| /* |
| * Copyright (c) 2010-2014 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Kernel thread support |
| * |
| * This module provides general purpose thread support. |
| */ |
| |
| #include <zephyr/kernel.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/sys/math_extras.h> |
| #include <zephyr/sys_clock.h> |
| #include <ksched.h> |
| #include <kthread.h> |
| #include <wait_q.h> |
| #include <zephyr/internal/syscall_handler.h> |
| #include <kernel_internal.h> |
| #include <kswap.h> |
| #include <zephyr/init.h> |
| #include <zephyr/tracing/tracing.h> |
| #include <string.h> |
| #include <stdbool.h> |
| #include <zephyr/sys/check.h> |
| #include <zephyr/random/random.h> |
| #include <zephyr/sys/atomic.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/llext/symbol.h> |
| #include <zephyr/sys/iterable_sections.h> |
| |
| LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); |
| |
| #ifdef CONFIG_OBJ_CORE_THREAD |
| static struct k_obj_type obj_type_thread; |
| |
| #ifdef CONFIG_OBJ_CORE_STATS_THREAD |
| static struct k_obj_core_stats_desc thread_stats_desc = { |
| .raw_size = sizeof(struct k_cycle_stats), |
| .query_size = sizeof(struct k_thread_runtime_stats), |
| .raw = z_thread_stats_raw, |
| .query = z_thread_stats_query, |
| .reset = z_thread_stats_reset, |
| .disable = z_thread_stats_disable, |
| .enable = z_thread_stats_enable, |
| }; |
| #endif /* CONFIG_OBJ_CORE_STATS_THREAD */ |
| |
| static int init_thread_obj_core_list(void) |
| { |
| /* Initialize mem_slab object type */ |
| |
| #ifdef CONFIG_OBJ_CORE_THREAD |
| z_obj_type_init(&obj_type_thread, K_OBJ_TYPE_THREAD_ID, |
| offsetof(struct k_thread, obj_core)); |
| #endif /* CONFIG_OBJ_CORE_THREAD */ |
| |
| #ifdef CONFIG_OBJ_CORE_STATS_THREAD |
| k_obj_type_stats_init(&obj_type_thread, &thread_stats_desc); |
| #endif /* CONFIG_OBJ_CORE_STATS_THREAD */ |
| |
| return 0; |
| } |
| |
| SYS_INIT(init_thread_obj_core_list, PRE_KERNEL_1, |
| CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
| #endif /* CONFIG_OBJ_CORE_THREAD */ |
| |
| |
| #define _FOREACH_STATIC_THREAD(thread_data) \ |
| STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) |
| |
| bool k_is_in_isr(void) |
| { |
| return arch_is_in_isr(); |
| } |
| EXPORT_SYMBOL(k_is_in_isr); |
| |
| #ifdef CONFIG_THREAD_CUSTOM_DATA |
| void z_impl_k_thread_custom_data_set(void *value) |
| { |
| _current->custom_data = value; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_thread_custom_data_set(void *data) |
| { |
| z_impl_k_thread_custom_data_set(data); |
| } |
| #include <zephyr/syscalls/k_thread_custom_data_set_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| void *z_impl_k_thread_custom_data_get(void) |
| { |
| return _current->custom_data; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void *z_vrfy_k_thread_custom_data_get(void) |
| { |
| return z_impl_k_thread_custom_data_get(); |
| } |
| #include <zephyr/syscalls/k_thread_custom_data_get_mrsh.c> |
| |
| #endif /* CONFIG_USERSPACE */ |
| #endif /* CONFIG_THREAD_CUSTOM_DATA */ |
| |
| int z_impl_k_is_preempt_thread(void) |
| { |
| return !arch_is_in_isr() && thread_is_preemptible(_current); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_is_preempt_thread(void) |
| { |
| return z_impl_k_is_preempt_thread(); |
| } |
| #include <zephyr/syscalls/k_is_preempt_thread_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| int z_impl_k_thread_priority_get(k_tid_t thread) |
| { |
| return thread->base.prio; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_thread_priority_get(k_tid_t thread) |
| { |
| K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| return z_impl_k_thread_priority_get(thread); |
| } |
| #include <zephyr/syscalls/k_thread_priority_get_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| int z_impl_k_thread_name_set(k_tid_t thread, const char *str) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| if (thread == NULL) { |
| thread = _current; |
| } |
| |
| strncpy(thread->name, str, CONFIG_THREAD_MAX_NAME_LEN - 1); |
| thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0'; |
| |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0); |
| |
| return 0; |
| #else |
| ARG_UNUSED(thread); |
| ARG_UNUSED(str); |
| |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS); |
| |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_thread_name_set(k_tid_t thread, const char *str) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| char name[CONFIG_THREAD_MAX_NAME_LEN]; |
| |
| if (thread != NULL) { |
| if (K_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) { |
| return -EINVAL; |
| } |
| } |
| |
| /* In theory we could copy directly into thread->name, but |
| * the current z_vrfy / z_impl split does not provide a |
| * means of doing so. |
| */ |
| if (k_usermode_string_copy(name, str, sizeof(name)) != 0) { |
| return -EFAULT; |
| } |
| |
| return z_impl_k_thread_name_set(thread, name); |
| #else |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| #include <zephyr/syscalls/k_thread_name_set_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| const char *k_thread_name_get(k_tid_t thread) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| return (const char *)thread->name; |
| #else |
| ARG_UNUSED(thread); |
| return NULL; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| |
| int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| strncpy(buf, thread->name, size); |
| return 0; |
| #else |
| ARG_UNUSED(thread); |
| ARG_UNUSED(buf); |
| ARG_UNUSED(size); |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| |
| static size_t copy_bytes(char *dest, size_t dest_size, const char *src, size_t src_size) |
| { |
| size_t bytes_to_copy; |
| |
| bytes_to_copy = MIN(dest_size, src_size); |
| memcpy(dest, src, bytes_to_copy); |
| |
| return bytes_to_copy; |
| } |
| |
| const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size) |
| { |
| size_t off = 0; |
| uint8_t bit; |
| uint8_t thread_state = thread_id->base.thread_state; |
| static const struct { |
| const char *str; |
| size_t len; |
| } state_string[] = { |
| { Z_STATE_STR_DUMMY, sizeof(Z_STATE_STR_DUMMY) - 1}, |
| { Z_STATE_STR_PENDING, sizeof(Z_STATE_STR_PENDING) - 1}, |
| { Z_STATE_STR_PRESTART, sizeof(Z_STATE_STR_PRESTART) - 1}, |
| { Z_STATE_STR_DEAD, sizeof(Z_STATE_STR_DEAD) - 1}, |
| { Z_STATE_STR_SUSPENDED, sizeof(Z_STATE_STR_SUSPENDED) - 1}, |
| { Z_STATE_STR_ABORTING, sizeof(Z_STATE_STR_ABORTING) - 1}, |
| { Z_STATE_STR_SUSPENDING, sizeof(Z_STATE_STR_SUSPENDING) - 1}, |
| { Z_STATE_STR_QUEUED, sizeof(Z_STATE_STR_QUEUED) - 1}, |
| }; |
| |
| if ((buf == NULL) || (buf_size == 0)) { |
| return ""; |
| } |
| |
| buf_size--; /* Reserve 1 byte for end-of-string character */ |
| |
| /* |
| * Loop through each bit in the thread_state. Stop once all have |
| * been processed. If more than one thread_state bit is set, then |
| * separate the descriptive strings with a '+'. |
| */ |
| |
| |
| for (unsigned int index = 0; thread_state != 0; index++) { |
| bit = BIT(index); |
| if ((thread_state & bit) == 0) { |
| continue; |
| } |
| |
| off += copy_bytes(buf + off, buf_size - off, |
| state_string[index].str, |
| state_string[index].len); |
| |
| thread_state &= ~bit; |
| |
| if (thread_state != 0) { |
| off += copy_bytes(buf + off, buf_size - off, "+", 1); |
| } |
| } |
| |
| buf[off] = '\0'; |
| |
| return (const char *)buf; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_thread_name_copy(k_tid_t thread, |
| char *buf, size_t size) |
| { |
| #ifdef CONFIG_THREAD_NAME |
| size_t len; |
| struct k_object *ko = k_object_find(thread); |
| |
| /* Special case: we allow reading the names of initialized threads |
| * even if we don't have permission on them |
| */ |
| if ((thread == NULL) || (ko->type != K_OBJ_THREAD) || |
| ((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0)) { |
| return -EINVAL; |
| } |
| if (K_SYSCALL_MEMORY_WRITE(buf, size) != 0) { |
| return -EFAULT; |
| } |
| len = strlen(thread->name); |
| if ((len + 1) > size) { |
| return -ENOSPC; |
| } |
| |
| return k_usermode_to_copy((void *)buf, thread->name, len + 1); |
| #else |
| ARG_UNUSED(thread); |
| ARG_UNUSED(buf); |
| ARG_UNUSED(size); |
| return -ENOSYS; |
| #endif /* CONFIG_THREAD_NAME */ |
| } |
| #include <zephyr/syscalls/k_thread_name_copy_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| #ifdef CONFIG_STACK_SENTINEL |
| /* Check that the stack sentinel is still present |
| * |
| * The stack sentinel feature writes a magic value to the lowest 4 bytes of |
| * the thread's stack when the thread is initialized. This value gets checked |
| * in a few places: |
| * |
| * 1) In k_yield() if the current thread is not swapped out |
| * 2) After servicing a non-nested interrupt |
| * 3) In z_swap(), check the sentinel in the outgoing thread |
| * |
| * Item 2 requires support in arch/ code. |
| * |
| * If the check fails, the thread will be terminated appropriately through |
| * the system fatal error handler. |
| */ |
| void z_check_stack_sentinel(void) |
| { |
| uint32_t *stack; |
| |
| if ((_current->base.thread_state & _THREAD_DUMMY) != 0) { |
| return; |
| } |
| |
| stack = (uint32_t *)_current->stack_info.start; |
| if (*stack != STACK_SENTINEL) { |
| /* Restore it so further checks don't trigger this same error */ |
| *stack = STACK_SENTINEL; |
| z_except_reason(K_ERR_STACK_CHK_FAIL); |
| } |
| } |
| #endif /* CONFIG_STACK_SENTINEL */ |
| |
| void z_impl_k_thread_start(k_tid_t thread) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, start, thread); |
| |
| z_sched_start(thread); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_thread_start(k_tid_t thread) |
| { |
| K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| return z_impl_k_thread_start(thread); |
| } |
| #include <zephyr/syscalls/k_thread_start_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0) |
| int z_stack_adjust_initialized; |
| |
| static size_t random_offset(size_t stack_size) |
| { |
| size_t random_val; |
| |
| if (!z_stack_adjust_initialized) { |
| z_early_rand_get((uint8_t *)&random_val, sizeof(random_val)); |
| } else { |
| sys_rand_get((uint8_t *)&random_val, sizeof(random_val)); |
| } |
| |
| /* Don't need to worry about alignment of the size here, |
| * arch_new_thread() is required to do it. |
| * |
| * FIXME: Not the best way to get a random number in a range. |
| * See #6493 |
| */ |
| const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM; |
| |
| if (unlikely(fuzz * 2 > stack_size)) { |
| return 0; |
| } |
| |
| return fuzz; |
| } |
| #if defined(CONFIG_STACK_GROWS_UP) |
| /* This is so rare not bothering for now */ |
| #error "Stack pointer randomization not implemented for upward growing stacks" |
| #endif /* CONFIG_STACK_GROWS_UP */ |
| #endif /* CONFIG_STACK_POINTER_RANDOM */ |
| |
| static char *setup_thread_stack(struct k_thread *new_thread, |
| k_thread_stack_t *stack, size_t stack_size) |
| { |
| size_t stack_obj_size, stack_buf_size; |
| char *stack_ptr, *stack_buf_start; |
| size_t delta = 0; |
| |
| #ifdef CONFIG_USERSPACE |
| if (z_stack_is_user_capable(stack)) { |
| stack_obj_size = K_THREAD_STACK_LEN(stack_size); |
| stack_buf_start = K_THREAD_STACK_BUFFER(stack); |
| stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED; |
| } else |
| #endif /* CONFIG_USERSPACE */ |
| { |
| /* Object cannot host a user mode thread */ |
| stack_obj_size = K_KERNEL_STACK_LEN(stack_size); |
| stack_buf_start = K_KERNEL_STACK_BUFFER(stack); |
| stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED; |
| |
| /* Zephyr treats stack overflow as an app bug. But |
| * this particular overflow can be seen by static |
| * analysis so needs to be handled somehow. |
| */ |
| if (K_KERNEL_STACK_RESERVED > stack_obj_size) { |
| k_panic(); |
| } |
| |
| } |
| |
| #ifdef CONFIG_THREAD_STACK_MEM_MAPPED |
| /* Map the stack into virtual memory and use that as the base to |
| * calculate the initial stack pointer at the high end of the stack |
| * object. The stack pointer may be reduced later in this function |
| * by TLS or random offset. |
| * |
| * K_MEM_MAP_UNINIT is used to mimic the behavior of non-mapped |
| * stack. If CONFIG_INIT_STACKS is enabled, the stack will be |
| * cleared below. |
| */ |
| void *stack_mapped = k_mem_map_phys_guard((uintptr_t)stack, stack_obj_size, |
| K_MEM_PERM_RW | K_MEM_CACHE_WB | K_MEM_MAP_UNINIT, |
| false); |
| |
| __ASSERT_NO_MSG((uintptr_t)stack_mapped != 0); |
| |
| #ifdef CONFIG_USERSPACE |
| if (z_stack_is_user_capable(stack)) { |
| stack_buf_start = K_THREAD_STACK_BUFFER(stack_mapped); |
| } else |
| #endif /* CONFIG_USERSPACE */ |
| { |
| stack_buf_start = K_KERNEL_STACK_BUFFER(stack_mapped); |
| } |
| |
| stack_ptr = (char *)stack_mapped + stack_obj_size; |
| |
| /* Need to store the info on mapped stack so we can remove the mappings |
| * when the thread ends. |
| */ |
| new_thread->stack_info.mapped.addr = stack_mapped; |
| new_thread->stack_info.mapped.sz = stack_obj_size; |
| |
| #else /* CONFIG_THREAD_STACK_MEM_MAPPED */ |
| |
| /* Initial stack pointer at the high end of the stack object, may |
| * be reduced later in this function by TLS or random offset |
| */ |
| stack_ptr = (char *)stack + stack_obj_size; |
| |
| #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */ |
| |
| LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p " |
| " buf_size %zu stack_ptr=%p", |
| stack, new_thread, stack_obj_size, (void *)stack_buf_start, |
| stack_buf_size, (void *)stack_ptr); |
| |
| #ifdef CONFIG_INIT_STACKS |
| memset(stack_buf_start, 0xaa, stack_buf_size); |
| #endif /* CONFIG_INIT_STACKS */ |
| #ifdef CONFIG_STACK_SENTINEL |
| /* Put the stack sentinel at the lowest 4 bytes of the stack area. |
| * We periodically check that it's still present and kill the thread |
| * if it isn't. |
| */ |
| *((uint32_t *)stack_buf_start) = STACK_SENTINEL; |
| #endif /* CONFIG_STACK_SENTINEL */ |
| #ifdef CONFIG_THREAD_LOCAL_STORAGE |
| /* TLS is always last within the stack buffer */ |
| delta += arch_tls_stack_setup(new_thread, stack_ptr); |
| #endif /* CONFIG_THREAD_LOCAL_STORAGE */ |
| #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA |
| size_t tls_size = sizeof(struct _thread_userspace_local_data); |
| |
| /* reserve space on highest memory of stack buffer for local data */ |
| delta += tls_size; |
| new_thread->userspace_local_data = |
| (struct _thread_userspace_local_data *)(stack_ptr - delta); |
| #endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */ |
| #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0) |
| delta += random_offset(stack_buf_size); |
| #endif /* CONFIG_STACK_POINTER_RANDOM */ |
| delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN); |
| #ifdef CONFIG_THREAD_STACK_INFO |
| /* Initial values. Arches which implement MPU guards that "borrow" |
| * memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED) |
| * will need to appropriately update this. |
| * |
| * The bounds tracked here correspond to the area of the stack object |
| * that the thread can access, which includes TLS. |
| */ |
| new_thread->stack_info.start = (uintptr_t)stack_buf_start; |
| new_thread->stack_info.size = stack_buf_size; |
| new_thread->stack_info.delta = delta; |
| #endif /* CONFIG_THREAD_STACK_INFO */ |
| stack_ptr -= delta; |
| |
| return stack_ptr; |
| } |
| |
| /* |
| * The provided stack_size value is presumed to be either the result of |
| * K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance |
| * of K_THREAD_STACK_DEFINE() which defined 'stack'. |
| */ |
| char *z_setup_new_thread(struct k_thread *new_thread, |
| k_thread_stack_t *stack, size_t stack_size, |
| k_thread_entry_t entry, |
| void *p1, void *p2, void *p3, |
| int prio, uint32_t options, const char *name) |
| { |
| char *stack_ptr; |
| |
| Z_ASSERT_VALID_PRIO(prio, entry); |
| |
| #ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP |
| k_thread_abort_cleanup_check_reuse(new_thread); |
| #endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */ |
| |
| #ifdef CONFIG_OBJ_CORE_THREAD |
| k_obj_core_init_and_link(K_OBJ_CORE(new_thread), &obj_type_thread); |
| #ifdef CONFIG_OBJ_CORE_STATS_THREAD |
| k_obj_core_stats_register(K_OBJ_CORE(new_thread), |
| &new_thread->base.usage, |
| sizeof(new_thread->base.usage)); |
| #endif /* CONFIG_OBJ_CORE_STATS_THREAD */ |
| #endif /* CONFIG_OBJ_CORE_THREAD */ |
| |
| #ifdef CONFIG_USERSPACE |
| __ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack), |
| "user thread %p with kernel-only stack %p", |
| new_thread, stack); |
| k_object_init(new_thread); |
| k_object_init(stack); |
| new_thread->stack_obj = stack; |
| new_thread->syscall_frame = NULL; |
| |
| /* Any given thread has access to itself */ |
| k_object_access_grant(new_thread, new_thread); |
| #endif /* CONFIG_USERSPACE */ |
| z_waitq_init(&new_thread->join_queue); |
| |
| /* Initialize various struct k_thread members */ |
| z_init_thread_base(&new_thread->base, prio, _THREAD_PRESTART, options); |
| stack_ptr = setup_thread_stack(new_thread, stack, stack_size); |
| |
| #ifdef CONFIG_KERNEL_COHERENCE |
| /* Check that the thread object is safe, but that the stack is |
| * still cached! |
| */ |
| __ASSERT_NO_MSG(arch_mem_coherent(new_thread)); |
| |
| /* When dynamic thread stack is available, the stack may come from |
| * uncached area. |
| */ |
| #ifndef CONFIG_DYNAMIC_THREAD |
| __ASSERT_NO_MSG(!arch_mem_coherent(stack)); |
| #endif /* CONFIG_DYNAMIC_THREAD */ |
| |
| #endif /* CONFIG_KERNEL_COHERENCE */ |
| |
| arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3); |
| |
| /* static threads overwrite it afterwards with real value */ |
| new_thread->init_data = NULL; |
| |
| #ifdef CONFIG_USE_SWITCH |
| /* switch_handle must be non-null except when inside z_swap() |
| * for synchronization reasons. Historically some notional |
| * USE_SWITCH architectures have actually ignored the field |
| */ |
| __ASSERT(new_thread->switch_handle != NULL, |
| "arch layer failed to initialize switch_handle"); |
| #endif /* CONFIG_USE_SWITCH */ |
| #ifdef CONFIG_THREAD_CUSTOM_DATA |
| /* Initialize custom data field (value is opaque to kernel) */ |
| new_thread->custom_data = NULL; |
| #endif /* CONFIG_THREAD_CUSTOM_DATA */ |
| #ifdef CONFIG_EVENTS |
| new_thread->no_wake_on_timeout = false; |
| #endif /* CONFIG_EVENTS */ |
| #ifdef CONFIG_THREAD_MONITOR |
| new_thread->entry.pEntry = entry; |
| new_thread->entry.parameter1 = p1; |
| new_thread->entry.parameter2 = p2; |
| new_thread->entry.parameter3 = p3; |
| |
| k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock); |
| |
| new_thread->next_thread = _kernel.threads; |
| _kernel.threads = new_thread; |
| k_spin_unlock(&z_thread_monitor_lock, key); |
| #endif /* CONFIG_THREAD_MONITOR */ |
| #ifdef CONFIG_THREAD_NAME |
| if (name != NULL) { |
| strncpy(new_thread->name, name, |
| CONFIG_THREAD_MAX_NAME_LEN - 1); |
| /* Ensure NULL termination, truncate if longer */ |
| new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0'; |
| } else { |
| new_thread->name[0] = '\0'; |
| } |
| #endif /* CONFIG_THREAD_NAME */ |
| #ifdef CONFIG_SCHED_CPU_MASK |
| if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) { |
| new_thread->base.cpu_mask = 1; /* must specify only one cpu */ |
| } else { |
| new_thread->base.cpu_mask = -1; /* allow all cpus */ |
| } |
| #endif /* CONFIG_SCHED_CPU_MASK */ |
| #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
| /* _current may be null if the dummy thread is not used */ |
| if (!_current) { |
| new_thread->resource_pool = NULL; |
| return stack_ptr; |
| } |
| #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */ |
| #ifdef CONFIG_USERSPACE |
| z_mem_domain_init_thread(new_thread); |
| |
| if ((options & K_INHERIT_PERMS) != 0U) { |
| k_thread_perms_inherit(_current, new_thread); |
| } |
| #endif /* CONFIG_USERSPACE */ |
| #ifdef CONFIG_SCHED_DEADLINE |
| new_thread->base.prio_deadline = 0; |
| #endif /* CONFIG_SCHED_DEADLINE */ |
| new_thread->resource_pool = _current->resource_pool; |
| |
| #ifdef CONFIG_SMP |
| z_waitq_init(&new_thread->halt_queue); |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_SCHED_THREAD_USAGE |
| new_thread->base.usage = (struct k_cycle_stats) {}; |
| new_thread->base.usage.track_usage = |
| CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; |
| #endif /* CONFIG_SCHED_THREAD_USAGE */ |
| |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread); |
| |
| return stack_ptr; |
| } |
| |
| |
| k_tid_t z_impl_k_thread_create(struct k_thread *new_thread, |
| k_thread_stack_t *stack, |
| size_t stack_size, k_thread_entry_t entry, |
| void *p1, void *p2, void *p3, |
| int prio, uint32_t options, k_timeout_t delay) |
| { |
| __ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs"); |
| |
| z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, |
| prio, options, NULL); |
| |
| if (!K_TIMEOUT_EQ(delay, K_FOREVER)) { |
| thread_schedule_new(new_thread, delay); |
| } |
| |
| return new_thread; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| bool z_stack_is_user_capable(k_thread_stack_t *stack) |
| { |
| return k_object_find(stack) != NULL; |
| } |
| |
| k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread, |
| k_thread_stack_t *stack, |
| size_t stack_size, k_thread_entry_t entry, |
| void *p1, void *p2, void *p3, |
| int prio, uint32_t options, k_timeout_t delay) |
| { |
| size_t total_size, stack_obj_size; |
| struct k_object *stack_object; |
| |
| /* The thread and stack objects *must* be in an uninitialized state */ |
| K_OOPS(K_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD)); |
| |
| /* No need to check z_stack_is_user_capable(), it won't be in the |
| * object table if it isn't |
| */ |
| stack_object = k_object_find(stack); |
| K_OOPS(K_SYSCALL_VERIFY_MSG(k_object_validation_check(stack_object, stack, |
| K_OBJ_THREAD_STACK_ELEMENT, |
| _OBJ_INIT_FALSE) == 0, |
| "bad stack object")); |
| |
| /* Verify that the stack size passed in is OK by computing the total |
| * size and comparing it with the size value in the object metadata |
| */ |
| K_OOPS(K_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED, |
| stack_size, &total_size), |
| "stack size overflow (%zu+%zu)", |
| stack_size, |
| K_THREAD_STACK_RESERVED)); |
| |
| /* Testing less-than-or-equal since additional room may have been |
| * allocated for alignment constraints |
| */ |
| #ifdef CONFIG_GEN_PRIV_STACKS |
| stack_obj_size = stack_object->data.stack_data->size; |
| #else |
| stack_obj_size = stack_object->data.stack_size; |
| #endif /* CONFIG_GEN_PRIV_STACKS */ |
| K_OOPS(K_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size, |
| "stack size %zu is too big, max is %zu", |
| total_size, stack_obj_size)); |
| |
| /* User threads may only create other user threads and they can't |
| * be marked as essential |
| */ |
| K_OOPS(K_SYSCALL_VERIFY(options & K_USER)); |
| K_OOPS(K_SYSCALL_VERIFY(!(options & K_ESSENTIAL))); |
| |
| /* Check validity of prio argument; must be the same or worse priority |
| * than the caller |
| */ |
| K_OOPS(K_SYSCALL_VERIFY(_is_valid_prio(prio, NULL))); |
| K_OOPS(K_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio, |
| _current->base.prio))); |
| |
| z_setup_new_thread(new_thread, stack, stack_size, |
| entry, p1, p2, p3, prio, options, NULL); |
| |
| if (!K_TIMEOUT_EQ(delay, K_FOREVER)) { |
| thread_schedule_new(new_thread, delay); |
| } |
| |
| return new_thread; |
| } |
| #include <zephyr/syscalls/k_thread_create_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| void z_init_thread_base(struct _thread_base *thread_base, int priority, |
| uint32_t initial_state, unsigned int options) |
| { |
| /* k_q_node is initialized upon first insertion in a list */ |
| thread_base->pended_on = NULL; |
| thread_base->user_options = (uint8_t)options; |
| thread_base->thread_state = (uint8_t)initial_state; |
| |
| thread_base->prio = priority; |
| |
| thread_base->sched_locked = 0U; |
| |
| #ifdef CONFIG_SMP |
| thread_base->is_idle = 0; |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_TIMESLICE_PER_THREAD |
| thread_base->slice_ticks = 0; |
| thread_base->slice_expired = NULL; |
| #endif /* CONFIG_TIMESLICE_PER_THREAD */ |
| |
| /* swap_data does not need to be initialized */ |
| |
| z_init_thread_timeout(thread_base); |
| } |
| |
| FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, |
| void *p1, void *p2, void *p3) |
| { |
| SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter); |
| |
| _current->base.user_options |= K_USER; |
| z_thread_essential_clear(_current); |
| #ifdef CONFIG_THREAD_MONITOR |
| _current->entry.pEntry = entry; |
| _current->entry.parameter1 = p1; |
| _current->entry.parameter2 = p2; |
| _current->entry.parameter3 = p3; |
| #endif /* CONFIG_THREAD_MONITOR */ |
| #ifdef CONFIG_USERSPACE |
| __ASSERT(z_stack_is_user_capable(_current->stack_obj), |
| "dropping to user mode with kernel-only stack object"); |
| #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA |
| memset(_current->userspace_local_data, 0, |
| sizeof(struct _thread_userspace_local_data)); |
| #endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */ |
| #ifdef CONFIG_THREAD_LOCAL_STORAGE |
| arch_tls_stack_setup(_current, |
| (char *)(_current->stack_info.start + |
| _current->stack_info.size)); |
| #endif /* CONFIG_THREAD_LOCAL_STORAGE */ |
| arch_user_mode_enter(entry, p1, p2, p3); |
| #else |
| /* XXX In this case we do not reset the stack */ |
| z_thread_entry(entry, p1, p2, p3); |
| #endif /* CONFIG_USERSPACE */ |
| } |
| |
| #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO) |
| #ifdef CONFIG_STACK_GROWS_UP |
| #error "Unsupported configuration for stack analysis" |
| #endif /* CONFIG_STACK_GROWS_UP */ |
| |
| int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr) |
| { |
| size_t unused = 0; |
| const uint8_t *checked_stack = stack_start; |
| /* Take the address of any local variable as a shallow bound for the |
| * stack pointer. Addresses above it are guaranteed to be |
| * accessible. |
| */ |
| const uint8_t *stack_pointer = (const uint8_t *)&stack_start; |
| |
| /* If we are currently running on the stack being analyzed, some |
| * memory management hardware will generate an exception if we |
| * read unused stack memory. |
| * |
| * This never happens when invoked from user mode, as user mode |
| * will always run this function on the privilege elevation stack. |
| */ |
| if ((stack_pointer > stack_start) && (stack_pointer <= (stack_start + size)) && |
| IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) { |
| /* TODO: We could add an arch_ API call to temporarily |
| * disable the stack checking in the CPU, but this would |
| * need to be properly managed wrt context switches/interrupts |
| */ |
| return -ENOTSUP; |
| } |
| |
| if (IS_ENABLED(CONFIG_STACK_SENTINEL)) { |
| /* First 4 bytes of the stack buffer reserved for the |
| * sentinel value, it won't be 0xAAAAAAAA for thread |
| * stacks. |
| * |
| * FIXME: thread->stack_info.start ought to reflect |
| * this! |
| */ |
| checked_stack += 4; |
| size -= 4; |
| } |
| |
| for (size_t i = 0; i < size; i++) { |
| if ((checked_stack[i]) == 0xaaU) { |
| unused++; |
| } else { |
| break; |
| } |
| } |
| |
| *unused_ptr = unused; |
| |
| return 0; |
| } |
| |
| int z_impl_k_thread_stack_space_get(const struct k_thread *thread, |
| size_t *unused_ptr) |
| { |
| #ifdef CONFIG_THREAD_STACK_MEM_MAPPED |
| if (thread->stack_info.mapped.addr == NULL) { |
| return -EINVAL; |
| } |
| #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */ |
| |
| return z_stack_space_get((const uint8_t *)thread->stack_info.start, |
| thread->stack_info.size, unused_ptr); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread, |
| size_t *unused_ptr) |
| { |
| size_t unused; |
| int ret; |
| |
| ret = K_SYSCALL_OBJ(thread, K_OBJ_THREAD); |
| CHECKIF(ret != 0) { |
| return ret; |
| } |
| |
| ret = z_impl_k_thread_stack_space_get(thread, &unused); |
| CHECKIF(ret != 0) { |
| return ret; |
| } |
| |
| ret = k_usermode_to_copy(unused_ptr, &unused, sizeof(size_t)); |
| CHECKIF(ret != 0) { |
| return ret; |
| } |
| |
| return 0; |
| } |
| #include <zephyr/syscalls/k_thread_stack_space_get_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| #endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */ |
| |
| #ifdef CONFIG_USERSPACE |
| static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks( |
| const struct k_thread *thread) |
| { |
| K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| return z_impl_k_thread_timeout_remaining_ticks(thread); |
| } |
| #include <zephyr/syscalls/k_thread_timeout_remaining_ticks_mrsh.c> |
| |
| static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks( |
| const struct k_thread *thread) |
| { |
| K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| return z_impl_k_thread_timeout_expires_ticks(thread); |
| } |
| #include <zephyr/syscalls/k_thread_timeout_expires_ticks_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING |
| void z_thread_mark_switched_in(void) |
| { |
| #if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH) |
| z_sched_usage_start(_current); |
| #endif /* CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */ |
| |
| #ifdef CONFIG_TRACING |
| SYS_PORT_TRACING_FUNC(k_thread, switched_in); |
| #endif /* CONFIG_TRACING */ |
| } |
| |
| void z_thread_mark_switched_out(void) |
| { |
| #if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH) |
| z_sched_usage_stop(); |
| #endif /*CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */ |
| |
| #ifdef CONFIG_TRACING |
| #ifdef CONFIG_THREAD_LOCAL_STORAGE |
| /* Dummy thread won't have TLS set up to run arbitrary code */ |
| if (!_current_cpu->current || |
| (_current_cpu->current->base.thread_state & _THREAD_DUMMY) != 0) |
| return; |
| #endif /* CONFIG_THREAD_LOCAL_STORAGE */ |
| SYS_PORT_TRACING_FUNC(k_thread, switched_out); |
| #endif /* CONFIG_TRACING */ |
| } |
| #endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */ |
| |
| int k_thread_runtime_stats_get(k_tid_t thread, |
| k_thread_runtime_stats_t *stats) |
| { |
| if ((thread == NULL) || (stats == NULL)) { |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_SCHED_THREAD_USAGE |
| z_sched_thread_usage(thread, stats); |
| #else |
| *stats = (k_thread_runtime_stats_t) {}; |
| #endif /* CONFIG_SCHED_THREAD_USAGE */ |
| |
| return 0; |
| } |
| |
| int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats) |
| { |
| #ifdef CONFIG_SCHED_THREAD_USAGE_ALL |
| k_thread_runtime_stats_t tmp_stats; |
| #endif /* CONFIG_SCHED_THREAD_USAGE_ALL */ |
| |
| if (stats == NULL) { |
| return -EINVAL; |
| } |
| |
| *stats = (k_thread_runtime_stats_t) {}; |
| |
| #ifdef CONFIG_SCHED_THREAD_USAGE_ALL |
| /* Retrieve the usage stats for each core and amalgamate them. */ |
| |
| unsigned int num_cpus = arch_num_cpus(); |
| |
| for (uint8_t i = 0; i < num_cpus; i++) { |
| z_sched_cpu_usage(i, &tmp_stats); |
| |
| stats->execution_cycles += tmp_stats.execution_cycles; |
| stats->total_cycles += tmp_stats.total_cycles; |
| #ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS |
| stats->current_cycles += tmp_stats.current_cycles; |
| stats->peak_cycles += tmp_stats.peak_cycles; |
| stats->average_cycles += tmp_stats.average_cycles; |
| #endif /* CONFIG_SCHED_THREAD_USAGE_ANALYSIS */ |
| stats->idle_cycles += tmp_stats.idle_cycles; |
| } |
| #endif /* CONFIG_SCHED_THREAD_USAGE_ALL */ |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP |
| /** Pointer to thread which needs to be cleaned up. */ |
| static struct k_thread *thread_to_cleanup; |
| |
| /** Spinlock for thread abort cleanup. */ |
| static struct k_spinlock thread_cleanup_lock; |
| |
| #ifdef CONFIG_THREAD_STACK_MEM_MAPPED |
| static void *thread_cleanup_stack_addr; |
| static size_t thread_cleanup_stack_sz; |
| #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */ |
| |
| void defer_thread_cleanup(struct k_thread *thread) |
| { |
| /* Note when adding new deferred cleanup steps: |
| * - The thread object may have been overwritten by the time |
| * the actual cleanup is being done (e.g. thread object |
| * allocated on a stack). So stash any necessary data here |
| * that will be used in the actual cleanup steps. |
| */ |
| thread_to_cleanup = thread; |
| |
| #ifdef CONFIG_THREAD_STACK_MEM_MAPPED |
| /* Note that the permission of the stack should have been |
| * stripped of user thread access due to the thread having |
| * already exited from a memory domain. That is done via |
| * k_thread_abort(). |
| */ |
| |
| /* Stash the address and size so the region can be unmapped |
| * later. |
| */ |
| thread_cleanup_stack_addr = thread->stack_info.mapped.addr; |
| thread_cleanup_stack_sz = thread->stack_info.mapped.sz; |
| |
| /* The stack is now considered un-usable. This should prevent any functions |
| * from looking directly into the mapped stack if they are made to be aware |
| * of memory mapped stacks, e.g., z_stack_space_get(). |
| */ |
| thread->stack_info.mapped.addr = NULL; |
| thread->stack_info.mapped.sz = 0; |
| #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */ |
| } |
| |
| void do_thread_cleanup(struct k_thread *thread) |
| { |
| /* Note when adding new actual cleanup steps: |
| * - The thread object may have been overwritten when this is |
| * called. So avoid using any data from the thread object. |
| */ |
| ARG_UNUSED(thread); |
| |
| #ifdef CONFIG_THREAD_STACK_MEM_MAPPED |
| if (thread_cleanup_stack_addr != NULL) { |
| k_mem_unmap_phys_guard(thread_cleanup_stack_addr, |
| thread_cleanup_stack_sz, false); |
| |
| thread_cleanup_stack_addr = NULL; |
| } |
| #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */ |
| } |
| |
| void k_thread_abort_cleanup(struct k_thread *thread) |
| { |
| K_SPINLOCK(&thread_cleanup_lock) { |
| if (thread_to_cleanup != NULL) { |
| /* Finish the pending one first. */ |
| do_thread_cleanup(thread_to_cleanup); |
| thread_to_cleanup = NULL; |
| } |
| |
| if (thread == _current) { |
| /* Need to defer for current running thread as the cleanup |
| * might result in exception. Actual cleanup will be done |
| * at the next time k_thread_abort() is called, or at thread |
| * creation if the same thread object is being reused. This |
| * is to make sure the cleanup code no longer needs this |
| * thread's stack. This is not exactly ideal as the stack |
| * may still be memory mapped for a while. However, this is |
| * a simple solution without a) the need to workaround |
| * the schedule lock during k_thread_abort(), b) creating |
| * another thread to perform the cleanup, and c) does not |
| * require architecture code support (e.g. via exception). |
| */ |
| defer_thread_cleanup(thread); |
| } else { |
| /* Not the current running thread, so we are safe to do |
| * cleanups. |
| */ |
| do_thread_cleanup(thread); |
| } |
| } |
| } |
| |
| void k_thread_abort_cleanup_check_reuse(struct k_thread *thread) |
| { |
| K_SPINLOCK(&thread_cleanup_lock) { |
| /* This is to guard reuse of the same thread object and make sure |
| * any pending cleanups of it needs to be finished before the thread |
| * object can be reused. |
| */ |
| if (thread_to_cleanup == thread) { |
| do_thread_cleanup(thread_to_cleanup); |
| thread_to_cleanup = NULL; |
| } |
| } |
| } |
| |
| #endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */ |