commit | 1ae0caf9b25eab8850d458a67accd3188e60efd8 | [log] [tgz] |
---|---|---|
author | pigweed-roller <pigweed-roller@pigweed-service-accounts.iam.gserviceaccount.com> | Mon Jul 03 00:44:01 2023 +0000 |
committer | CQ Bot Account <pigweed-scoped@luci-project-accounts.iam.gserviceaccount.com> | Mon Jul 03 00:44:01 2023 +0000 |
tree | 71ebf60a9c4b30eec8b442880fd39ce444c5e035 | |
parent | f01bec1c7c6ab8b4a89d60e5f0e91fe316c68858 [diff] |
[third_party/pigweed/src] Roll 18 commits ee4e09ccde34497 roll: host_tools d2a3765629bf5d6 roll: sysroot f4dd6053db13c09 zephyr: Add Zephyr SDK to the Zephyr package 114d41722c2caeb pw_sys_io: Doxygenify WriteLine() 4037d862e8a8584 pw_log_zephyr: Add EOT character to help with deto 1bd7446c44e8105 pw_digital_io: Doxygenify the state methods b6c2ff17e71da23 pw_digital_io: Doxygenify the provides_* methods d851dcbb531bb41 pw_system: Move snapshot proto call to namespace 148e931089cf332 pw_build: Forward Python deps for pw_python_distri d53159822d2640f pw_toolchain: Include cross reference table in map 8fd5c5ba3b7f3d7 pw_tokenizer: Migrate get started content to guide 49e3fc69d9fc824 pw_tokenizer: Migrate CLI content to cli.rst 0e7e2327c0b8957 pw_rpc_transport: Add stream backed rpc dispatcher cd74e22b29acf7f pw_tokenizer: Start migrating CLI content to cli.r 202c0396e76f005 SEED: Use public URL for SEED-0104 (display-suppor 74479eb8cbf57b9 pw_sys_io: Doxygenify WriteByte() 1e4408f953686eb pw_web: Include css in bundle. Bump package to 0.0 f05feb338c82c1a roll: clang https://pigweed.googlesource.com/pigweed/pigweed third_party/pigweed/src Rolled-Commits: cf19d9e3263ac09..ee4e09ccde34497 Roller-URL: https://ci.chromium.org/b/8776635935939923041 GitWatcher: ignore CQ-Do-Not-Cancel-Tryjobs: true Change-Id: Ifb556aceb1b5e59af84f2914091cf4a3e937d4ab Reviewed-on: https://pigweed-review.googlesource.com/c/open-dice/+/153995 Commit-Queue: Pigweed Roller <pigweed-roller@pigweed-service-accounts.iam.gserviceaccount.com> Bot-Commit: Pigweed Roller <pigweed-roller@pigweed-service-accounts.iam.gserviceaccount.com>
This repository contains the specification for the Open Profile for DICE along with production-quality code. This profile is a specialization of the Hardware Requirements for a Device Identifier Composition Engine and DICE Layering Architecture specifications published by the Trusted Computing Group (TCG). For readers already familiar with those specs, notable distinctives of this profile include:
You can find us (and join us!) at https://groups.google.com/g/open-profile-for-dice. We're happy to answer questions and discuss proposed changes or features.
The specification can be found here. It is versioned using a major.minor scheme. Compatibility is maintained across minor versions but not necessarily across major versions.
Production quality, portable C code is included. The main code is in dice.h and dice.c. Cryptographic and certificate generation operations are injected via a set of callbacks. Multiple implementations of these operations are provided, all equally acceptable. Integrators should choose just one of these, or write their own.
Tests are included for all code and the build files in this repository can be used to build and run these tests.
Disclaimer: This is not an officially supported Google product.
Different implementations use different third party libraries. The third_party directory contains build files and git submodules for each of these. The bootstrap script will automatically initialize all submodules.
$ source bootstrap.sh $ ninja -C out
The easiest way, and currently the only supported way, to build and run tests is from a Pigweed environment on Linux. Pigweed does support other host platforms so it shouldn't be too hard to get this running on Windows for example, but we use Linux.
There are two scripts to help set this up:
bootstrap.sh will initialize submodules, bootstrap a Pigweed environment, and generate build files. This can take some time and may download on the order of 1GB of dependencies so the normal workflow is to just do this once.
activate.sh quickly reactivates an environment that has been previously bootstrapped.
These scripts must be sourced into the current session: source activate.sh
.
In the environment, from the base directory of the dice-profile checkout, run ninja -C out
to build everything and run all tests. You can also run pw watch
which will build, run tests, and continue to watch for changes.
This will build and run tests on the host using the clang toolchain. Pigweed makes it easy to configure other targets and toolchains. See toolchains/BUILD.gn and the Pigweed documentation.
The code is designed to be portable and should work with a variety of modern toolchains and in a variety of environments. The main code in dice.h and dice.c is C99; it uses uint8_t, size_t, and memcpy from the C standard library. The various ops implementations are as portable as their dependencies (often not C99 but still very portable). Notably, this code uses designated initializers for readability. This is a feature available in C since C99 but missing from C++ until C++20 where it appears in a stricter form.
The Google C++ Style Guide is used. A .clang-format
file is provided for convenience.
To incorporate the code into another project, there are a few options:
Copy only the necessary code. For example:
Take the main code as is: include/dice/dice.h, src/dice.c
Choose an implementation for crypto and certificate generation or choose to write your own. If you choose the boringssl implementation, for example, take include/dice/utils.h, include/dice/boringssl_ops.h, src/utils.c, and src/boringssl_ops.c. Taking a look at the library targets in BUILD.gn may be helpful.
Add this repository as a git submodule and integrate into the project build, optionally using the gn library targets provided.
Integrate into a project already using Pigweed using the gn build files provided.
The build reports code size using Bloaty McBloatface via the pw_bloat Pigweed module. There are two reports generated:
Library sizes - This report includes just the library code in this repository. It shows the baseline DICE code with no ops selected, and it shows the delta introduced by choosing various ops implementations. This report does not include the size of the third party dependencies.
Executable sizes - This report includes sizes for the library code in this repository plus all dependencies linked into a simple main function which makes a single DICE call with all-zero input. It shows the baseline DICE code with no ops (and therefore no dependencies other than libc), and it shows the delta introduced by choosing various ops implementations. This report does include the size of the third party dependencies. Note that rows specialized from ‘Boringssl Ops’ use that as a baseline for sizing.
The reports will be in the build output, but you can also find the reports in .txt
files in the build output. For example, cat out/host_optimized/gen/*.txt | less
will display all reports.
This code does not itself use mutable global variables, or any other type of shared data structure so there is no thread-safety concerns. However, additional care is needed to ensure dependencies are configured to be thread-safe. For example, the current boringssl configuration defines OPENSSL_NO_THREADS_CORRUPT_MEMORY_AND_LEAK_SECRETS_IF_THREADED, and that would need to be changed before running in a threaded environment.
This code makes a reasonable effort to clear memory holding sensitive data. This may help with a broader strategy to clear sensitive data but it is not sufficient on its own. Here are a few things to consider.