #ifndef CONFIG_BOARD_ACRN |
| wrmsr(IA32_TSC_ADJUST_MSR, 0); |
| #endif |
| } |
| |
| void smp_timer_init(void) |
| { |
| /* Copy the LVT configuration from CPU0, because IRQ_CONNECT() |
| * doesn't know how to manage LVT interrupts for anything |
| * other than the calling/initial CPU. Same fence needed to |
| * prevent later MSR writes from reordering before the APIC |
| * configuration write. |
| */ |
| x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); |
| __asm__ volatile("mfence" ::: "memory"); |
| clear_tsc_adjust(); |
| irq_enable(timer_irq()); |
| } |
| |
| static int sys_clock_driver_init(void) |
| { |
| #ifdef CONFIG_ASSERT |
| uint32_t eax, ebx, ecx, edx; |
| |
| if (IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER)) { |
| ecx = 0; /* prevent compiler warning */ |
| __get_cpuid(CPUID_BASIC_INFO_1, &eax, &ebx, &ecx, &edx); |
| __ASSERT((ecx & BIT(24)) != 0, "No TSC Deadline support"); |
| } |
| |
| edx = 0; /* prevent compiler warning */ |
| __get_cpuid(0x80000007, &eax, &ebx, &ecx, &edx); |
| __ASSERT((edx & BIT(8)) != 0, "No Invariant TSC support"); |
| |
| if (IS_ENABLED(CONFIG_SMP)) { |
| ebx = 0; /* prevent compiler warning */ |
| __get_cpuid_count(CPUID_EXTENDED_FEATURES_LVL, 0, &eax, &ebx, &ecx, &edx); |
| __ASSERT((ebx & BIT(1)) != 0, "No TSC_ADJUST MSR support"); |
| } |
| #endif |
| |
| if (IS_ENABLED(CONFIG_SMP)) { |
| clear_tsc_adjust(); |
| } |
| |
| /* Timer interrupt number is runtime-fetched, so can't use |
| * static IRQ_CONNECT() |
| */ |
| irq_connect_dynamic(timer_irq(), CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0); |
| |
| if (IS_ENABLED(CONFIG_APIC_TIMER_TSC)) { |
| uint32_t timer_conf; |
| |
| timer_conf = x86_read_loapic(LOAPIC_TIMER_CONFIG); |
| timer_conf &= ~0x0f; /* clear divider bits */ |
| timer_conf |= 0x0b; /* divide by 1 */ |
| x86_write_loapic(LOAPIC_TIMER_CONFIG, timer_conf); |
| } |
| |
| lvt_reg.val = x86_read_loapic(LOAPIC_TIMER); |
| lvt_reg.lvt.mode = IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER) ? |
| TSC_DEADLINE : ONE_SHOT; |
| lvt_reg.lvt.masked = 0; |
| x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); |
| |
| /* Per the SDM, the TSC_DEADLINE MSR is not serializing, so |
| * this fence is needed to be sure that an upcoming MSR write |
| * (i.e. a timeout we're about to set) cannot possibly reorder |
| * around the initialization we just did. |
| */ |
| __asm__ volatile("mfence" ::: "memory"); |
| |
| last_tick = rdtsc() / CYC_PER_TICK; |
| last_cycle = last_tick * CYC_PER_TICK; |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| set_trigger(last_cycle + CYC_PER_TICK); |
| } |
| irq_enable(timer_irq()); |
| |
| return 0; |
| } |
| |
| SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
| CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |