| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #if !defined(__STDC_FORMAT_MACROS) |
| #define __STDC_FORMAT_MACROS |
| #endif |
| |
| #include <openssl/base.h> |
| |
| #if !defined(OPENSSL_WINDOWS) |
| #include <arpa/inet.h> |
| #include <netinet/in.h> |
| #include <netinet/tcp.h> |
| #include <signal.h> |
| #include <sys/socket.h> |
| #include <sys/time.h> |
| #include <unistd.h> |
| #else |
| #include <io.h> |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| |
| OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib")) |
| #endif |
| |
| #include <assert.h> |
| #include <inttypes.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/bio.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/crypto.h> |
| #include <openssl/dh.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/ssl.h> |
| #include <openssl/x509.h> |
| |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "../../crypto/internal.h" |
| #include "async_bio.h" |
| #include "packeted_bio.h" |
| #include "test_config.h" |
| |
| |
| static CRYPTO_BUFFER_POOL *g_pool = nullptr; |
| |
| #if !defined(OPENSSL_WINDOWS) |
| static int closesocket(int sock) { |
| return close(sock); |
| } |
| |
| static void PrintSocketError(const char *func) { |
| perror(func); |
| } |
| #else |
| static void PrintSocketError(const char *func) { |
| fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); |
| } |
| #endif |
| |
| static int Usage(const char *program) { |
| fprintf(stderr, "Usage: %s [flags...]\n", program); |
| return 1; |
| } |
| |
| struct TestState { |
| // async_bio is async BIO which pauses reads and writes. |
| BIO *async_bio = nullptr; |
| // packeted_bio is the packeted BIO which simulates read timeouts. |
| BIO *packeted_bio = nullptr; |
| bssl::UniquePtr<EVP_PKEY> channel_id; |
| bool cert_ready = false; |
| bssl::UniquePtr<SSL_SESSION> session; |
| bssl::UniquePtr<SSL_SESSION> pending_session; |
| bool early_callback_called = false; |
| bool handshake_done = false; |
| // private_key is the underlying private key used when testing custom keys. |
| bssl::UniquePtr<EVP_PKEY> private_key; |
| std::vector<uint8_t> private_key_result; |
| // private_key_retries is the number of times an asynchronous private key |
| // operation has been retried. |
| unsigned private_key_retries = 0; |
| bool got_new_session = false; |
| bssl::UniquePtr<SSL_SESSION> new_session; |
| bool ticket_decrypt_done = false; |
| bool alpn_select_done = false; |
| }; |
| |
| static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, |
| int index, long argl, void *argp) { |
| delete ((TestState *)ptr); |
| } |
| |
| static int g_config_index = 0; |
| static int g_state_index = 0; |
| |
| static bool SetTestConfig(SSL *ssl, const TestConfig *config) { |
| return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1; |
| } |
| |
| static const TestConfig *GetTestConfig(const SSL *ssl) { |
| return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index); |
| } |
| |
| static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) { |
| // |SSL_set_ex_data| takes ownership of |state| only on success. |
| if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) { |
| state.release(); |
| return true; |
| } |
| return false; |
| } |
| |
| static TestState *GetTestState(const SSL *ssl) { |
| return (TestState *)SSL_get_ex_data(ssl, g_state_index); |
| } |
| |
| static bool LoadCertificate(bssl::UniquePtr<X509> *out_x509, |
| bssl::UniquePtr<STACK_OF(X509)> *out_chain, |
| const std::string &file) { |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file())); |
| if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { |
| return false; |
| } |
| |
| out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); |
| if (!*out_x509) { |
| return false; |
| } |
| |
| out_chain->reset(sk_X509_new_null()); |
| if (!*out_chain) { |
| return false; |
| } |
| |
| // Keep reading the certificate chain. |
| for (;;) { |
| bssl::UniquePtr<X509> cert( |
| PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); |
| if (!cert) { |
| break; |
| } |
| |
| if (!sk_X509_push(out_chain->get(), cert.get())) { |
| return false; |
| } |
| cert.release(); // sk_X509_push takes ownership. |
| } |
| |
| uint32_t err = ERR_peek_last_error(); |
| if (ERR_GET_LIB(err) != ERR_LIB_PEM || |
| ERR_GET_REASON(err) != PEM_R_NO_START_LINE) { |
| return false; |
| } |
| |
| ERR_clear_error(); |
| return true; |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) { |
| bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file())); |
| if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<EVP_PKEY>( |
| PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL)); |
| } |
| |
| static int AsyncPrivateKeyType(SSL *ssl) { |
| EVP_PKEY *key = GetTestState(ssl)->private_key.get(); |
| switch (EVP_PKEY_id(key)) { |
| case EVP_PKEY_RSA: |
| return NID_rsaEncryption; |
| case EVP_PKEY_EC: |
| return EC_GROUP_get_curve_name( |
| EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(key))); |
| default: |
| return NID_undef; |
| } |
| } |
| |
| static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) { |
| return EVP_PKEY_size(GetTestState(ssl)->private_key.get()); |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeySign( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| uint16_t signature_algorithm, const uint8_t *in, size_t in_len) { |
| TestState *test_state = GetTestState(ssl); |
| if (!test_state->private_key_result.empty()) { |
| fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n"); |
| abort(); |
| } |
| |
| // Determine the hash. |
| const EVP_MD *md; |
| switch (signature_algorithm) { |
| case SSL_SIGN_RSA_PKCS1_SHA1: |
| case SSL_SIGN_ECDSA_SHA1: |
| md = EVP_sha1(); |
| break; |
| case SSL_SIGN_RSA_PKCS1_SHA256: |
| case SSL_SIGN_ECDSA_SECP256R1_SHA256: |
| case SSL_SIGN_RSA_PSS_SHA256: |
| md = EVP_sha256(); |
| break; |
| case SSL_SIGN_RSA_PKCS1_SHA384: |
| case SSL_SIGN_ECDSA_SECP384R1_SHA384: |
| case SSL_SIGN_RSA_PSS_SHA384: |
| md = EVP_sha384(); |
| break; |
| case SSL_SIGN_RSA_PKCS1_SHA512: |
| case SSL_SIGN_ECDSA_SECP521R1_SHA512: |
| case SSL_SIGN_RSA_PSS_SHA512: |
| md = EVP_sha512(); |
| break; |
| case SSL_SIGN_RSA_PKCS1_MD5_SHA1: |
| md = EVP_md5_sha1(); |
| break; |
| default: |
| fprintf(stderr, "Unknown signature algorithm %04x.\n", |
| signature_algorithm); |
| return ssl_private_key_failure; |
| } |
| |
| bssl::ScopedEVP_MD_CTX ctx; |
| EVP_PKEY_CTX *pctx; |
| if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, |
| test_state->private_key.get())) { |
| return ssl_private_key_failure; |
| } |
| |
| // Configure additional signature parameters. |
| switch (signature_algorithm) { |
| case SSL_SIGN_RSA_PSS_SHA256: |
| case SSL_SIGN_RSA_PSS_SHA384: |
| case SSL_SIGN_RSA_PSS_SHA512: |
| if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || |
| !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, |
| -1 /* salt len = hash len */)) { |
| return ssl_private_key_failure; |
| } |
| } |
| |
| // Write the signature into |test_state|. |
| size_t len = 0; |
| if (!EVP_DigestSignUpdate(ctx.get(), in, in_len) || |
| !EVP_DigestSignFinal(ctx.get(), nullptr, &len)) { |
| return ssl_private_key_failure; |
| } |
| test_state->private_key_result.resize(len); |
| if (!EVP_DigestSignFinal(ctx.get(), test_state->private_key_result.data(), |
| &len)) { |
| return ssl_private_key_failure; |
| } |
| test_state->private_key_result.resize(len); |
| |
| // The signature will be released asynchronously in |AsyncPrivateKeyComplete|. |
| return ssl_private_key_retry; |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeyDecrypt( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| const uint8_t *in, size_t in_len) { |
| TestState *test_state = GetTestState(ssl); |
| if (!test_state->private_key_result.empty()) { |
| fprintf(stderr, |
| "AsyncPrivateKeyDecrypt called with operation pending.\n"); |
| abort(); |
| } |
| |
| RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get()); |
| if (rsa == NULL) { |
| fprintf(stderr, |
| "AsyncPrivateKeyDecrypt called with incorrect key type.\n"); |
| abort(); |
| } |
| test_state->private_key_result.resize(RSA_size(rsa)); |
| if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(), |
| RSA_size(rsa), in, in_len, RSA_NO_PADDING)) { |
| return ssl_private_key_failure; |
| } |
| |
| test_state->private_key_result.resize(*out_len); |
| |
| // The decryption will be released asynchronously in |AsyncPrivateComplete|. |
| return ssl_private_key_retry; |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeyComplete( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { |
| TestState *test_state = GetTestState(ssl); |
| if (test_state->private_key_result.empty()) { |
| fprintf(stderr, |
| "AsyncPrivateKeyComplete called without operation pending.\n"); |
| abort(); |
| } |
| |
| if (test_state->private_key_retries < 2) { |
| // Only return the decryption on the second attempt, to test both incomplete |
| // |decrypt| and |decrypt_complete|. |
| return ssl_private_key_retry; |
| } |
| |
| if (max_out < test_state->private_key_result.size()) { |
| fprintf(stderr, "Output buffer too small.\n"); |
| return ssl_private_key_failure; |
| } |
| OPENSSL_memcpy(out, test_state->private_key_result.data(), |
| test_state->private_key_result.size()); |
| *out_len = test_state->private_key_result.size(); |
| |
| test_state->private_key_result.clear(); |
| test_state->private_key_retries = 0; |
| return ssl_private_key_success; |
| } |
| |
| static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = { |
| AsyncPrivateKeyType, |
| AsyncPrivateKeyMaxSignatureLen, |
| AsyncPrivateKeySign, |
| nullptr /* sign_digest */, |
| AsyncPrivateKeyDecrypt, |
| AsyncPrivateKeyComplete, |
| }; |
| |
| template<typename T> |
| struct Free { |
| void operator()(T *buf) { |
| free(buf); |
| } |
| }; |
| |
| static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509, |
| bssl::UniquePtr<STACK_OF(X509)> *out_chain, |
| bssl::UniquePtr<EVP_PKEY> *out_pkey) { |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| if (!config->digest_prefs.empty()) { |
| std::unique_ptr<char, Free<char>> digest_prefs( |
| strdup(config->digest_prefs.c_str())); |
| std::vector<int> digest_list; |
| |
| for (;;) { |
| char *token = |
| strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ","); |
| if (token == nullptr) { |
| break; |
| } |
| |
| digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token))); |
| } |
| |
| if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(), |
| digest_list.size())) { |
| return false; |
| } |
| } |
| |
| if (!config->signing_prefs.empty()) { |
| std::vector<uint16_t> u16s(config->signing_prefs.begin(), |
| config->signing_prefs.end()); |
| if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) { |
| return false; |
| } |
| } |
| |
| if (!config->key_file.empty()) { |
| *out_pkey = LoadPrivateKey(config->key_file.c_str()); |
| if (!*out_pkey) { |
| return false; |
| } |
| } |
| if (!config->cert_file.empty() && |
| !LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) { |
| return false; |
| } |
| if (!config->ocsp_response.empty() && |
| !SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(), |
| config->ocsp_response.size())) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool InstallCertificate(SSL *ssl) { |
| bssl::UniquePtr<X509> x509; |
| bssl::UniquePtr<STACK_OF(X509)> chain; |
| bssl::UniquePtr<EVP_PKEY> pkey; |
| if (!GetCertificate(ssl, &x509, &chain, &pkey)) { |
| return false; |
| } |
| |
| if (pkey) { |
| TestState *test_state = GetTestState(ssl); |
| const TestConfig *config = GetTestConfig(ssl); |
| if (config->async) { |
| test_state->private_key = std::move(pkey); |
| SSL_set_private_key_method(ssl, &g_async_private_key_method); |
| } else if (!SSL_use_PrivateKey(ssl, pkey.get())) { |
| return false; |
| } |
| } |
| |
| if (x509 && !SSL_use_certificate(ssl, x509.get())) { |
| return false; |
| } |
| |
| if (sk_X509_num(chain.get()) > 0 && |
| !SSL_set1_chain(ssl, chain.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int SelectCertificateCallback(const SSL_CLIENT_HELLO *client_hello) { |
| const TestConfig *config = GetTestConfig(client_hello->ssl); |
| GetTestState(client_hello->ssl)->early_callback_called = true; |
| |
| if (!config->expected_server_name.empty()) { |
| const uint8_t *extension_data; |
| size_t extension_len; |
| CBS extension, server_name_list, host_name; |
| uint8_t name_type; |
| |
| if (!SSL_early_callback_ctx_extension_get( |
| client_hello, TLSEXT_TYPE_server_name, &extension_data, |
| &extension_len)) { |
| fprintf(stderr, "Could not find server_name extension.\n"); |
| return -1; |
| } |
| |
| CBS_init(&extension, extension_data, extension_len); |
| if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) || |
| CBS_len(&extension) != 0 || |
| !CBS_get_u8(&server_name_list, &name_type) || |
| name_type != TLSEXT_NAMETYPE_host_name || |
| !CBS_get_u16_length_prefixed(&server_name_list, &host_name) || |
| CBS_len(&server_name_list) != 0) { |
| fprintf(stderr, "Could not decode server_name extension.\n"); |
| return -1; |
| } |
| |
| if (!CBS_mem_equal(&host_name, |
| (const uint8_t*)config->expected_server_name.data(), |
| config->expected_server_name.size())) { |
| fprintf(stderr, "Server name mismatch.\n"); |
| } |
| } |
| |
| if (config->fail_early_callback) { |
| return -1; |
| } |
| |
| // Install the certificate in the early callback. |
| if (config->use_early_callback) { |
| if (config->async) { |
| // Install the certificate asynchronously. |
| return 0; |
| } |
| if (!InstallCertificate(client_hello->ssl)) { |
| return -1; |
| } |
| } |
| return 1; |
| } |
| |
| static bool CheckCertificateRequest(SSL *ssl) { |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| if (!config->expected_certificate_types.empty()) { |
| const uint8_t *certificate_types; |
| size_t certificate_types_len = |
| SSL_get0_certificate_types(ssl, &certificate_types); |
| if (certificate_types_len != config->expected_certificate_types.size() || |
| OPENSSL_memcmp(certificate_types, |
| config->expected_certificate_types.data(), |
| certificate_types_len) != 0) { |
| fprintf(stderr, "certificate types mismatch\n"); |
| return false; |
| } |
| } |
| |
| // TODO(davidben): Test |SSL_get_client_CA_list|. |
| return true; |
| } |
| |
| static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) { |
| if (!CheckCertificateRequest(ssl)) { |
| return -1; |
| } |
| |
| if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) { |
| return -1; |
| } |
| |
| bssl::UniquePtr<X509> x509; |
| bssl::UniquePtr<STACK_OF(X509)> chain; |
| bssl::UniquePtr<EVP_PKEY> pkey; |
| if (!GetCertificate(ssl, &x509, &chain, &pkey)) { |
| return -1; |
| } |
| |
| // Return zero for no certificate. |
| if (!x509) { |
| return 0; |
| } |
| |
| // Chains and asynchronous private keys are not supported with client_cert_cb. |
| *out_x509 = x509.release(); |
| *out_pkey = pkey.release(); |
| return 1; |
| } |
| |
| static int CertCallback(SSL *ssl, void *arg) { |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| // Check the CertificateRequest metadata is as expected. |
| if (!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) { |
| return -1; |
| } |
| |
| if (config->fail_cert_callback) { |
| return 0; |
| } |
| |
| // The certificate will be installed via other means. |
| if (!config->async || config->use_early_callback) { |
| return 1; |
| } |
| |
| if (!GetTestState(ssl)->cert_ready) { |
| return -1; |
| } |
| if (!InstallCertificate(ssl)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { |
| SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx, |
| SSL_get_ex_data_X509_STORE_CTX_idx()); |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| if (!config->expected_ocsp_response.empty()) { |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_ocsp_response(ssl, &data, &len); |
| if (len == 0) { |
| fprintf(stderr, "OCSP response not available in verify callback\n"); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) { |
| store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION; |
| return 0; |
| } |
| |
| static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out, |
| unsigned int *out_len, void *arg) { |
| const TestConfig *config = GetTestConfig(ssl); |
| if (config->advertise_npn.empty()) { |
| return SSL_TLSEXT_ERR_NOACK; |
| } |
| |
| *out = (const uint8_t*)config->advertise_npn.data(); |
| *out_len = config->advertise_npn.size(); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen, |
| const uint8_t* in, unsigned inlen, void* arg) { |
| const TestConfig *config = GetTestConfig(ssl); |
| if (config->select_next_proto.empty()) { |
| return SSL_TLSEXT_ERR_NOACK; |
| } |
| |
| *out = (uint8_t*)config->select_next_proto.data(); |
| *outlen = config->select_next_proto.size(); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen, |
| const uint8_t* in, unsigned inlen, void* arg) { |
| if (GetTestState(ssl)->alpn_select_done) { |
| fprintf(stderr, "AlpnSelectCallback called after completion.\n"); |
| exit(1); |
| } |
| |
| GetTestState(ssl)->alpn_select_done = true; |
| |
| const TestConfig *config = GetTestConfig(ssl); |
| if (config->decline_alpn) { |
| return SSL_TLSEXT_ERR_NOACK; |
| } |
| |
| if (!config->expected_advertised_alpn.empty() && |
| (config->expected_advertised_alpn.size() != inlen || |
| OPENSSL_memcmp(config->expected_advertised_alpn.data(), in, inlen) != |
| 0)) { |
| fprintf(stderr, "bad ALPN select callback inputs\n"); |
| exit(1); |
| } |
| |
| *out = (const uint8_t*)config->select_alpn.data(); |
| *outlen = config->select_alpn.size(); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| static unsigned PskClientCallback(SSL *ssl, const char *hint, |
| char *out_identity, |
| unsigned max_identity_len, |
| uint8_t *out_psk, unsigned max_psk_len) { |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| if (config->psk_identity.empty()) { |
| if (hint != nullptr) { |
| fprintf(stderr, "Server PSK hint was non-null.\n"); |
| return 0; |
| } |
| } else if (hint == nullptr || |
| strcmp(hint, config->psk_identity.c_str()) != 0) { |
| fprintf(stderr, "Server PSK hint did not match.\n"); |
| return 0; |
| } |
| |
| // Account for the trailing '\0' for the identity. |
| if (config->psk_identity.size() >= max_identity_len || |
| config->psk.size() > max_psk_len) { |
| fprintf(stderr, "PSK buffers too small\n"); |
| return 0; |
| } |
| |
| BUF_strlcpy(out_identity, config->psk_identity.c_str(), |
| max_identity_len); |
| OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size()); |
| return config->psk.size(); |
| } |
| |
| static unsigned PskServerCallback(SSL *ssl, const char *identity, |
| uint8_t *out_psk, unsigned max_psk_len) { |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| if (strcmp(identity, config->psk_identity.c_str()) != 0) { |
| fprintf(stderr, "Client PSK identity did not match.\n"); |
| return 0; |
| } |
| |
| if (config->psk.size() > max_psk_len) { |
| fprintf(stderr, "PSK buffers too small\n"); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size()); |
| return config->psk.size(); |
| } |
| |
| static timeval g_clock; |
| |
| static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { |
| *out_clock = g_clock; |
| } |
| |
| static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) { |
| *out_pkey = GetTestState(ssl)->channel_id.release(); |
| } |
| |
| static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len, |
| int *copy) { |
| TestState *async_state = GetTestState(ssl); |
| if (async_state->session) { |
| *copy = 0; |
| return async_state->session.release(); |
| } else if (async_state->pending_session) { |
| return SSL_magic_pending_session_ptr(); |
| } else { |
| return NULL; |
| } |
| } |
| |
| static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) { |
| const TestConfig *config = GetTestConfig(client_hello->ssl); |
| static int callback_num = 0; |
| |
| callback_num++; |
| if (config->fail_ddos_callback || |
| (config->fail_second_ddos_callback && callback_num == 2)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void InfoCallback(const SSL *ssl, int type, int val) { |
| if (type == SSL_CB_HANDSHAKE_DONE) { |
| if (GetTestConfig(ssl)->handshake_never_done) { |
| fprintf(stderr, "Handshake unexpectedly completed.\n"); |
| // Abort before any expected error code is printed, to ensure the overall |
| // test fails. |
| abort(); |
| } |
| GetTestState(ssl)->handshake_done = true; |
| |
| // Callbacks may be called again on a new handshake. |
| GetTestState(ssl)->ticket_decrypt_done = false; |
| GetTestState(ssl)->alpn_select_done = false; |
| } |
| } |
| |
| static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { |
| GetTestState(ssl)->got_new_session = true; |
| GetTestState(ssl)->new_session.reset(session); |
| return 1; |
| } |
| |
| static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, |
| EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, |
| int encrypt) { |
| if (!encrypt) { |
| if (GetTestState(ssl)->ticket_decrypt_done) { |
| fprintf(stderr, "TicketKeyCallback called after completion.\n"); |
| return -1; |
| } |
| |
| GetTestState(ssl)->ticket_decrypt_done = true; |
| } |
| |
| // This is just test code, so use the all-zeros key. |
| static const uint8_t kZeros[16] = {0}; |
| |
| if (encrypt) { |
| OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); |
| RAND_bytes(iv, 16); |
| } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { |
| return 0; |
| } |
| |
| if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || |
| !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { |
| return -1; |
| } |
| |
| if (!encrypt) { |
| return GetTestConfig(ssl)->renew_ticket ? 2 : 1; |
| } |
| return 1; |
| } |
| |
| // kCustomExtensionValue is the extension value that the custom extension |
| // callbacks will add. |
| static const uint16_t kCustomExtensionValue = 1234; |
| static void *const kCustomExtensionAddArg = |
| reinterpret_cast<void *>(kCustomExtensionValue); |
| static void *const kCustomExtensionParseArg = |
| reinterpret_cast<void *>(kCustomExtensionValue + 1); |
| static const char kCustomExtensionContents[] = "custom extension"; |
| |
| static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value, |
| const uint8_t **out, size_t *out_len, |
| int *out_alert_value, void *add_arg) { |
| if (extension_value != kCustomExtensionValue || |
| add_arg != kCustomExtensionAddArg) { |
| abort(); |
| } |
| |
| if (GetTestConfig(ssl)->custom_extension_skip) { |
| return 0; |
| } |
| if (GetTestConfig(ssl)->custom_extension_fail_add) { |
| return -1; |
| } |
| |
| *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents); |
| *out_len = sizeof(kCustomExtensionContents) - 1; |
| |
| return 1; |
| } |
| |
| static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value, |
| const uint8_t *out, void *add_arg) { |
| if (extension_value != kCustomExtensionValue || |
| add_arg != kCustomExtensionAddArg || |
| out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) { |
| abort(); |
| } |
| } |
| |
| static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value, |
| const uint8_t *contents, |
| size_t contents_len, |
| int *out_alert_value, void *parse_arg) { |
| if (extension_value != kCustomExtensionValue || |
| parse_arg != kCustomExtensionParseArg) { |
| abort(); |
| } |
| |
| if (contents_len != sizeof(kCustomExtensionContents) - 1 || |
| OPENSSL_memcmp(contents, kCustomExtensionContents, contents_len) != 0) { |
| *out_alert_value = SSL_AD_DECODE_ERROR; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) { |
| // SNI must be accessible from the SNI callback. |
| const TestConfig *config = GetTestConfig(ssl); |
| const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); |
| if (server_name == nullptr || |
| std::string(server_name) != config->expected_server_name) { |
| fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name, |
| config->expected_server_name.c_str()); |
| return SSL_TLSEXT_ERR_ALERT_FATAL; |
| } |
| |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| // Connect returns a new socket connected to localhost on |port| or -1 on |
| // error. |
| static int Connect(uint16_t port) { |
| int sock = socket(AF_INET, SOCK_STREAM, 0); |
| if (sock == -1) { |
| PrintSocketError("socket"); |
| return -1; |
| } |
| int nodelay = 1; |
| if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, |
| reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) { |
| PrintSocketError("setsockopt"); |
| closesocket(sock); |
| return -1; |
| } |
| sockaddr_in sin; |
| OPENSSL_memset(&sin, 0, sizeof(sin)); |
| sin.sin_family = AF_INET; |
| sin.sin_port = htons(port); |
| if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { |
| PrintSocketError("inet_pton"); |
| closesocket(sock); |
| return -1; |
| } |
| if (connect(sock, reinterpret_cast<const sockaddr*>(&sin), |
| sizeof(sin)) != 0) { |
| PrintSocketError("connect"); |
| closesocket(sock); |
| return -1; |
| } |
| return sock; |
| } |
| |
| class SocketCloser { |
| public: |
| explicit SocketCloser(int sock) : sock_(sock) {} |
| ~SocketCloser() { |
| // Half-close and drain the socket before releasing it. This seems to be |
| // necessary for graceful shutdown on Windows. It will also avoid write |
| // failures in the test runner. |
| #if defined(OPENSSL_WINDOWS) |
| shutdown(sock_, SD_SEND); |
| #else |
| shutdown(sock_, SHUT_WR); |
| #endif |
| while (true) { |
| char buf[1024]; |
| if (recv(sock_, buf, sizeof(buf), 0) <= 0) { |
| break; |
| } |
| } |
| closesocket(sock_); |
| } |
| |
| private: |
| const int sock_; |
| }; |
| |
| static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) { |
| bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new( |
| config->is_dtls ? DTLS_method() : TLS_method())); |
| if (!ssl_ctx) { |
| return nullptr; |
| } |
| |
| SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool); |
| |
| // Enable TLS 1.3 for tests. |
| if (!config->is_dtls && |
| !SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) { |
| return nullptr; |
| } |
| |
| std::string cipher_list = "ALL"; |
| if (!config->cipher.empty()) { |
| cipher_list = config->cipher; |
| SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); |
| } |
| if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) { |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<DH> dh(DH_get_2048_256(NULL)); |
| if (!dh) { |
| return nullptr; |
| } |
| |
| if (config->use_sparse_dh_prime) { |
| // This prime number is 2^1024 + 643 – a value just above a power of two. |
| // Because of its form, values modulo it are essentially certain to be one |
| // byte shorter. This is used to test padding of these values. |
| if (BN_hex2bn( |
| &dh->p, |
| "1000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000028" |
| "3") == 0 || |
| !BN_set_word(dh->g, 2)) { |
| return nullptr; |
| } |
| BN_free(dh->q); |
| dh->q = NULL; |
| dh->priv_length = 0; |
| } |
| |
| if (!SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) { |
| return nullptr; |
| } |
| |
| if (config->async && config->is_server) { |
| // Disable the internal session cache. To test asynchronous session lookup, |
| // we use an external session cache. |
| SSL_CTX_set_session_cache_mode( |
| ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL); |
| SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback); |
| } else { |
| SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH); |
| } |
| |
| SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback); |
| |
| if (config->use_old_client_cert_callback) { |
| SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback); |
| } |
| |
| SSL_CTX_set_next_protos_advertised_cb( |
| ssl_ctx.get(), NextProtosAdvertisedCallback, NULL); |
| if (!config->select_next_proto.empty()) { |
| SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback, |
| NULL); |
| } |
| |
| if (!config->select_alpn.empty() || config->decline_alpn) { |
| SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL); |
| } |
| |
| SSL_CTX_set_tls_channel_id_enabled(ssl_ctx.get(), 1); |
| SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback); |
| |
| SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback); |
| |
| SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback); |
| SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback); |
| |
| if (config->use_ticket_callback) { |
| SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback); |
| } |
| |
| if (config->enable_client_custom_extension && |
| !SSL_CTX_add_client_custom_ext( |
| ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, |
| CustomExtensionFreeCallback, kCustomExtensionAddArg, |
| CustomExtensionParseCallback, kCustomExtensionParseArg)) { |
| return nullptr; |
| } |
| |
| if (config->enable_server_custom_extension && |
| !SSL_CTX_add_server_custom_ext( |
| ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, |
| CustomExtensionFreeCallback, kCustomExtensionAddArg, |
| CustomExtensionParseCallback, kCustomExtensionParseArg)) { |
| return nullptr; |
| } |
| |
| if (config->verify_fail) { |
| SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL); |
| } else { |
| SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL); |
| } |
| |
| if (!config->signed_cert_timestamps.empty() && |
| !SSL_CTX_set_signed_cert_timestamp_list( |
| ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(), |
| config->signed_cert_timestamps.size())) { |
| return nullptr; |
| } |
| |
| if (config->use_null_client_ca_list) { |
| SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr); |
| } |
| |
| if (config->enable_grease) { |
| SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1); |
| } |
| |
| if (!config->expected_server_name.empty()) { |
| SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback); |
| } |
| |
| if (!config->ticket_key.empty() && |
| !SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), config->ticket_key.data(), |
| config->ticket_key.size())) { |
| return nullptr; |
| } |
| |
| return ssl_ctx; |
| } |
| |
| // RetryAsync is called after a failed operation on |ssl| with return code |
| // |ret|. If the operation should be retried, it simulates one asynchronous |
| // event and returns true. Otherwise it returns false. |
| static bool RetryAsync(SSL *ssl, int ret) { |
| // No error; don't retry. |
| if (ret >= 0) { |
| return false; |
| } |
| |
| TestState *test_state = GetTestState(ssl); |
| assert(GetTestConfig(ssl)->async); |
| |
| if (test_state->packeted_bio != nullptr && |
| PacketedBioAdvanceClock(test_state->packeted_bio)) { |
| // The DTLS retransmit logic silently ignores write failures. So the test |
| // may progress, allow writes through synchronously. |
| AsyncBioEnforceWriteQuota(test_state->async_bio, false); |
| int timeout_ret = DTLSv1_handle_timeout(ssl); |
| AsyncBioEnforceWriteQuota(test_state->async_bio, true); |
| |
| if (timeout_ret < 0) { |
| fprintf(stderr, "Error retransmitting.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| // See if we needed to read or write more. If so, allow one byte through on |
| // the appropriate end to maximally stress the state machine. |
| switch (SSL_get_error(ssl, ret)) { |
| case SSL_ERROR_WANT_READ: |
| AsyncBioAllowRead(test_state->async_bio, 1); |
| return true; |
| case SSL_ERROR_WANT_WRITE: |
| AsyncBioAllowWrite(test_state->async_bio, 1); |
| return true; |
| case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { |
| bssl::UniquePtr<EVP_PKEY> pkey = |
| LoadPrivateKey(GetTestConfig(ssl)->send_channel_id); |
| if (!pkey) { |
| return false; |
| } |
| test_state->channel_id = std::move(pkey); |
| return true; |
| } |
| case SSL_ERROR_WANT_X509_LOOKUP: |
| test_state->cert_ready = true; |
| return true; |
| case SSL_ERROR_PENDING_SESSION: |
| test_state->session = std::move(test_state->pending_session); |
| return true; |
| case SSL_ERROR_PENDING_CERTIFICATE: |
| // The handshake will resume without a second call to the early callback. |
| return InstallCertificate(ssl); |
| case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: |
| test_state->private_key_retries++; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // DoRead reads from |ssl|, resolving any asynchronous operations. It returns |
| // the result value of the final |SSL_read| call. |
| static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) { |
| const TestConfig *config = GetTestConfig(ssl); |
| TestState *test_state = GetTestState(ssl); |
| int ret; |
| do { |
| if (config->async) { |
| // The DTLS retransmit logic silently ignores write failures. So the test |
| // may progress, allow writes through synchronously. |SSL_read| may |
| // trigger a retransmit, so disconnect the write quota. |
| AsyncBioEnforceWriteQuota(test_state->async_bio, false); |
| } |
| ret = config->peek_then_read ? SSL_peek(ssl, out, max_out) |
| : SSL_read(ssl, out, max_out); |
| if (config->async) { |
| AsyncBioEnforceWriteQuota(test_state->async_bio, true); |
| } |
| |
| // Run the exporter after each read. This is to test that the exporter fails |
| // during a renegotiation. |
| if (config->use_exporter_between_reads) { |
| uint8_t buf; |
| if (!SSL_export_keying_material(ssl, &buf, 1, NULL, 0, NULL, 0, 0)) { |
| fprintf(stderr, "failed to export keying material\n"); |
| return -1; |
| } |
| } |
| } while (config->async && RetryAsync(ssl, ret)); |
| |
| if (config->peek_then_read && ret > 0) { |
| std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]); |
| |
| // SSL_peek should synchronously return the same data. |
| int ret2 = SSL_peek(ssl, buf.get(), ret); |
| if (ret2 != ret || |
| OPENSSL_memcmp(buf.get(), out, ret) != 0) { |
| fprintf(stderr, "First and second SSL_peek did not match.\n"); |
| return -1; |
| } |
| |
| // SSL_read should synchronously return the same data and consume it. |
| ret2 = SSL_read(ssl, buf.get(), ret); |
| if (ret2 != ret || |
| OPENSSL_memcmp(buf.get(), out, ret) != 0) { |
| fprintf(stderr, "SSL_peek and SSL_read did not match.\n"); |
| return -1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous |
| // operations. It returns the result of the final |SSL_write| call. |
| static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) { |
| const TestConfig *config = GetTestConfig(ssl); |
| int ret; |
| do { |
| ret = SSL_write(ssl, in, in_len); |
| if (ret > 0) { |
| in += ret; |
| in_len -= ret; |
| } |
| } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0)); |
| return ret; |
| } |
| |
| // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It |
| // returns the result of the final |SSL_shutdown| call. |
| static int DoShutdown(SSL *ssl) { |
| const TestConfig *config = GetTestConfig(ssl); |
| int ret; |
| do { |
| ret = SSL_shutdown(ssl); |
| } while (config->async && RetryAsync(ssl, ret)); |
| return ret; |
| } |
| |
| // DoSendFatalAlert calls |SSL_send_fatal_alert|, resolving any asynchronous |
| // operations. It returns the result of the final |SSL_send_fatal_alert| call. |
| static int DoSendFatalAlert(SSL *ssl, uint8_t alert) { |
| const TestConfig *config = GetTestConfig(ssl); |
| int ret; |
| do { |
| ret = SSL_send_fatal_alert(ssl, alert); |
| } while (config->async && RetryAsync(ssl, ret)); |
| return ret; |
| } |
| |
| static uint16_t GetProtocolVersion(const SSL *ssl) { |
| uint16_t version = SSL_version(ssl); |
| if (!SSL_is_dtls(ssl)) { |
| return version; |
| } |
| return 0x0201 + ~version; |
| } |
| |
| // CheckHandshakeProperties checks, immediately after |ssl| completes its |
| // initial handshake (or False Starts), whether all the properties are |
| // consistent with the test configuration and invariants. |
| static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) { |
| const TestConfig *config = GetTestConfig(ssl); |
| |
| if (SSL_get_current_cipher(ssl) == nullptr) { |
| fprintf(stderr, "null cipher after handshake\n"); |
| return false; |
| } |
| |
| if (is_resume && |
| (!!SSL_session_reused(ssl) == config->expect_session_miss)) { |
| fprintf(stderr, "session was%s reused\n", |
| SSL_session_reused(ssl) ? "" : " not"); |
| return false; |
| } |
| |
| bool expect_handshake_done = is_resume || !config->false_start; |
| if (expect_handshake_done != GetTestState(ssl)->handshake_done) { |
| fprintf(stderr, "handshake was%s completed\n", |
| GetTestState(ssl)->handshake_done ? "" : " not"); |
| return false; |
| } |
| |
| if (expect_handshake_done && !config->is_server) { |
| bool expect_new_session = |
| !config->expect_no_session && |
| (!SSL_session_reused(ssl) || config->expect_ticket_renewal) && |
| // Session tickets are sent post-handshake in TLS 1.3. |
| GetProtocolVersion(ssl) < TLS1_3_VERSION; |
| if (expect_new_session != GetTestState(ssl)->got_new_session) { |
| fprintf(stderr, |
| "new session was%s cached, but we expected the opposite\n", |
| GetTestState(ssl)->got_new_session ? "" : " not"); |
| return false; |
| } |
| } |
| |
| if (config->is_server && !GetTestState(ssl)->early_callback_called) { |
| fprintf(stderr, "early callback not called\n"); |
| return false; |
| } |
| |
| if (!config->expected_server_name.empty()) { |
| const char *server_name = |
| SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); |
| if (server_name == nullptr || |
| server_name != config->expected_server_name) { |
| fprintf(stderr, "servername mismatch (got %s; want %s)\n", |
| server_name, config->expected_server_name.c_str()); |
| return false; |
| } |
| } |
| |
| if (!config->expected_next_proto.empty()) { |
| const uint8_t *next_proto; |
| unsigned next_proto_len; |
| SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); |
| if (next_proto_len != config->expected_next_proto.size() || |
| OPENSSL_memcmp(next_proto, config->expected_next_proto.data(), |
| next_proto_len) != 0) { |
| fprintf(stderr, "negotiated next proto mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_alpn.empty()) { |
| const uint8_t *alpn_proto; |
| unsigned alpn_proto_len; |
| SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len); |
| if (alpn_proto_len != config->expected_alpn.size() || |
| OPENSSL_memcmp(alpn_proto, config->expected_alpn.data(), |
| alpn_proto_len) != 0) { |
| fprintf(stderr, "negotiated alpn proto mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_channel_id.empty()) { |
| uint8_t channel_id[64]; |
| if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) { |
| fprintf(stderr, "no channel id negotiated\n"); |
| return false; |
| } |
| if (config->expected_channel_id.size() != 64 || |
| OPENSSL_memcmp(config->expected_channel_id.data(), channel_id, 64) != |
| 0) { |
| fprintf(stderr, "channel id mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (config->expect_extended_master_secret) { |
| if (!SSL_get_extms_support(ssl)) { |
| fprintf(stderr, "No EMS for connection when expected"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_ocsp_response.empty()) { |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_ocsp_response(ssl, &data, &len); |
| if (config->expected_ocsp_response.size() != len || |
| OPENSSL_memcmp(config->expected_ocsp_response.data(), data, len) != 0) { |
| fprintf(stderr, "OCSP response mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_signed_cert_timestamps.empty()) { |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_signed_cert_timestamp_list(ssl, &data, &len); |
| if (config->expected_signed_cert_timestamps.size() != len || |
| OPENSSL_memcmp(config->expected_signed_cert_timestamps.data(), data, |
| len) != 0) { |
| fprintf(stderr, "SCT list mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (config->expect_verify_result) { |
| int expected_verify_result = config->verify_fail ? |
| X509_V_ERR_APPLICATION_VERIFICATION : |
| X509_V_OK; |
| |
| if (SSL_get_verify_result(ssl) != expected_verify_result) { |
| fprintf(stderr, "Wrong certificate verification result\n"); |
| return false; |
| } |
| } |
| |
| if (config->expect_peer_signature_algorithm != 0 && |
| config->expect_peer_signature_algorithm != |
| SSL_get_peer_signature_algorithm(ssl)) { |
| fprintf(stderr, "Peer signature algorithm was %04x, wanted %04x.\n", |
| SSL_get_peer_signature_algorithm(ssl), |
| config->expect_peer_signature_algorithm); |
| return false; |
| } |
| |
| int expect_curve_id = config->expect_curve_id; |
| if (is_resume && config->expect_resume_curve_id != 0) { |
| expect_curve_id = config->expect_resume_curve_id; |
| } |
| if (expect_curve_id != 0) { |
| uint16_t curve_id = SSL_get_curve_id(ssl); |
| if (static_cast<uint16_t>(expect_curve_id) != curve_id) { |
| fprintf(stderr, "curve_id was %04x, wanted %04x\n", curve_id, |
| static_cast<uint16_t>(expect_curve_id)); |
| return false; |
| } |
| } |
| |
| uint16_t cipher_id = |
| static_cast<uint16_t>(SSL_CIPHER_get_id(SSL_get_current_cipher(ssl))); |
| if (config->expect_cipher_aes != 0 && |
| EVP_has_aes_hardware() && |
| static_cast<uint16_t>(config->expect_cipher_aes) != cipher_id) { |
| fprintf(stderr, "Cipher ID was %04x, wanted %04x (has AES hardware)\n", |
| cipher_id, static_cast<uint16_t>(config->expect_cipher_aes)); |
| return false; |
| } |
| |
| if (config->expect_cipher_no_aes != 0 && |
| !EVP_has_aes_hardware() && |
| static_cast<uint16_t>(config->expect_cipher_no_aes) != cipher_id) { |
| fprintf(stderr, "Cipher ID was %04x, wanted %04x (no AES hardware)\n", |
| cipher_id, static_cast<uint16_t>(config->expect_cipher_no_aes)); |
| return false; |
| } |
| |
| |
| if (!config->psk.empty()) { |
| if (SSL_get_peer_cert_chain(ssl) != nullptr) { |
| fprintf(stderr, "Received peer certificate on a PSK cipher.\n"); |
| return false; |
| } |
| } else if (!config->is_server || config->require_any_client_certificate) { |
| if (SSL_get_peer_cert_chain(ssl) == nullptr) { |
| fprintf(stderr, "Received no peer certificate but expected one.\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expect_peer_cert_file.empty()) { |
| bssl::UniquePtr<X509> expect_leaf; |
| bssl::UniquePtr<STACK_OF(X509)> expect_chain; |
| if (!LoadCertificate(&expect_leaf, &expect_chain, |
| config->expect_peer_cert_file)) { |
| return false; |
| } |
| |
| // For historical reasons, clients report a chain with a leaf and servers |
| // without. |
| if (!config->is_server) { |
| if (!sk_X509_insert(expect_chain.get(), expect_leaf.get(), 0)) { |
| return false; |
| } |
| X509_up_ref(expect_leaf.get()); // sk_X509_push takes ownership. |
| } |
| |
| bssl::UniquePtr<X509> leaf(SSL_get_peer_certificate(ssl)); |
| STACK_OF(X509) *chain = SSL_get_peer_cert_chain(ssl); |
| if (X509_cmp(leaf.get(), expect_leaf.get()) != 0) { |
| fprintf(stderr, "Received a different leaf certificate than expected.\n"); |
| return false; |
| } |
| |
| if (sk_X509_num(chain) != sk_X509_num(expect_chain.get())) { |
| fprintf(stderr, "Received a chain of length %zu instead of %zu.\n", |
| sk_X509_num(chain), sk_X509_num(expect_chain.get())); |
| return false; |
| } |
| |
| for (size_t i = 0; i < sk_X509_num(chain); i++) { |
| if (X509_cmp(sk_X509_value(chain, i), |
| sk_X509_value(expect_chain.get(), i)) != 0) { |
| fprintf(stderr, "Chain certificate %zu did not match.\n", |
| i + 1); |
| return false; |
| } |
| } |
| } |
| |
| bool expected_sha256_client_cert = config->expect_sha256_client_cert_initial; |
| if (is_resume) { |
| expected_sha256_client_cert = config->expect_sha256_client_cert_resume; |
| } |
| |
| if (SSL_get_session(ssl)->peer_sha256_valid != expected_sha256_client_cert) { |
| fprintf(stderr, |
| "Unexpected SHA-256 client cert state: expected:%d is_resume:%d.\n", |
| expected_sha256_client_cert, is_resume); |
| return false; |
| } |
| |
| if (expected_sha256_client_cert && |
| SSL_get_session(ssl)->x509_peer != nullptr) { |
| fprintf(stderr, "Have both client cert and SHA-256 hash: is_resume:%d.\n", |
| is_resume); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // DoExchange runs a test SSL exchange against the peer. On success, it returns |
| // true and sets |*out_session| to the negotiated SSL session. If the test is a |
| // resumption attempt, |is_resume| is true and |session| is the session from the |
| // previous exchange. |
| static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session, |
| SSL_CTX *ssl_ctx, const TestConfig *config, |
| bool is_resume, SSL_SESSION *session) { |
| bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx)); |
| if (!ssl) { |
| return false; |
| } |
| |
| if (!SetTestConfig(ssl.get(), config) || |
| !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) { |
| return false; |
| } |
| |
| if (config->fallback_scsv && |
| !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) { |
| return false; |
| } |
| // Install the certificate synchronously if nothing else will handle it. |
| if (!config->use_early_callback && |
| !config->use_old_client_cert_callback && |
| !config->async && |
| !InstallCertificate(ssl.get())) { |
| return false; |
| } |
| if (!config->use_old_client_cert_callback) { |
| SSL_set_cert_cb(ssl.get(), CertCallback, nullptr); |
| } |
| if (config->require_any_client_certificate) { |
| SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| NULL); |
| } |
| if (config->verify_peer) { |
| SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL); |
| } |
| if (config->false_start) { |
| SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START); |
| } |
| if (config->cbc_record_splitting) { |
| SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING); |
| } |
| if (config->partial_write) { |
| SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); |
| } |
| if (config->no_tls13) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3); |
| } |
| if (config->no_tls12) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2); |
| } |
| if (config->no_tls11) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1); |
| } |
| if (config->no_tls1) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1); |
| } |
| if (config->no_ssl3) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3); |
| } |
| if (!config->expected_channel_id.empty() || |
| config->enable_channel_id) { |
| SSL_set_tls_channel_id_enabled(ssl.get(), 1); |
| } |
| if (!config->send_channel_id.empty()) { |
| SSL_set_tls_channel_id_enabled(ssl.get(), 1); |
| if (!config->async) { |
| // The async case will be supplied by |ChannelIdCallback|. |
| bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(config->send_channel_id); |
| if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) { |
| return false; |
| } |
| } |
| } |
| if (!config->host_name.empty() && |
| !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) { |
| return false; |
| } |
| if (!config->advertise_alpn.empty() && |
| SSL_set_alpn_protos(ssl.get(), |
| (const uint8_t *)config->advertise_alpn.data(), |
| config->advertise_alpn.size()) != 0) { |
| return false; |
| } |
| if (!config->psk.empty()) { |
| SSL_set_psk_client_callback(ssl.get(), PskClientCallback); |
| SSL_set_psk_server_callback(ssl.get(), PskServerCallback); |
| } |
| if (!config->psk_identity.empty() && |
| !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) { |
| return false; |
| } |
| if (!config->srtp_profiles.empty() && |
| !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) { |
| return false; |
| } |
| if (config->enable_ocsp_stapling && |
| !SSL_enable_ocsp_stapling(ssl.get())) { |
| return false; |
| } |
| if (config->enable_signed_cert_timestamps && |
| !SSL_enable_signed_cert_timestamps(ssl.get())) { |
| return false; |
| } |
| if (config->min_version != 0 && |
| !SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) { |
| return false; |
| } |
| if (config->max_version != 0 && |
| !SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) { |
| return false; |
| } |
| if (config->mtu != 0) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU); |
| SSL_set_mtu(ssl.get(), config->mtu); |
| } |
| if (config->install_ddos_callback) { |
| SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback); |
| } |
| if (config->renegotiate_once) { |
| SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once); |
| } |
| if (config->renegotiate_freely) { |
| SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); |
| } |
| if (config->renegotiate_ignore) { |
| SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore); |
| } |
| if (!config->check_close_notify) { |
| SSL_set_quiet_shutdown(ssl.get(), 1); |
| } |
| if (config->p384_only) { |
| int nid = NID_secp384r1; |
| if (!SSL_set1_curves(ssl.get(), &nid, 1)) { |
| return false; |
| } |
| } |
| if (config->enable_all_curves) { |
| static const int kAllCurves[] = { |
| NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519, |
| }; |
| if (!SSL_set1_curves(ssl.get(), kAllCurves, |
| OPENSSL_ARRAY_SIZE(kAllCurves))) { |
| return false; |
| } |
| } |
| if (config->initial_timeout_duration_ms > 0) { |
| DTLSv1_set_initial_timeout_duration(ssl.get(), |
| config->initial_timeout_duration_ms); |
| } |
| if (config->max_cert_list > 0) { |
| SSL_set_max_cert_list(ssl.get(), config->max_cert_list); |
| } |
| if (!is_resume && config->retain_only_sha256_client_cert_initial) { |
| SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1); |
| } |
| if (is_resume && config->retain_only_sha256_client_cert_resume) { |
| SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1); |
| } |
| |
| int sock = Connect(config->port); |
| if (sock == -1) { |
| return false; |
| } |
| SocketCloser closer(sock); |
| |
| bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE)); |
| if (!bio) { |
| return false; |
| } |
| if (config->is_dtls) { |
| bssl::UniquePtr<BIO> packeted = PacketedBioCreate(&g_clock, !config->async); |
| if (!packeted) { |
| return false; |
| } |
| GetTestState(ssl.get())->packeted_bio = packeted.get(); |
| BIO_push(packeted.get(), bio.release()); |
| bio = std::move(packeted); |
| } |
| if (config->async) { |
| bssl::UniquePtr<BIO> async_scoped = |
| config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate(); |
| if (!async_scoped) { |
| return false; |
| } |
| BIO_push(async_scoped.get(), bio.release()); |
| GetTestState(ssl.get())->async_bio = async_scoped.get(); |
| bio = std::move(async_scoped); |
| } |
| SSL_set_bio(ssl.get(), bio.get(), bio.get()); |
| bio.release(); // SSL_set_bio takes ownership. |
| |
| if (session != NULL) { |
| if (!config->is_server) { |
| if (SSL_set_session(ssl.get(), session) != 1) { |
| return false; |
| } |
| } else if (config->async) { |
| // The internal session cache is disabled, so install the session |
| // manually. |
| SSL_SESSION_up_ref(session); |
| GetTestState(ssl.get())->pending_session.reset(session); |
| } |
| } |
| |
| if (SSL_get_current_cipher(ssl.get()) != nullptr) { |
| fprintf(stderr, "non-null cipher before handshake\n"); |
| return false; |
| } |
| |
| int ret; |
| if (config->implicit_handshake) { |
| if (config->is_server) { |
| SSL_set_accept_state(ssl.get()); |
| } else { |
| SSL_set_connect_state(ssl.get()); |
| } |
| } else { |
| do { |
| if (config->is_server) { |
| ret = SSL_accept(ssl.get()); |
| } else { |
| ret = SSL_connect(ssl.get()); |
| } |
| } while (config->async && RetryAsync(ssl.get(), ret)); |
| if (ret != 1 || |
| !CheckHandshakeProperties(ssl.get(), is_resume)) { |
| return false; |
| } |
| |
| // Reset the state to assert later that the callback isn't called in |
| // renegotations. |
| GetTestState(ssl.get())->got_new_session = false; |
| } |
| |
| if (config->export_keying_material > 0) { |
| std::vector<uint8_t> result( |
| static_cast<size_t>(config->export_keying_material)); |
| if (!SSL_export_keying_material( |
| ssl.get(), result.data(), result.size(), |
| config->export_label.data(), config->export_label.size(), |
| reinterpret_cast<const uint8_t*>(config->export_context.data()), |
| config->export_context.size(), config->use_export_context)) { |
| fprintf(stderr, "failed to export keying material\n"); |
| return false; |
| } |
| if (WriteAll(ssl.get(), result.data(), result.size()) < 0) { |
| return false; |
| } |
| } |
| |
| if (config->tls_unique) { |
| uint8_t tls_unique[16]; |
| size_t tls_unique_len; |
| if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len, |
| sizeof(tls_unique))) { |
| fprintf(stderr, "failed to get tls-unique\n"); |
| return false; |
| } |
| |
| if (tls_unique_len != 12) { |
| fprintf(stderr, "expected 12 bytes of tls-unique but got %u", |
| static_cast<unsigned>(tls_unique_len)); |
| return false; |
| } |
| |
| if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) { |
| return false; |
| } |
| } |
| |
| if (config->send_alert) { |
| if (DoSendFatalAlert(ssl.get(), SSL_AD_DECOMPRESSION_FAILURE) < 0) { |
| return false; |
| } |
| return true; |
| } |
| |
| if (config->write_different_record_sizes) { |
| if (config->is_dtls) { |
| fprintf(stderr, "write_different_record_sizes not supported for DTLS\n"); |
| return false; |
| } |
| // This mode writes a number of different record sizes in an attempt to |
| // trip up the CBC record splitting code. |
| static const size_t kBufLen = 32769; |
| std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]); |
| OPENSSL_memset(buf.get(), 0x42, kBufLen); |
| static const size_t kRecordSizes[] = { |
| 0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769}; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) { |
| const size_t len = kRecordSizes[i]; |
| if (len > kBufLen) { |
| fprintf(stderr, "Bad kRecordSizes value.\n"); |
| return false; |
| } |
| if (WriteAll(ssl.get(), buf.get(), len) < 0) { |
| return false; |
| } |
| } |
| } else { |
| if (config->shim_writes_first) { |
| if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"), |
| 5) < 0) { |
| return false; |
| } |
| } |
| if (!config->shim_shuts_down) { |
| for (;;) { |
| static const size_t kBufLen = 16384; |
| std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]); |
| |
| // Read only 512 bytes at a time in TLS to ensure records may be |
| // returned in multiple reads. |
| int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512); |
| int err = SSL_get_error(ssl.get(), n); |
| if (err == SSL_ERROR_ZERO_RETURN || |
| (n == 0 && err == SSL_ERROR_SYSCALL)) { |
| if (n != 0) { |
| fprintf(stderr, "Invalid SSL_get_error output\n"); |
| return false; |
| } |
| // Stop on either clean or unclean shutdown. |
| break; |
| } else if (err != SSL_ERROR_NONE) { |
| if (n > 0) { |
| fprintf(stderr, "Invalid SSL_get_error output\n"); |
| return false; |
| } |
| return false; |
| } |
| // Successfully read data. |
| if (n <= 0) { |
| fprintf(stderr, "Invalid SSL_get_error output\n"); |
| return false; |
| } |
| |
| // After a successful read, with or without False Start, the handshake |
| // must be complete. |
| if (!GetTestState(ssl.get())->handshake_done) { |
| fprintf(stderr, "handshake was not completed after SSL_read\n"); |
| return false; |
| } |
| |
| for (int i = 0; i < n; i++) { |
| buf[i] ^= 0xff; |
| } |
| if (WriteAll(ssl.get(), buf.get(), n) < 0) { |
| return false; |
| } |
| } |
| } |
| } |
| |
| if (!config->is_server && !config->false_start && |
| !config->implicit_handshake && |
| // Session tickets are sent post-handshake in TLS 1.3. |
| GetProtocolVersion(ssl.get()) < TLS1_3_VERSION && |
| GetTestState(ssl.get())->got_new_session) { |
| fprintf(stderr, "new session was established after the handshake\n"); |
| return false; |
| } |
| |
| if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) { |
| bool expect_new_session = |
| !config->expect_no_session && !config->shim_shuts_down; |
| if (expect_new_session != GetTestState(ssl.get())->got_new_session) { |
| fprintf(stderr, |
| "new session was%s cached, but we expected the opposite\n", |
| GetTestState(ssl.get())->got_new_session ? "" : " not"); |
| return false; |
| } |
| } |
| |
| if (out_session) { |
| *out_session = std::move(GetTestState(ssl.get())->new_session); |
| } |
| |
| ret = DoShutdown(ssl.get()); |
| |
| if (config->shim_shuts_down && config->check_close_notify) { |
| // We initiate shutdown, so |SSL_shutdown| will return in two stages. First |
| // it returns zero when our close_notify is sent, then one when the peer's |
| // is received. |
| if (ret != 0) { |
| fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret); |
| return false; |
| } |
| ret = DoShutdown(ssl.get()); |
| } |
| |
| if (ret != 1) { |
| fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret); |
| return false; |
| } |
| |
| if (SSL_total_renegotiations(ssl.get()) != |
| config->expect_total_renegotiations) { |
| fprintf(stderr, "Expected %d renegotiations, got %d\n", |
| config->expect_total_renegotiations, |
| SSL_total_renegotiations(ssl.get())); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| class StderrDelimiter { |
| public: |
| ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); } |
| }; |
| |
| int main(int argc, char **argv) { |
| // To distinguish ASan's output from ours, add a trailing message to stderr. |
| // Anything following this line will be considered an error. |
| StderrDelimiter delimiter; |
| |
| #if defined(OPENSSL_WINDOWS) |
| /* Initialize Winsock. */ |
| WORD wsa_version = MAKEWORD(2, 2); |
| WSADATA wsa_data; |
| int wsa_err = WSAStartup(wsa_version, &wsa_data); |
| if (wsa_err != 0) { |
| fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); |
| return 1; |
| } |
| if (wsa_data.wVersion != wsa_version) { |
| fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); |
| return 1; |
| } |
| #else |
| signal(SIGPIPE, SIG_IGN); |
| #endif |
| |
| CRYPTO_library_init(); |
| g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); |
| g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree); |
| if (g_config_index < 0 || g_state_index < 0) { |
| return 1; |
| } |
| |
| TestConfig config; |
| if (!ParseConfig(argc - 1, argv + 1, &config)) { |
| return Usage(argv[0]); |
| } |
| |
| g_pool = CRYPTO_BUFFER_POOL_new(); |
| |
| // Some code treats the zero time special, so initialize the clock to a |
| // non-zero time. |
| g_clock.tv_sec = 1234; |
| g_clock.tv_usec = 1234; |
| |
| bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config); |
| if (!ssl_ctx) { |
| ERR_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| bssl::UniquePtr<SSL_SESSION> session; |
| for (int i = 0; i < config.resume_count + 1; i++) { |
| bool is_resume = i > 0; |
| if (is_resume && !config.is_server && !session) { |
| fprintf(stderr, "No session to offer.\n"); |
| return 1; |
| } |
| |
| bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session); |
| if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume, |
| offer_session.get())) { |
| fprintf(stderr, "Connection %d failed.\n", i + 1); |
| ERR_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| if (config.resumption_delay != 0) { |
| g_clock.tv_sec += config.resumption_delay; |
| } |
| } |
| |
| return 0; |
| } |