blob: f204286f67486b9e5b0c98597b3f94e2c36841d0 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/bn.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/ec_key.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include "../crypto/internal.h"
#include "internal.h"
static int ssl3_send_client_hello(SSL_HANDSHAKE *hs);
static int dtls1_get_hello_verify(SSL_HANDSHAKE *hs);
static int ssl3_get_server_hello(SSL_HANDSHAKE *hs);
static int ssl3_get_server_certificate(SSL_HANDSHAKE *hs);
static int ssl3_get_cert_status(SSL_HANDSHAKE *hs);
static int ssl3_verify_server_cert(SSL_HANDSHAKE *hs);
static int ssl3_get_server_key_exchange(SSL_HANDSHAKE *hs);
static int ssl3_get_certificate_request(SSL_HANDSHAKE *hs);
static int ssl3_get_server_hello_done(SSL_HANDSHAKE *hs);
static int ssl3_send_client_certificate(SSL_HANDSHAKE *hs);
static int ssl3_send_client_key_exchange(SSL_HANDSHAKE *hs);
static int ssl3_send_cert_verify(SSL_HANDSHAKE *hs);
static int ssl3_send_next_proto(SSL_HANDSHAKE *hs);
static int ssl3_send_channel_id(SSL_HANDSHAKE *hs);
static int ssl3_get_new_session_ticket(SSL_HANDSHAKE *hs);
int ssl3_connect(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int ret = -1;
assert(ssl->handshake_func == ssl3_connect);
assert(!ssl->server);
for (;;) {
int state = hs->state;
switch (hs->state) {
case SSL_ST_INIT:
ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
hs->state = SSL3_ST_CW_CLNT_HELLO_A;
break;
case SSL3_ST_CW_CLNT_HELLO_A:
ret = ssl3_send_client_hello(hs);
if (ret <= 0) {
goto end;
}
if (!SSL_is_dtls(ssl) || ssl->d1->send_cookie) {
if (hs->early_data_offered) {
if (!tls13_init_early_key_schedule(hs) ||
!tls13_advance_key_schedule(hs, ssl->session->master_key,
ssl->session->master_key_length) ||
!tls13_derive_early_secrets(hs) ||
!tls13_set_traffic_key(ssl, evp_aead_seal,
hs->early_traffic_secret,
hs->hash_len)) {
ret = -1;
goto end;
}
}
hs->next_state = SSL3_ST_CR_SRVR_HELLO_A;
} else {
hs->next_state = DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A;
}
hs->state = SSL3_ST_CW_FLUSH;
break;
case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A:
assert(SSL_is_dtls(ssl));
ret = dtls1_get_hello_verify(hs);
if (ret <= 0) {
goto end;
}
if (ssl->d1->send_cookie) {
ssl->method->received_flight(ssl);
hs->state = SSL3_ST_CW_CLNT_HELLO_A;
} else {
hs->state = SSL3_ST_CR_SRVR_HELLO_A;
}
break;
case SSL3_ST_CR_SRVR_HELLO_A:
ret = ssl3_get_server_hello(hs);
if (hs->state == SSL_ST_TLS13) {
break;
}
if (ret <= 0) {
goto end;
}
if (ssl->session != NULL) {
hs->state = SSL3_ST_CR_SESSION_TICKET_A;
} else {
hs->state = SSL3_ST_CR_CERT_A;
}
break;
case SSL3_ST_CR_CERT_A:
if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
ret = ssl3_get_server_certificate(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CR_CERT_STATUS_A;
break;
case SSL3_ST_CR_CERT_STATUS_A:
if (hs->certificate_status_expected) {
ret = ssl3_get_cert_status(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_VERIFY_SERVER_CERT;
break;
case SSL3_ST_VERIFY_SERVER_CERT:
if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
ret = ssl3_verify_server_cert(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CR_KEY_EXCH_A;
break;
case SSL3_ST_CR_KEY_EXCH_A:
ret = ssl3_get_server_key_exchange(hs);
if (ret <= 0) {
goto end;
}
hs->state = SSL3_ST_CR_CERT_REQ_A;
break;
case SSL3_ST_CR_CERT_REQ_A:
if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
ret = ssl3_get_certificate_request(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CR_SRVR_DONE_A;
break;
case SSL3_ST_CR_SRVR_DONE_A:
ret = ssl3_get_server_hello_done(hs);
if (ret <= 0) {
goto end;
}
ssl->method->received_flight(ssl);
hs->state = SSL3_ST_CW_CERT_A;
break;
case SSL3_ST_CW_CERT_A:
if (hs->cert_request) {
ret = ssl3_send_client_certificate(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CW_KEY_EXCH_A;
break;
case SSL3_ST_CW_KEY_EXCH_A:
ret = ssl3_send_client_key_exchange(hs);
if (ret <= 0) {
goto end;
}
hs->state = SSL3_ST_CW_CERT_VRFY_A;
break;
case SSL3_ST_CW_CERT_VRFY_A:
case SSL3_ST_CW_CERT_VRFY_B:
if (hs->cert_request && ssl_has_certificate(ssl)) {
ret = ssl3_send_cert_verify(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CW_CHANGE;
break;
case SSL3_ST_CW_CHANGE:
if (!ssl->method->add_change_cipher_spec(ssl) ||
!tls1_change_cipher_state(hs, SSL3_CHANGE_CIPHER_CLIENT_WRITE)) {
ret = -1;
goto end;
}
hs->state = SSL3_ST_CW_NEXT_PROTO_A;
break;
case SSL3_ST_CW_NEXT_PROTO_A:
if (hs->next_proto_neg_seen) {
ret = ssl3_send_next_proto(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CW_CHANNEL_ID_A;
break;
case SSL3_ST_CW_CHANNEL_ID_A:
if (ssl->s3->tlsext_channel_id_valid) {
ret = ssl3_send_channel_id(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CW_FINISHED_A;
break;
case SSL3_ST_CW_FINISHED_A:
ret = ssl3_send_finished(hs);
if (ret <= 0) {
goto end;
}
hs->state = SSL3_ST_CW_FLUSH;
if (ssl->session != NULL) {
hs->next_state = SSL3_ST_FINISH_CLIENT_HANDSHAKE;
} else {
/* This is a non-resumption handshake. If it involves ChannelID, then
* record the handshake hashes at this point in the session so that
* any resumption of this session with ChannelID can sign those
* hashes. */
ret = tls1_record_handshake_hashes_for_channel_id(hs);
if (ret <= 0) {
goto end;
}
if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
ssl3_can_false_start(ssl) &&
/* No False Start on renegotiation (would complicate the state
* machine). */
!ssl->s3->initial_handshake_complete) {
hs->next_state = SSL3_ST_FALSE_START;
} else {
hs->next_state = SSL3_ST_CR_SESSION_TICKET_A;
}
}
break;
case SSL3_ST_FALSE_START:
hs->state = SSL3_ST_CR_SESSION_TICKET_A;
hs->in_false_start = 1;
hs->can_early_write = 1;
ret = 1;
goto end;
case SSL3_ST_CR_SESSION_TICKET_A:
if (hs->ticket_expected) {
ret = ssl3_get_new_session_ticket(hs);
if (ret <= 0) {
goto end;
}
}
hs->state = SSL3_ST_CR_CHANGE;
break;
case SSL3_ST_CR_CHANGE:
ret = ssl->method->read_change_cipher_spec(ssl);
if (ret <= 0) {
goto end;
}
if (!tls1_change_cipher_state(hs, SSL3_CHANGE_CIPHER_CLIENT_READ)) {
ret = -1;
goto end;
}
hs->state = SSL3_ST_CR_FINISHED_A;
break;
case SSL3_ST_CR_FINISHED_A:
ret = ssl3_get_finished(hs);
if (ret <= 0) {
goto end;
}
ssl->method->received_flight(ssl);
if (ssl->session != NULL) {
hs->state = SSL3_ST_CW_CHANGE;
} else {
hs->state = SSL3_ST_FINISH_CLIENT_HANDSHAKE;
}
break;
case SSL3_ST_CW_FLUSH:
ret = ssl->method->flush_flight(ssl);
if (ret <= 0) {
goto end;
}
hs->state = hs->next_state;
if (hs->state != SSL3_ST_FINISH_CLIENT_HANDSHAKE) {
ssl->method->expect_flight(ssl);
}
break;
case SSL_ST_TLS13: {
int early_return = 0;
ret = tls13_handshake(hs, &early_return);
if (ret <= 0) {
goto end;
}
if (early_return) {
ret = 1;
goto end;
}
hs->state = SSL3_ST_FINISH_CLIENT_HANDSHAKE;
break;
}
case SSL3_ST_FINISH_CLIENT_HANDSHAKE:
ssl->method->release_current_message(ssl, 1 /* free_buffer */);
SSL_SESSION_free(ssl->s3->established_session);
if (ssl->session != NULL) {
SSL_SESSION_up_ref(ssl->session);
ssl->s3->established_session = ssl->session;
} else {
/* We make a copy of the session in order to maintain the immutability
* of the new established_session due to False Start. The caller may
* have taken a reference to the temporary session. */
ssl->s3->established_session =
SSL_SESSION_dup(hs->new_session, SSL_SESSION_DUP_ALL);
if (ssl->s3->established_session == NULL) {
ret = -1;
goto end;
}
ssl->s3->established_session->not_resumable = 0;
SSL_SESSION_free(hs->new_session);
hs->new_session = NULL;
}
hs->state = SSL_ST_OK;
break;
case SSL_ST_OK: {
const int is_initial_handshake = !ssl->s3->initial_handshake_complete;
ssl->s3->initial_handshake_complete = 1;
if (is_initial_handshake) {
/* Renegotiations do not participate in session resumption. */
ssl_update_cache(hs, SSL_SESS_CACHE_CLIENT);
}
ret = 1;
ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_DONE, 1);
goto end;
}
default:
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE);
ret = -1;
goto end;
}
if (hs->state != state) {
ssl_do_info_callback(ssl, SSL_CB_CONNECT_LOOP, 1);
}
}
end:
ssl_do_info_callback(ssl, SSL_CB_CONNECT_EXIT, ret);
return ret;
}
uint16_t ssl_get_grease_value(const SSL *ssl, enum ssl_grease_index_t index) {
/* Use the client_random for entropy. This both avoids calling |RAND_bytes| on
* a single byte repeatedly and ensures the values are deterministic. This
* allows the same ClientHello be sent twice for a HelloRetryRequest or the
* same group be advertised in both supported_groups and key_shares. */
uint16_t ret = ssl->s3->client_random[index];
/* This generates a random value of the form 0xωaωa, for all 0 ≤ ω < 16. */
ret = (ret & 0xf0) | 0x0a;
ret |= ret << 8;
return ret;
}
/* ssl_get_client_disabled sets |*out_mask_a| and |*out_mask_k| to masks of
* disabled algorithms. */
static void ssl_get_client_disabled(SSL *ssl, uint32_t *out_mask_a,
uint32_t *out_mask_k) {
*out_mask_a = 0;
*out_mask_k = 0;
/* PSK requires a client callback. */
if (ssl->psk_client_callback == NULL) {
*out_mask_a |= SSL_aPSK;
*out_mask_k |= SSL_kPSK;
}
}
static int ssl_write_client_cipher_list(SSL *ssl, CBB *out,
uint16_t min_version,
uint16_t max_version) {
uint32_t mask_a, mask_k;
ssl_get_client_disabled(ssl, &mask_a, &mask_k);
CBB child;
if (!CBB_add_u16_length_prefixed(out, &child)) {
return 0;
}
/* Add a fake cipher suite. See draft-davidben-tls-grease-01. */
if (ssl->ctx->grease_enabled &&
!CBB_add_u16(&child, ssl_get_grease_value(ssl, ssl_grease_cipher))) {
return 0;
}
/* Add TLS 1.3 ciphers. Order ChaCha20-Poly1305 relative to AES-GCM based on
* hardware support. */
if (max_version >= TLS1_3_VERSION) {
if (!EVP_has_aes_hardware() &&
!CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
return 0;
}
if (!CBB_add_u16(&child, TLS1_CK_AES_128_GCM_SHA256 & 0xffff) ||
!CBB_add_u16(&child, TLS1_CK_AES_256_GCM_SHA384 & 0xffff)) {
return 0;
}
if (EVP_has_aes_hardware() &&
!CBB_add_u16(&child, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
return 0;
}
}
if (min_version < TLS1_3_VERSION) {
STACK_OF(SSL_CIPHER) *ciphers = SSL_get_ciphers(ssl);
int any_enabled = 0;
for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
/* Skip disabled ciphers */
if ((cipher->algorithm_mkey & mask_k) ||
(cipher->algorithm_auth & mask_a)) {
continue;
}
if (SSL_CIPHER_get_min_version(cipher) > max_version ||
SSL_CIPHER_get_max_version(cipher) < min_version) {
continue;
}
any_enabled = 1;
if (!CBB_add_u16(&child, ssl_cipher_get_value(cipher))) {
return 0;
}
}
/* If all ciphers were disabled, return the error to the caller. */
if (!any_enabled && max_version < TLS1_3_VERSION) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
return 0;
}
}
/* For SSLv3, the SCSV is added. Otherwise the renegotiation extension is
* added. */
if (max_version == SSL3_VERSION &&
!ssl->s3->initial_handshake_complete) {
if (!CBB_add_u16(&child, SSL3_CK_SCSV & 0xffff)) {
return 0;
}
}
if (ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
return 0;
}
}
return CBB_flush(out);
}
int ssl_write_client_hello(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
uint16_t min_version, max_version;
if (!ssl_get_version_range(ssl, &min_version, &max_version)) {
return 0;
}
CBB cbb, body;
if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_CLIENT_HELLO)) {
goto err;
}
/* Renegotiations do not participate in session resumption. */
int has_session = ssl->session != NULL &&
!ssl->s3->initial_handshake_complete;
CBB child;
if (!CBB_add_u16(&body, hs->client_version) ||
!CBB_add_bytes(&body, ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
!CBB_add_u8_length_prefixed(&body, &child) ||
(has_session &&
!CBB_add_bytes(&child, ssl->session->session_id,
ssl->session->session_id_length))) {
goto err;
}
if (SSL_is_dtls(ssl)) {
if (!CBB_add_u8_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, ssl->d1->cookie, ssl->d1->cookie_len)) {
goto err;
}
}
size_t header_len =
SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH;
if (!ssl_write_client_cipher_list(ssl, &body, min_version, max_version) ||
!CBB_add_u8(&body, 1 /* one compression method */) ||
!CBB_add_u8(&body, 0 /* null compression */) ||
!ssl_add_clienthello_tlsext(hs, &body, header_len + CBB_len(&body))) {
goto err;
}
uint8_t *msg = NULL;
size_t len;
if (!ssl->method->finish_message(ssl, &cbb, &msg, &len)) {
goto err;
}
/* Now that the length prefixes have been computed, fill in the placeholder
* PSK binder. */
if (hs->needs_psk_binder &&
!tls13_write_psk_binder(hs, msg, len)) {
OPENSSL_free(msg);
goto err;
}
return ssl->method->add_message(ssl, msg, len);
err:
CBB_cleanup(&cbb);
return 0;
}
static int ssl3_send_client_hello(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
/* The handshake buffer is reset on every ClientHello. Notably, in DTLS, we
* may send multiple ClientHellos if we receive HelloVerifyRequest. */
if (!SSL_TRANSCRIPT_init(&hs->transcript)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
uint16_t min_version, max_version;
if (!ssl_get_version_range(ssl, &min_version, &max_version)) {
return -1;
}
uint16_t max_wire_version = ssl->method->version_to_wire(max_version);
assert(hs->state == SSL3_ST_CW_CLNT_HELLO_A);
if (!ssl->s3->have_version) {
ssl->version = max_wire_version;
}
/* Always advertise the ClientHello version from the original maximum version,
* even on renegotiation. The static RSA key exchange uses this field, and
* some servers fail when it changes across handshakes. */
hs->client_version = max_wire_version;
if (max_version >= TLS1_3_VERSION) {
hs->client_version = ssl->method->version_to_wire(TLS1_2_VERSION);
}
/* If the configured session has expired or was created at a disabled
* version, drop it. */
if (ssl->session != NULL) {
uint16_t session_version;
if (ssl->session->is_server ||
!ssl->method->version_from_wire(&session_version,
ssl->session->ssl_version) ||
(session_version < TLS1_3_VERSION &&
ssl->session->session_id_length == 0) ||
ssl->session->not_resumable ||
!ssl_session_is_time_valid(ssl, ssl->session) ||
session_version < min_version || session_version > max_version) {
ssl_set_session(ssl, NULL);
}
}
/* If resending the ClientHello in DTLS after a HelloVerifyRequest, don't
* renegerate the client_random. The random must be reused. */
if ((!SSL_is_dtls(ssl) || !ssl->d1->send_cookie) &&
!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
return -1;
}
if (!ssl_write_client_hello(hs)) {
return -1;
}
return 1;
}
static int dtls1_get_hello_verify(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int al;
CBS hello_verify_request, cookie;
uint16_t server_version;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
if (ssl->s3->tmp.message_type != DTLS1_MT_HELLO_VERIFY_REQUEST) {
ssl->d1->send_cookie = 0;
ssl->s3->tmp.reuse_message = 1;
return 1;
}
CBS_init(&hello_verify_request, ssl->init_msg, ssl->init_num);
if (!CBS_get_u16(&hello_verify_request, &server_version) ||
!CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
CBS_len(&hello_verify_request) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (CBS_len(&cookie) > sizeof(ssl->d1->cookie)) {
al = SSL_AD_ILLEGAL_PARAMETER;
goto f_err;
}
OPENSSL_memcpy(ssl->d1->cookie, CBS_data(&cookie), CBS_len(&cookie));
ssl->d1->cookie_len = CBS_len(&cookie);
ssl->d1->send_cookie = 1;
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
return -1;
}
static int ssl3_get_server_hello(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
CBS server_hello, server_random, session_id;
uint16_t server_wire_version, cipher_suite;
uint8_t compression_method;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
uint32_t err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_SSL &&
ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) {
/* Add a dedicated error code to the queue for a handshake_failure alert
* in response to ClientHello. This matches NSS's client behavior and
* gives a better error on a (probable) failure to negotiate initial
* parameters. Note: this error code comes after the original one.
*
* See https://crbug.com/446505. */
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO);
}
return ret;
}
if (ssl->s3->tmp.message_type != SSL3_MT_SERVER_HELLO &&
ssl->s3->tmp.message_type != SSL3_MT_HELLO_RETRY_REQUEST) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
CBS_init(&server_hello, ssl->init_msg, ssl->init_num);
if (!CBS_get_u16(&server_hello, &server_wire_version)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return -1;
}
uint16_t min_version, max_version, server_version;
if (!ssl_get_version_range(ssl, &min_version, &max_version) ||
!ssl->method->version_from_wire(&server_version, server_wire_version) ||
server_version < min_version || server_version > max_version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
return -1;
}
assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete);
if (!ssl->s3->have_version) {
ssl->version = server_wire_version;
/* At this point, the connection's version is known and ssl->version is
* fixed. Begin enforcing the record-layer version. */
ssl->s3->have_version = 1;
} else if (server_wire_version != ssl->version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
return -1;
}
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
hs->state = SSL_ST_TLS13;
hs->do_tls13_handshake = tls13_client_handshake;
return 1;
}
if (hs->early_data_offered) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_ON_EARLY_DATA);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_PROTOCOL_VERSION);
return -1;
}
ssl_clear_tls13_state(hs);
if (!ssl_check_message_type(ssl, SSL3_MT_SERVER_HELLO)) {
return -1;
}
if (!CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) ||
!CBS_get_u8_length_prefixed(&server_hello, &session_id) ||
CBS_len(&session_id) > SSL3_SESSION_ID_SIZE ||
!CBS_get_u16(&server_hello, &cipher_suite) ||
!CBS_get_u8(&server_hello, &compression_method)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return -1;
}
/* Copy over the server random. */
OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_random),
SSL3_RANDOM_SIZE);
/* TODO(davidben): Implement the TLS 1.1 and 1.2 downgrade sentinels once TLS
* 1.3 is finalized and we are not implementing a draft version. */
if (!ssl->s3->initial_handshake_complete && ssl->session != NULL &&
ssl->session->session_id_length != 0 &&
CBS_mem_equal(&session_id, ssl->session->session_id,
ssl->session->session_id_length)) {
ssl->s3->session_reused = 1;
} else {
/* The session wasn't resumed. Create a fresh SSL_SESSION to
* fill out. */
ssl_set_session(ssl, NULL);
if (!ssl_get_new_session(hs, 0 /* client */)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return -1;
}
/* Note: session_id could be empty. */
hs->new_session->session_id_length = CBS_len(&session_id);
OPENSSL_memcpy(hs->new_session->session_id, CBS_data(&session_id),
CBS_len(&session_id));
}
const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite);
if (c == NULL) {
/* unknown cipher */
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
/* The cipher must be allowed in the selected version and enabled. */
uint32_t mask_a, mask_k;
ssl_get_client_disabled(ssl, &mask_a, &mask_k);
if ((c->algorithm_mkey & mask_k) || (c->algorithm_auth & mask_a) ||
SSL_CIPHER_get_min_version(c) > ssl3_protocol_version(ssl) ||
SSL_CIPHER_get_max_version(c) < ssl3_protocol_version(ssl) ||
!sk_SSL_CIPHER_find(SSL_get_ciphers(ssl), NULL, c)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
if (ssl->session != NULL) {
if (ssl->session->ssl_version != ssl->version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
if (ssl->session->cipher != c) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
if (!ssl_session_is_context_valid(ssl, ssl->session)) {
/* This is actually a client application bug. */
OPENSSL_PUT_ERROR(SSL,
SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
} else {
hs->new_session->cipher = c;
}
hs->new_cipher = c;
/* Now that the cipher is known, initialize the handshake hash and hash the
* ServerHello. */
if (!SSL_TRANSCRIPT_init_hash(&hs->transcript, ssl3_protocol_version(ssl),
c->algorithm_prf) ||
!ssl_hash_current_message(hs)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return -1;
}
/* If doing a full handshake, the server may request a client certificate
* which requires hashing the handshake transcript. Otherwise, the handshake
* buffer may be released. */
if (ssl->session != NULL ||
!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
SSL_TRANSCRIPT_free_buffer(&hs->transcript);
}
/* Only the NULL compression algorithm is supported. */
if (compression_method != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
/* TLS extensions */
if (!ssl_parse_serverhello_tlsext(hs, &server_hello)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
return -1;
}
/* There should be nothing left over in the record. */
if (CBS_len(&server_hello) != 0) {
/* wrong packet length */
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return -1;
}
if (ssl->session != NULL &&
hs->extended_master_secret != ssl->session->extended_master_secret) {
if (ssl->session->extended_master_secret) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
}
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
return -1;
}
return 1;
}
static int ssl3_get_server_certificate(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
if (!ssl_check_message_type(ssl, SSL3_MT_CERTIFICATE) ||
!ssl_hash_current_message(hs)) {
return -1;
}
CBS cbs;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
uint8_t alert = SSL_AD_DECODE_ERROR;
sk_CRYPTO_BUFFER_pop_free(hs->new_session->certs, CRYPTO_BUFFER_free);
EVP_PKEY_free(hs->peer_pubkey);
hs->peer_pubkey = NULL;
hs->new_session->certs = ssl_parse_cert_chain(&alert, &hs->peer_pubkey, NULL,
&cbs, ssl->ctx->pool);
if (hs->new_session->certs == NULL) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
return -1;
}
if (sk_CRYPTO_BUFFER_num(hs->new_session->certs) == 0 ||
CBS_len(&cbs) != 0 ||
!ssl->ctx->x509_method->session_cache_objects(hs->new_session)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return -1;
}
if (!ssl_check_leaf_certificate(
hs, hs->peer_pubkey,
sk_CRYPTO_BUFFER_value(hs->new_session->certs, 0))) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
/* Disallow the server certificate from changing during a renegotiation. See
* https://mitls.org/pages/attacks/3SHAKE. We never resume on renegotiation,
* so this check is sufficient. */
if (ssl->s3->established_session != NULL) {
if (sk_CRYPTO_BUFFER_num(ssl->s3->established_session->certs) !=
sk_CRYPTO_BUFFER_num(hs->new_session->certs)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(hs->new_session->certs); i++) {
const CRYPTO_BUFFER *old_cert =
sk_CRYPTO_BUFFER_value(ssl->s3->established_session->certs, i);
const CRYPTO_BUFFER *new_cert =
sk_CRYPTO_BUFFER_value(hs->new_session->certs, i);
if (CRYPTO_BUFFER_len(old_cert) != CRYPTO_BUFFER_len(new_cert) ||
OPENSSL_memcmp(CRYPTO_BUFFER_data(old_cert),
CRYPTO_BUFFER_data(new_cert),
CRYPTO_BUFFER_len(old_cert)) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return -1;
}
}
}
return 1;
}
static int ssl3_get_cert_status(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int al;
CBS certificate_status, ocsp_response;
uint8_t status_type;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
if (ssl->s3->tmp.message_type != SSL3_MT_CERTIFICATE_STATUS) {
/* A server may send status_request in ServerHello and then change
* its mind about sending CertificateStatus. */
ssl->s3->tmp.reuse_message = 1;
return 1;
}
if (!ssl_hash_current_message(hs)) {
return -1;
}
CBS_init(&certificate_status, ssl->init_msg, ssl->init_num);
if (!CBS_get_u8(&certificate_status, &status_type) ||
status_type != TLSEXT_STATUSTYPE_ocsp ||
!CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
CBS_len(&ocsp_response) == 0 ||
CBS_len(&certificate_status) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!CBS_stow(&ocsp_response, &hs->new_session->ocsp_response,
&hs->new_session->ocsp_response_length)) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto f_err;
}
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
return -1;
}
static int ssl3_verify_server_cert(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!ssl->ctx->x509_method->session_verify_cert_chain(hs->new_session, ssl)) {
return -1;
}
return 1;
}
static int ssl3_get_server_key_exchange(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int al;
EC_KEY *ecdh = NULL;
EC_POINT *srvr_ecpoint = NULL;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
if (ssl->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE) {
/* Some ciphers (pure PSK) have an optional ServerKeyExchange message. */
if (ssl_cipher_requires_server_key_exchange(hs->new_cipher)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return -1;
}
ssl->s3->tmp.reuse_message = 1;
return 1;
}
if (!ssl_hash_current_message(hs)) {
return -1;
}
/* Retain a copy of the original CBS to compute the signature over. */
CBS server_key_exchange;
CBS_init(&server_key_exchange, ssl->init_msg, ssl->init_num);
CBS server_key_exchange_orig = server_key_exchange;
uint32_t alg_k = hs->new_cipher->algorithm_mkey;
uint32_t alg_a = hs->new_cipher->algorithm_auth;
if (alg_a & SSL_aPSK) {
CBS psk_identity_hint;
/* Each of the PSK key exchanges begins with a psk_identity_hint. */
if (!CBS_get_u16_length_prefixed(&server_key_exchange,
&psk_identity_hint)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
/* Store PSK identity hint for later use, hint is used in
* ssl3_send_client_key_exchange. Assume that the maximum length of a PSK
* identity hint can be as long as the maximum length of a PSK identity.
* Also do not allow NULL characters; identities are saved as C strings.
*
* TODO(davidben): Should invalid hints be ignored? It's a hint rather than
* a specific identity. */
if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
CBS_contains_zero_byte(&psk_identity_hint)) {
al = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
goto f_err;
}
/* Save non-empty identity hints as a C string. Empty identity hints we
* treat as missing. Plain PSK makes it possible to send either no hint
* (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
* empty hint. Having different capabilities is odd, so we interpret empty
* and missing as identical. */
if (CBS_len(&psk_identity_hint) != 0 &&
!CBS_strdup(&psk_identity_hint, &hs->peer_psk_identity_hint)) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto f_err;
}
}
if (alg_k & SSL_kECDHE) {
/* Parse the server parameters. */
uint8_t group_type;
uint16_t group_id;
CBS point;
if (!CBS_get_u8(&server_key_exchange, &group_type) ||
group_type != NAMED_CURVE_TYPE ||
!CBS_get_u16(&server_key_exchange, &group_id) ||
!CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
hs->new_session->group_id = group_id;
/* Ensure the group is consistent with preferences. */
if (!tls1_check_group_id(ssl, group_id)) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
goto f_err;
}
/* Initialize ECDH and save the peer public key for later. */
if (!SSL_ECDH_CTX_init(&hs->ecdh_ctx, group_id) ||
!CBS_stow(&point, &hs->peer_key, &hs->peer_key_len)) {
goto err;
}
} else if (!(alg_k & SSL_kPSK)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
/* At this point, |server_key_exchange| contains the signature, if any, while
* |server_key_exchange_orig| contains the entire message. From that, derive
* a CBS containing just the parameter. */
CBS parameter;
CBS_init(&parameter, CBS_data(&server_key_exchange_orig),
CBS_len(&server_key_exchange_orig) - CBS_len(&server_key_exchange));
/* ServerKeyExchange should be signed by the server's public key. */
if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
uint16_t signature_algorithm = 0;
if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!tls12_check_peer_sigalg(ssl, &al, signature_algorithm)) {
goto f_err;
}
hs->new_session->peer_signature_algorithm = signature_algorithm;
} else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
hs->peer_pubkey)) {
al = SSL_AD_UNSUPPORTED_CERTIFICATE;
OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
goto f_err;
}
/* The last field in |server_key_exchange| is the signature. */
CBS signature;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
CBS_len(&server_key_exchange) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
CBB transcript;
uint8_t *transcript_data;
size_t transcript_len;
if (!CBB_init(&transcript, 2*SSL3_RANDOM_SIZE + CBS_len(&parameter)) ||
!CBB_add_bytes(&transcript, ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
!CBB_add_bytes(&transcript, ssl->s3->server_random, SSL3_RANDOM_SIZE) ||
!CBB_add_bytes(&transcript, CBS_data(&parameter), CBS_len(&parameter)) ||
!CBB_finish(&transcript, &transcript_data, &transcript_len)) {
CBB_cleanup(&transcript);
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto f_err;
}
int sig_ok = ssl_public_key_verify(
ssl, CBS_data(&signature), CBS_len(&signature), signature_algorithm,
hs->peer_pubkey, transcript_data, transcript_len);
OPENSSL_free(transcript_data);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
sig_ok = 1;
ERR_clear_error();
#endif
if (!sig_ok) {
/* bad signature */
al = SSL_AD_DECRYPT_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
goto f_err;
}
} else {
/* PSK ciphers are the only supported certificate-less ciphers. */
assert(alg_a == SSL_aPSK);
if (CBS_len(&server_key_exchange) > 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
goto f_err;
}
}
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
err:
EC_POINT_free(srvr_ecpoint);
EC_KEY_free(ecdh);
return -1;
}
static int ssl3_get_certificate_request(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int msg_ret = ssl->method->ssl_get_message(ssl);
if (msg_ret <= 0) {
return msg_ret;
}
if (ssl->s3->tmp.message_type == SSL3_MT_SERVER_HELLO_DONE) {
ssl->s3->tmp.reuse_message = 1;
/* If we get here we don't need the handshake buffer as we won't be doing
* client auth. */
SSL_TRANSCRIPT_free_buffer(&hs->transcript);
return 1;
}
if (!ssl_check_message_type(ssl, SSL3_MT_CERTIFICATE_REQUEST) ||
!ssl_hash_current_message(hs)) {
return -1;
}
CBS cbs;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
/* Get the certificate types. */
CBS certificate_types;
if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
if (!CBS_stow(&certificate_types, &hs->certificate_types,
&hs->num_certificate_types)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return -1;
}
if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
CBS supported_signature_algorithms;
if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms) ||
!tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
}
uint8_t alert = SSL_AD_DECODE_ERROR;
STACK_OF(CRYPTO_BUFFER) *ca_names =
ssl_parse_client_CA_list(ssl, &alert, &cbs);
if (ca_names == NULL) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
return -1;
}
if (CBS_len(&cbs) != 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
sk_CRYPTO_BUFFER_pop_free(ca_names, CRYPTO_BUFFER_free);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
hs->cert_request = 1;
sk_CRYPTO_BUFFER_pop_free(hs->ca_names, CRYPTO_BUFFER_free);
hs->ca_names = ca_names;
ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
return 1;
}
static int ssl3_get_server_hello_done(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
if (!ssl_check_message_type(ssl, SSL3_MT_SERVER_HELLO_DONE) ||
!ssl_hash_current_message(hs)) {
return -1;
}
/* ServerHelloDone is empty. */
if (ssl->init_num > 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
return 1;
}
static int ssl3_send_client_certificate(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
/* Call cert_cb to update the certificate. */
if (ssl->cert->cert_cb) {
int ret = ssl->cert->cert_cb(ssl, ssl->cert->cert_cb_arg);
if (ret < 0) {
ssl->rwstate = SSL_X509_LOOKUP;
return -1;
}
if (ret == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return -1;
}
}
if (!ssl_has_certificate(ssl)) {
/* Without a client certificate, the handshake buffer may be released. */
SSL_TRANSCRIPT_free_buffer(&hs->transcript);
/* In SSL 3.0, the Certificate message is replaced with a warning alert. */
if (ssl->version == SSL3_VERSION) {
if (!ssl->method->add_alert(ssl, SSL3_AL_WARNING,
SSL_AD_NO_CERTIFICATE)) {
return -1;
}
return 1;
}
}
if (!ssl_on_certificate_selected(hs) ||
!ssl3_output_cert_chain(ssl)) {
return -1;
}
return 1;
}
OPENSSL_COMPILE_ASSERT(sizeof(size_t) >= sizeof(unsigned),
SIZE_T_IS_SMALLER_THAN_UNSIGNED);
static int ssl3_send_client_key_exchange(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
uint8_t *pms = NULL;
size_t pms_len = 0;
CBB cbb, body;
if (!ssl->method->init_message(ssl, &cbb, &body,
SSL3_MT_CLIENT_KEY_EXCHANGE)) {
goto err;
}
uint32_t alg_k = hs->new_cipher->algorithm_mkey;
uint32_t alg_a = hs->new_cipher->algorithm_auth;
/* If using a PSK key exchange, prepare the pre-shared key. */
unsigned psk_len = 0;
uint8_t psk[PSK_MAX_PSK_LEN];
if (alg_a & SSL_aPSK) {
if (ssl->psk_client_callback == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
goto err;
}
char identity[PSK_MAX_IDENTITY_LEN + 1];
OPENSSL_memset(identity, 0, sizeof(identity));
psk_len =
ssl->psk_client_callback(ssl, hs->peer_psk_identity_hint, identity,
sizeof(identity), psk, sizeof(psk));
if (psk_len == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
goto err;
}
assert(psk_len <= PSK_MAX_PSK_LEN);
OPENSSL_free(hs->new_session->psk_identity);
hs->new_session->psk_identity = BUF_strdup(identity);
if (hs->new_session->psk_identity == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Write out psk_identity. */
CBB child;
if (!CBB_add_u16_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, (const uint8_t *)identity,
OPENSSL_strnlen(identity, sizeof(identity))) ||
!CBB_flush(&body)) {
goto err;
}
}
/* Depending on the key exchange method, compute |pms| and |pms_len|. */
if (alg_k & SSL_kRSA) {
pms_len = SSL_MAX_MASTER_KEY_LENGTH;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
RSA *rsa = EVP_PKEY_get0_RSA(hs->peer_pubkey);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
pms[0] = hs->client_version >> 8;
pms[1] = hs->client_version & 0xff;
if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
goto err;
}
CBB child, *enc_pms = &body;
size_t enc_pms_len;
/* In TLS, there is a length prefix. */
if (ssl->version > SSL3_VERSION) {
if (!CBB_add_u16_length_prefixed(&body, &child)) {
goto err;
}
enc_pms = &child;
}
uint8_t *ptr;
if (!CBB_reserve(enc_pms, &ptr, RSA_size(rsa)) ||
!RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms, pms_len,
RSA_PKCS1_PADDING) ||
!CBB_did_write(enc_pms, enc_pms_len) ||
!CBB_flush(&body)) {
goto err;
}
} else if (alg_k & SSL_kECDHE) {
/* Generate a keypair and serialize the public half. */
CBB child;
if (!CBB_add_u8_length_prefixed(&body, &child)) {
goto err;
}
/* Compute the premaster. */
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!SSL_ECDH_CTX_accept(&hs->ecdh_ctx, &child, &pms, &pms_len, &alert,
hs->peer_key, hs->peer_key_len)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
goto err;
}
if (!CBB_flush(&body)) {
goto err;
}
/* The key exchange state may now be discarded. */
SSL_ECDH_CTX_cleanup(&hs->ecdh_ctx);
OPENSSL_free(hs->peer_key);
hs->peer_key = NULL;
hs->peer_key_len = 0;
} else if (alg_k & SSL_kPSK) {
/* For plain PSK, other_secret is a block of 0s with the same length as
* the pre-shared key. */
pms_len = psk_len;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
OPENSSL_memset(pms, 0, pms_len);
} else {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
/* For a PSK cipher suite, other_secret is combined with the pre-shared
* key. */
if (alg_a & SSL_aPSK) {
CBB pms_cbb, child;
uint8_t *new_pms;
size_t new_pms_len;
CBB_zero(&pms_cbb);
if (!CBB_init(&pms_cbb, 2 + psk_len + 2 + pms_len) ||
!CBB_add_u16_length_prefixed(&pms_cbb, &child) ||
!CBB_add_bytes(&child, pms, pms_len) ||
!CBB_add_u16_length_prefixed(&pms_cbb, &child) ||
!CBB_add_bytes(&child, psk, psk_len) ||
!CBB_finish(&pms_cbb, &new_pms, &new_pms_len)) {
CBB_cleanup(&pms_cbb);
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
pms = new_pms;
pms_len = new_pms_len;
}
/* The message must be added to the finished hash before calculating the
* master secret. */
if (!ssl_add_message_cbb(ssl, &cbb)) {
goto err;
}
hs->new_session->master_key_length = tls1_generate_master_secret(
hs, hs->new_session->master_key, pms, pms_len);
if (hs->new_session->master_key_length == 0) {
goto err;
}
hs->new_session->extended_master_secret = hs->extended_master_secret;
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
return 1;
err:
CBB_cleanup(&cbb);
if (pms != NULL) {
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
}
return -1;
}
static int ssl3_send_cert_verify(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
assert(ssl_has_private_key(ssl));
CBB cbb, body, child;
if (!ssl->method->init_message(ssl, &cbb, &body,
SSL3_MT_CERTIFICATE_VERIFY)) {
goto err;
}
uint16_t signature_algorithm;
if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) {
goto err;
}
if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
/* Write out the digest type in TLS 1.2. */
if (!CBB_add_u16(&body, signature_algorithm)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/* Set aside space for the signature. */
const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey);
uint8_t *ptr;
if (!CBB_add_u16_length_prefixed(&body, &child) ||
!CBB_reserve(&child, &ptr, max_sig_len)) {
goto err;
}
size_t sig_len = max_sig_len;
enum ssl_private_key_result_t sign_result;
if (hs->state == SSL3_ST_CW_CERT_VRFY_A) {
/* The SSL3 construction for CertificateVerify does not decompose into a
* single final digest and signature, and must be special-cased. */
if (ssl3_protocol_version(ssl) == SSL3_VERSION) {
if (ssl->cert->key_method != NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY);
goto err;
}
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_len;
if (!SSL_TRANSCRIPT_ssl3_cert_verify_hash(&hs->transcript, digest,
&digest_len, hs->new_session,
signature_algorithm)) {
goto err;
}
sign_result = ssl_private_key_success;
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(ssl->cert->privatekey, NULL);
if (pctx == NULL ||
!EVP_PKEY_sign_init(pctx) ||
!EVP_PKEY_sign(pctx, ptr, &sig_len, digest, digest_len)) {
EVP_PKEY_CTX_free(pctx);
sign_result = ssl_private_key_failure;
goto err;
}
EVP_PKEY_CTX_free(pctx);
} else {
sign_result = ssl_private_key_sign(
ssl, ptr, &sig_len, max_sig_len, signature_algorithm,
(const uint8_t *)hs->transcript.buffer->data,
hs->transcript.buffer->length);
}
/* The handshake buffer is no longer necessary. */
SSL_TRANSCRIPT_free_buffer(&hs->transcript);
} else {
assert(hs->state == SSL3_ST_CW_CERT_VRFY_B);
sign_result = ssl_private_key_complete(ssl, ptr, &sig_len, max_sig_len);
}
switch (sign_result) {
case ssl_private_key_success:
break;
case ssl_private_key_failure:
goto err;
case ssl_private_key_retry:
ssl->rwstate = SSL_PRIVATE_KEY_OPERATION;
hs->state = SSL3_ST_CW_CERT_VRFY_B;
goto err;
}
if (!CBB_did_write(&child, sig_len) ||
!ssl_add_message_cbb(ssl, &cbb)) {
goto err;
}
return 1;
err:
CBB_cleanup(&cbb);
return -1;
}
static int ssl3_send_next_proto(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
static const uint8_t kZero[32] = {0};
size_t padding_len = 32 - ((ssl->s3->next_proto_negotiated_len + 2) % 32);
CBB cbb, body, child;
if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_NEXT_PROTO) ||
!CBB_add_u8_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, ssl->s3->next_proto_negotiated,
ssl->s3->next_proto_negotiated_len) ||
!CBB_add_u8_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, kZero, padding_len) ||
!ssl_add_message_cbb(ssl, &cbb)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
CBB_cleanup(&cbb);
return -1;
}
return 1;
}
static int ssl3_send_channel_id(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!ssl_do_channel_id_callback(ssl)) {
return -1;
}
if (ssl->tlsext_channel_id_private == NULL) {
ssl->rwstate = SSL_CHANNEL_ID_LOOKUP;
return -1;
}
CBB cbb, body;
if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_CHANNEL_ID) ||
!tls1_write_channel_id(hs, &body) ||
!ssl_add_message_cbb(ssl, &cbb)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
CBB_cleanup(&cbb);
return -1;
}
return 1;
}
static int ssl3_get_new_session_ticket(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int ret = ssl->method->ssl_get_message(ssl);
if (ret <= 0) {
return ret;
}
if (!ssl_check_message_type(ssl, SSL3_MT_NEW_SESSION_TICKET) ||
!ssl_hash_current_message(hs)) {
return -1;
}
CBS new_session_ticket, ticket;
uint32_t tlsext_tick_lifetime_hint;
CBS_init(&new_session_ticket, ssl->init_msg, ssl->init_num);
if (!CBS_get_u32(&new_session_ticket, &tlsext_tick_lifetime_hint) ||
!CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
CBS_len(&new_session_ticket) != 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
if (CBS_len(&ticket) == 0) {
/* RFC 5077 allows a server to change its mind and send no ticket after
* negotiating the extension. The value of |ticket_expected| is checked in
* |ssl_update_cache| so is cleared here to avoid an unnecessary update. */
hs->ticket_expected = 0;
return 1;
}
int session_renewed = ssl->session != NULL;
SSL_SESSION *session = hs->new_session;
if (session_renewed) {
/* The server is sending a new ticket for an existing session. Sessions are
* immutable once established, so duplicate all but the ticket of the
* existing session. */
session = SSL_SESSION_dup(ssl->session, SSL_SESSION_INCLUDE_NONAUTH);
if (session == NULL) {
/* This should never happen. */
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/* |tlsext_tick_lifetime_hint| is measured from when the ticket was issued. */
ssl_session_rebase_time(ssl, session);
if (!CBS_stow(&ticket, &session->tlsext_tick, &session->tlsext_ticklen)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
session->tlsext_tick_lifetime_hint = tlsext_tick_lifetime_hint;
/* Generate a session ID for this session based on the session ticket. We use
* the session ID mechanism for detecting ticket resumption. This also fits in
* with assumptions elsewhere in OpenSSL.*/
if (!EVP_Digest(CBS_data(&ticket), CBS_len(&ticket),
session->session_id, &session->session_id_length,
EVP_sha256(), NULL)) {
goto err;
}
if (session_renewed) {
session->not_resumable = 0;
SSL_SESSION_free(ssl->session);
ssl->session = session;
}
return 1;
err:
if (session_renewed) {
SSL_SESSION_free(session);
}
return -1;
}