blob: 02063dfd3854f078be19ddf8c1edd4e466360238 [file] [log] [blame]
/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ec.h>
#include <assert.h>
#include "internal.h"
#include "../bn/internal.h"
#include "../../internal.h"
void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *p, const EC_SCALAR *scalar) {
// This is a generic implementation for uncommon curves that not do not
// warrant a tuned one. It uses unsigned digits so that the doubling case in
// |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity.
// Compute a table of the first 32 multiples of |p| (including infinity).
EC_RAW_POINT precomp[32];
ec_GFp_simple_point_set_to_infinity(group, &precomp[0]);
ec_GFp_simple_point_copy(&precomp[1], p);
for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) {
if (j & 1) {
ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]);
} else {
ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]);
}
}
// Divide bits in |scalar| into windows.
unsigned bits = BN_num_bits(&group->order);
int r_is_at_infinity = 1;
for (unsigned i = bits - 1; i < bits; i--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
if (i % 5 == 0) {
// Compute the next window value.
const size_t width = group->order.width;
uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4;
window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3;
window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2;
window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1;
window |= bn_is_bit_set_words(scalar->words, width, i);
// Select the entry in constant-time.
EC_RAW_POINT tmp;
OPENSSL_memset(&tmp, 0, sizeof(EC_RAW_POINT));
for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) {
BN_ULONG mask = constant_time_eq_w(j, window);
ec_point_select(group, &tmp, mask, &precomp[j], &tmp);
}
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
}
void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_SCALAR *scalar) {
ec_GFp_mont_mul(group, r, &group->generator->raw, scalar);
}
static void ec_GFp_mont_batch_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
size_t num, const EC_RAW_POINT *p) {
assert(num > 1);
ec_GFp_simple_point_set_to_infinity(group, &out[0]);
ec_GFp_simple_point_copy(&out[1], p);
for (size_t j = 2; j < num; j++) {
if (j & 1) {
ec_GFp_mont_add(group, &out[j], &out[1], &out[j - 1]);
} else {
ec_GFp_mont_dbl(group, &out[j], &out[j / 2]);
}
}
}
static void ec_GFp_mont_batch_get_window(const EC_GROUP *group,
EC_RAW_POINT *out,
const EC_RAW_POINT precomp[17],
const EC_SCALAR *scalar, unsigned i) {
const size_t width = group->order.width;
uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 5;
window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 4;
window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 3;
window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 2;
window |= bn_is_bit_set_words(scalar->words, width, i) << 1;
if (i > 0) {
window |= bn_is_bit_set_words(scalar->words, width, i - 1);
}
uint8_t sign, digit;
ec_GFp_nistp_recode_scalar_bits(&sign, &digit, window);
// Select the entry in constant-time.
OPENSSL_memset(out, 0, sizeof(EC_RAW_POINT));
for (size_t j = 0; j < 17; j++) {
BN_ULONG mask = constant_time_eq_w(j, digit);
ec_point_select(group, out, mask, &precomp[j], out);
}
// Negate if necessary.
EC_FELEM neg_Y;
ec_felem_neg(group, &neg_Y, &out->Y);
BN_ULONG sign_mask = sign;
sign_mask = 0u - sign_mask;
ec_felem_select(group, &out->Y, sign_mask, &neg_Y, &out->Y);
}
void ec_GFp_mont_mul_batch(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0,
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1,
const EC_RAW_POINT *p2, const EC_SCALAR *scalar2) {
EC_RAW_POINT precomp[3][17];
ec_GFp_mont_batch_precomp(group, precomp[0], 17, p0);
ec_GFp_mont_batch_precomp(group, precomp[1], 17, p1);
if (p2 != NULL) {
ec_GFp_mont_batch_precomp(group, precomp[2], 17, p2);
}
// Divide bits in |scalar| into windows.
unsigned bits = BN_num_bits(&group->order);
int r_is_at_infinity = 1;
for (unsigned i = bits; i <= bits; i--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
if (i % 5 == 0) {
EC_RAW_POINT tmp;
ec_GFp_mont_batch_get_window(group, &tmp, precomp[0], scalar0, i);
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
ec_GFp_mont_batch_get_window(group, &tmp, precomp[1], scalar1, i);
ec_GFp_mont_add(group, r, r, &tmp);
if (p2 != NULL) {
ec_GFp_mont_batch_get_window(group, &tmp, precomp[2], scalar2, i);
ec_GFp_mont_add(group, r, r, &tmp);
}
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
}