blob: af2535840641ee44752daf9302242ca168befe3b [file] [log] [blame] [edit]
/*
* Copyright (c) 2019 Richard Osterloh <richard.osterloh@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_DOMAIN flash_stm32g4
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_system.h>
#include "flash_stm32.h"
#define STM32G4_SERIES_MAX_FLASH 512
#define BANK2_OFFSET (KB(STM32G4_SERIES_MAX_FLASH) / 2)
/*
* offset and len must be aligned on 8 for write,
* positive and not beyond end of flash
*/
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
#if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH)
/*
* In case of bank1/2 discontinuity, the range should not
* start before bank2 and end beyond bank1 at the same time.
* Locations beyond bank2 are caught by flash_stm32_range_exists.
*/
if ((offset < BANK2_OFFSET) && (offset + len > FLASH_SIZE / 2)) {
return 0;
}
#endif
return (!write || (offset % 8 == 0 && len % 8 == 0U)) &&
flash_stm32_range_exists(dev, offset, len);
}
static inline void flush_cache(FLASH_TypeDef *regs)
{
if (regs->ACR & FLASH_ACR_DCEN) {
regs->ACR &= ~FLASH_ACR_DCEN;
/* Datasheet: DCRST: Data cache reset
* This bit can be written only when the data cache is disabled
*/
regs->ACR |= FLASH_ACR_DCRST;
regs->ACR &= ~FLASH_ACR_DCRST;
regs->ACR |= FLASH_ACR_DCEN;
}
if (regs->ACR & FLASH_ACR_ICEN) {
regs->ACR &= ~FLASH_ACR_ICEN;
/* Datasheet: ICRST: Instruction cache reset :
* This bit can be written only when the instruction cache
* is disabled
*/
regs->ACR |= FLASH_ACR_ICRST;
regs->ACR &= ~FLASH_ACR_ICRST;
regs->ACR |= FLASH_ACR_ICEN;
}
}
static int write_dword(const struct device *dev, off_t offset, uint64_t val)
{
volatile uint32_t *flash = (uint32_t *)(offset + CONFIG_FLASH_BASE_ADDRESS);
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#if defined(FLASH_STM32_DBANK)
bool dcache_enabled = false;
#endif /* FLASH_STM32_DBANK */
uint32_t tmp;
int rc;
/* if the control register is locked, do not fail silently */
if (regs->CR & FLASH_CR_LOCK) {
LOG_ERR("CR locked");
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if this double word is erased and value isn't 0.
*
* It is allowed to write only zeros over an already written dword
* See 3.3.7 in reference manual.
*/
if ((flash[0] != 0xFFFFFFFFUL ||
flash[1] != 0xFFFFFFFFUL) && val != 0UL) {
LOG_ERR("Word at offs %ld not erased", (long)offset);
return -EIO;
}
#if defined(FLASH_STM32_DBANK)
/*
* Disable the data cache to avoid the silicon errata ES0430 Rev 7 2.2.2:
* "Data cache might be corrupted during Flash memory read-while-write operation"
*/
if (regs->ACR & FLASH_ACR_DCEN) {
dcache_enabled = true;
regs->ACR &= (~FLASH_ACR_DCEN);
}
#endif /* FLASH_STM32_DBANK */
/* Set the PG bit */
regs->CR |= FLASH_CR_PG;
/* Flush the register write */
tmp = regs->CR;
/* Perform the data write operation at the desired memory address */
flash[0] = (uint32_t)val;
flash[1] = (uint32_t)(val >> 32);
/* Wait until the BSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Clear the PG bit */
regs->CR &= (~FLASH_CR_PG);
#if defined(FLASH_STM32_DBANK)
/* Reset/enable the data cache if previously enabled */
if (dcache_enabled) {
regs->ACR |= FLASH_ACR_DCRST;
regs->ACR &= (~FLASH_ACR_DCRST);
regs->ACR |= FLASH_ACR_DCEN;
}
#endif /* FLASH_STM32_DBANK */
return rc;
}
static int erase_page(const struct device *dev, unsigned int offset)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint32_t tmp;
int rc;
int page;
/* if the control register is locked, do not fail silently */
if (regs->CR & FLASH_CR_LOCK) {
LOG_ERR("CR locked");
return -EIO;
}
/* Check that no Flash memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
#if defined(FLASH_STM32_DBANK)
bool bank_swap;
/* Check whether bank1/2 are swapped */
bank_swap = (LL_SYSCFG_GetFlashBankMode() == LL_SYSCFG_BANKMODE_BANK2);
if ((offset < (FLASH_SIZE / 2)) && !bank_swap) {
/* The pages to be erased is in bank 1 */
regs->CR &= ~FLASH_CR_BKER_Msk;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset >= BANK2_OFFSET) && bank_swap) {
/* The pages to be erased is in bank 1 */
regs->CR &= ~FLASH_CR_BKER_Msk;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset < (FLASH_SIZE / 2)) && bank_swap) {
/* The pages to be erased is in bank 2 */
regs->CR |= FLASH_CR_BKER;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else if ((offset >= BANK2_OFFSET) && !bank_swap) {
/* The pages to be erased is in bank 2 */
regs->CR |= FLASH_CR_BKER;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else {
LOG_ERR("Offset %d does not exist", offset);
return -EINVAL;
}
#else
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d", page);
#endif
/* Set the PER bit and select the page you wish to erase */
regs->CR |= FLASH_CR_PER;
regs->CR &= ~FLASH_CR_PNB_Msk;
regs->CR |= (page << FLASH_CR_PNB_Pos);
/* Set the STRT bit */
regs->CR |= FLASH_CR_STRT;
/* flush the register write */
tmp = regs->CR;
/* Wait for the BSY bit */
rc = flash_stm32_wait_flash_idle(dev);
flush_cache(regs);
#ifdef FLASH_STM32_DBANK
regs->CR &= ~(FLASH_CR_PER | FLASH_CR_BKER);
#else
regs->CR &= ~(FLASH_CR_PER);
#endif
return rc;
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
unsigned int address = offset;
int rc = 0;
for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) {
rc = erase_page(dev, address);
if (rc < 0) {
break;
}
}
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int i, rc = 0;
for (i = 0; i < len; i += 8, offset += 8) {
rc = write_dword(dev, offset, ((const uint64_t *) data)[i>>3]);
if (rc < 0) {
return rc;
}
}
return rc;
}
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
ARG_UNUSED(dev);
#if defined(FLASH_STM32_DBANK) && (CONFIG_FLASH_SIZE < STM32G4_SERIES_MAX_FLASH)
#define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2)
static struct flash_pages_layout stm32g4_flash_layout[3];
if (stm32g4_flash_layout[0].pages_count == 0) {
/* Bank1 */
stm32g4_flash_layout[0].pages_count = PAGES_PER_BANK;
stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
/* Dummy page corresponding to discontinuity between bank1/2 */
stm32g4_flash_layout[1].pages_count = 1;
stm32g4_flash_layout[1].pages_size = BANK2_OFFSET
- (PAGES_PER_BANK * FLASH_PAGE_SIZE);
/* Bank2 */
stm32g4_flash_layout[2].pages_count = PAGES_PER_BANK;
stm32g4_flash_layout[2].pages_size = FLASH_PAGE_SIZE;
}
#else
static struct flash_pages_layout stm32g4_flash_layout[1];
if (stm32g4_flash_layout[0].pages_count == 0) {
stm32g4_flash_layout[0].pages_count = FLASH_SIZE
/ FLASH_PAGE_SIZE;
stm32g4_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
}
#endif
*layout = stm32g4_flash_layout;
*layout_size = ARRAY_SIZE(stm32g4_flash_layout);
}
/* Override weak function */
int flash_stm32_check_configuration(void)
{
#if defined(FLASH_STM32_DBANK)
if (READ_BIT(FLASH->OPTR, FLASH_STM32_DBANK) == 0U) {
/* Single bank not supported when dualbank is possible */
LOG_ERR("Single bank configuration not supported");
return -ENOTSUP;
}
#endif
return 0;
}