| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| |
| #include "../internal.h" |
| #include "../test/file_test.h" |
| #include "../test/test_util.h" |
| |
| |
| struct KnownAEAD { |
| const char name[40]; |
| const EVP_AEAD *(*func)(void); |
| const char *test_vectors; |
| // limited_implementation indicates that tests that assume a generic AEAD |
| // interface should not be performed. For example, the key-wrap AEADs only |
| // handle inputs that are a multiple of eight bytes in length and the |
| // SSLv3/TLS AEADs have the concept of “direction”. |
| bool limited_implementation; |
| // truncated_tags is true if the AEAD supports truncating tags to arbitrary |
| // lengths. |
| bool truncated_tags; |
| // ad_len, if non-zero, is the required length of the AD. |
| size_t ad_len; |
| }; |
| |
| static const struct KnownAEAD kAEADs[] = { |
| {"AES_128_GCM", EVP_aead_aes_128_gcm, "aes_128_gcm_tests.txt", false, true, |
| 0}, |
| {"AES_128_GCM_NIST", EVP_aead_aes_128_gcm, "nist_cavp/aes_128_gcm.txt", |
| false, true, 0}, |
| {"AES_256_GCM", EVP_aead_aes_256_gcm, "aes_256_gcm_tests.txt", false, true, |
| 0}, |
| {"AES_256_GCM_NIST", EVP_aead_aes_256_gcm, "nist_cavp/aes_256_gcm.txt", |
| false, true, 0}, |
| #if !defined(OPENSSL_SMALL) |
| {"AES_128_GCM_SIV", EVP_aead_aes_128_gcm_siv, "aes_128_gcm_siv_tests.txt", |
| false, false, 0}, |
| {"AES_256_GCM_SIV", EVP_aead_aes_256_gcm_siv, "aes_256_gcm_siv_tests.txt", |
| false, false, 0}, |
| #endif |
| {"ChaCha20Poly1305", EVP_aead_chacha20_poly1305, |
| "chacha20_poly1305_tests.txt", false, true, 0}, |
| {"AES_128_CBC_SHA1_TLS", EVP_aead_aes_128_cbc_sha1_tls, |
| "aes_128_cbc_sha1_tls_tests.txt", true, false, 11}, |
| {"AES_128_CBC_SHA1_TLSImplicitIV", |
| EVP_aead_aes_128_cbc_sha1_tls_implicit_iv, |
| "aes_128_cbc_sha1_tls_implicit_iv_tests.txt", true, false, 11}, |
| {"AES_128_CBC_SHA256_TLS", EVP_aead_aes_128_cbc_sha256_tls, |
| "aes_128_cbc_sha256_tls_tests.txt", true, false, 11}, |
| {"AES_256_CBC_SHA1_TLS", EVP_aead_aes_256_cbc_sha1_tls, |
| "aes_256_cbc_sha1_tls_tests.txt", true, false, 11}, |
| {"AES_256_CBC_SHA1_TLSImplicitIV", |
| EVP_aead_aes_256_cbc_sha1_tls_implicit_iv, |
| "aes_256_cbc_sha1_tls_implicit_iv_tests.txt", true, false, 11}, |
| {"AES_256_CBC_SHA256_TLS", EVP_aead_aes_256_cbc_sha256_tls, |
| "aes_256_cbc_sha256_tls_tests.txt", true, false, 11}, |
| {"AES_256_CBC_SHA384_TLS", EVP_aead_aes_256_cbc_sha384_tls, |
| "aes_256_cbc_sha384_tls_tests.txt", true, false, 11}, |
| {"DES_EDE3_CBC_SHA1_TLS", EVP_aead_des_ede3_cbc_sha1_tls, |
| "des_ede3_cbc_sha1_tls_tests.txt", true, false, 11}, |
| {"DES_EDE3_CBC_SHA1_TLSImplicitIV", |
| EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv, |
| "des_ede3_cbc_sha1_tls_implicit_iv_tests.txt", true, false, 11}, |
| {"AES_128_CBC_SHA1_SSL3", EVP_aead_aes_128_cbc_sha1_ssl3, |
| "aes_128_cbc_sha1_ssl3_tests.txt", true, false, 9}, |
| {"AES_256_CBC_SHA1_SSL3", EVP_aead_aes_256_cbc_sha1_ssl3, |
| "aes_256_cbc_sha1_ssl3_tests.txt", true, false, 9}, |
| {"DES_EDE3_CBC_SHA1_SSL3", EVP_aead_des_ede3_cbc_sha1_ssl3, |
| "des_ede3_cbc_sha1_ssl3_tests.txt", true, false, 9}, |
| {"AES_128_CTR_HMAC_SHA256", EVP_aead_aes_128_ctr_hmac_sha256, |
| "aes_128_ctr_hmac_sha256.txt", false, true, 0}, |
| {"AES_256_CTR_HMAC_SHA256", EVP_aead_aes_256_ctr_hmac_sha256, |
| "aes_256_ctr_hmac_sha256.txt", false, true, 0}, |
| }; |
| |
| class PerAEADTest : public testing::TestWithParam<KnownAEAD> { |
| public: |
| const EVP_AEAD *aead() { return GetParam().func(); } |
| }; |
| |
| INSTANTIATE_TEST_CASE_P(, PerAEADTest, testing::ValuesIn(kAEADs), |
| [](const testing::TestParamInfo<KnownAEAD> ¶ms) |
| -> std::string { return params.param.name; }); |
| |
| // Tests an AEAD against a series of test vectors from a file, using the |
| // FileTest format. As an example, here's a valid test case: |
| // |
| // KEY: 5a19f3173586b4c42f8412f4d5a786531b3231753e9e00998aec12fda8df10e4 |
| // NONCE: 978105dfce667bf4 |
| // IN: 6a4583908d |
| // AD: b654574932 |
| // CT: 5294265a60 |
| // TAG: 1d45758621762e061368e68868e2f929 |
| TEST_P(PerAEADTest, TestVector) { |
| std::string test_vectors = "crypto/cipher_extra/test/"; |
| test_vectors += GetParam().test_vectors; |
| FileTestGTest(test_vectors.c_str(), [&](FileTest *t) { |
| std::vector<uint8_t> key, nonce, in, ad, ct, tag; |
| ASSERT_TRUE(t->GetBytes(&key, "KEY")); |
| ASSERT_TRUE(t->GetBytes(&nonce, "NONCE")); |
| ASSERT_TRUE(t->GetBytes(&in, "IN")); |
| ASSERT_TRUE(t->GetBytes(&ad, "AD")); |
| ASSERT_TRUE(t->GetBytes(&ct, "CT")); |
| ASSERT_TRUE(t->GetBytes(&tag, "TAG")); |
| size_t tag_len = tag.size(); |
| if (t->HasAttribute("TAG_LEN")) { |
| // Legacy AEADs are MAC-then-encrypt and may include padding in the TAG |
| // field. TAG_LEN contains the actual size of the digest in that case. |
| std::string tag_len_str; |
| ASSERT_TRUE(t->GetAttribute(&tag_len_str, "TAG_LEN")); |
| tag_len = strtoul(tag_len_str.c_str(), nullptr, 10); |
| ASSERT_TRUE(tag_len); |
| } |
| |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_seal)); |
| |
| std::vector<uint8_t> out(in.size() + EVP_AEAD_max_overhead(aead())); |
| if (!t->HasAttribute("NO_SEAL")) { |
| size_t out_len; |
| ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(), |
| nonce.data(), nonce.size(), in.data(), |
| in.size(), ad.data(), ad.size())); |
| out.resize(out_len); |
| |
| ASSERT_EQ(out.size(), ct.size() + tag.size()); |
| EXPECT_EQ(Bytes(ct), Bytes(out.data(), ct.size())); |
| EXPECT_EQ(Bytes(tag), Bytes(out.data() + ct.size(), tag.size())); |
| } else { |
| out.resize(ct.size() + tag.size()); |
| OPENSSL_memcpy(out.data(), ct.data(), ct.size()); |
| OPENSSL_memcpy(out.data() + ct.size(), tag.data(), tag.size()); |
| } |
| |
| // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be |
| // reset after each operation. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| std::vector<uint8_t> out2(out.size()); |
| size_t out2_len; |
| int ret = EVP_AEAD_CTX_open(ctx.get(), out2.data(), &out2_len, out2.size(), |
| nonce.data(), nonce.size(), out.data(), |
| out.size(), ad.data(), ad.size()); |
| if (t->HasAttribute("FAILS")) { |
| ASSERT_FALSE(ret) << "Decrypted bad data."; |
| ERR_clear_error(); |
| return; |
| } |
| |
| ASSERT_TRUE(ret) << "Failed to decrypt."; |
| out2.resize(out2_len); |
| EXPECT_EQ(Bytes(in), Bytes(out2)); |
| |
| // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be |
| // reset after each operation. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| // Garbage at the end isn't ignored. |
| out.push_back(0); |
| out2.resize(out.size()); |
| EXPECT_FALSE(EVP_AEAD_CTX_open( |
| ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(), |
| nonce.size(), out.data(), out.size(), ad.data(), ad.size())) |
| << "Decrypted bad data with trailing garbage."; |
| ERR_clear_error(); |
| |
| // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be |
| // reset after each operation. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| // Verify integrity is checked. |
| out[0] ^= 0x80; |
| out.resize(out.size() - 1); |
| out2.resize(out.size()); |
| EXPECT_FALSE(EVP_AEAD_CTX_open( |
| ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(), |
| nonce.size(), out.data(), out.size(), ad.data(), ad.size())) |
| << "Decrypted bad data with corrupted byte."; |
| ERR_clear_error(); |
| }); |
| } |
| |
| TEST_P(PerAEADTest, TestVectorScatterGather) { |
| std::string test_vectors = "crypto/cipher_extra/test/"; |
| const KnownAEAD &aead_config = GetParam(); |
| test_vectors += aead_config.test_vectors; |
| FileTestGTest(test_vectors.c_str(), [&](FileTest *t) { |
| std::vector<uint8_t> key, nonce, in, ad, ct, tag; |
| ASSERT_TRUE(t->GetBytes(&key, "KEY")); |
| ASSERT_TRUE(t->GetBytes(&nonce, "NONCE")); |
| ASSERT_TRUE(t->GetBytes(&in, "IN")); |
| ASSERT_TRUE(t->GetBytes(&ad, "AD")); |
| ASSERT_TRUE(t->GetBytes(&ct, "CT")); |
| ASSERT_TRUE(t->GetBytes(&tag, "TAG")); |
| size_t tag_len = tag.size(); |
| if (t->HasAttribute("TAG_LEN")) { |
| // Legacy AEADs are MAC-then-encrypt and may include padding in the TAG |
| // field. TAG_LEN contains the actual size of the digest in that case. |
| std::string tag_len_str; |
| ASSERT_TRUE(t->GetAttribute(&tag_len_str, "TAG_LEN")); |
| tag_len = strtoul(tag_len_str.c_str(), nullptr, 10); |
| ASSERT_TRUE(tag_len); |
| } |
| |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_seal)); |
| |
| std::vector<uint8_t> out(in.size()); |
| std::vector<uint8_t> out_tag(EVP_AEAD_max_overhead(aead())); |
| if (!t->HasAttribute("NO_SEAL")) { |
| size_t out_tag_len; |
| ASSERT_TRUE(EVP_AEAD_CTX_seal_scatter( |
| ctx.get(), out.data(), out_tag.data(), &out_tag_len, out_tag.size(), |
| nonce.data(), nonce.size(), in.data(), in.size(), nullptr, 0, |
| ad.data(), ad.size())); |
| out_tag.resize(out_tag_len); |
| |
| ASSERT_EQ(out.size(), ct.size()); |
| ASSERT_EQ(out_tag.size(), tag.size()); |
| EXPECT_EQ(Bytes(ct), Bytes(out.data(), ct.size())); |
| EXPECT_EQ(Bytes(tag), Bytes(out_tag.data(), tag.size())); |
| } else { |
| out.resize(ct.size()); |
| out_tag.resize(tag.size()); |
| OPENSSL_memcpy(out.data(), ct.data(), ct.size()); |
| OPENSSL_memcpy(out_tag.data(), tag.data(), tag.size()); |
| } |
| |
| // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be |
| // reset after each operation. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| std::vector<uint8_t> out2(out.size()); |
| int ret = EVP_AEAD_CTX_open_gather( |
| ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), |
| out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size()); |
| |
| // Skip decryption for AEADs that don't implement open_gather(). |
| if (!ret) { |
| int err = ERR_peek_error(); |
| if (ERR_GET_LIB(err) == ERR_LIB_CIPHER && |
| ERR_GET_REASON(err) == CIPHER_R_CTRL_NOT_IMPLEMENTED) { |
| (void)t->HasAttribute("FAILS"); // All attributes need to be used. |
| return; |
| } |
| } |
| |
| if (t->HasAttribute("FAILS")) { |
| ASSERT_FALSE(ret) << "Decrypted bad data"; |
| ERR_clear_error(); |
| return; |
| } |
| |
| ASSERT_TRUE(ret) << "Failed to decrypt: " |
| << ERR_reason_error_string(ERR_get_error()); |
| EXPECT_EQ(Bytes(in), Bytes(out2)); |
| |
| // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be |
| // reset after each operation. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| // Garbage at the end isn't ignored. |
| out_tag.push_back(0); |
| out2.resize(out.size()); |
| EXPECT_FALSE(EVP_AEAD_CTX_open_gather( |
| ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), |
| out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size())) |
| << "Decrypted bad data with trailing garbage."; |
| ERR_clear_error(); |
| |
| // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be |
| // reset after each operation. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| // Verify integrity is checked. |
| out_tag[0] ^= 0x80; |
| out_tag.resize(out_tag.size() - 1); |
| out2.resize(out.size()); |
| EXPECT_FALSE(EVP_AEAD_CTX_open_gather( |
| ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), |
| out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size())) |
| << "Decrypted bad data with corrupted byte."; |
| ERR_clear_error(); |
| |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open)); |
| |
| // Check edge case for tag length. |
| EXPECT_FALSE(EVP_AEAD_CTX_open_gather( |
| ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(), |
| out.size(), out_tag.data(), 0, ad.data(), ad.size())) |
| << "Decrypted bad data with corrupted byte."; |
| ERR_clear_error(); |
| }); |
| } |
| |
| TEST_P(PerAEADTest, CleanupAfterInitFailure) { |
| uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; |
| OPENSSL_memset(key, 0, sizeof(key)); |
| const size_t key_len = EVP_AEAD_key_length(aead()); |
| ASSERT_GE(sizeof(key), key_len); |
| |
| EVP_AEAD_CTX ctx; |
| ASSERT_FALSE(EVP_AEAD_CTX_init( |
| &ctx, aead(), key, key_len, |
| 9999 /* a silly tag length to trigger an error */, NULL /* ENGINE */)); |
| ERR_clear_error(); |
| |
| /* Running a second, failed _init should not cause a memory leak. */ |
| ASSERT_FALSE(EVP_AEAD_CTX_init( |
| &ctx, aead(), key, key_len, |
| 9999 /* a silly tag length to trigger an error */, NULL /* ENGINE */)); |
| ERR_clear_error(); |
| |
| /* Calling _cleanup on an |EVP_AEAD_CTX| after a failed _init should be a |
| * no-op. */ |
| EVP_AEAD_CTX_cleanup(&ctx); |
| } |
| |
| TEST_P(PerAEADTest, TruncatedTags) { |
| if (!GetParam().truncated_tags) { |
| return; |
| } |
| |
| uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; |
| OPENSSL_memset(key, 0, sizeof(key)); |
| const size_t key_len = EVP_AEAD_key_length(aead()); |
| ASSERT_GE(sizeof(key), key_len); |
| |
| uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
| OPENSSL_memset(nonce, 0, sizeof(nonce)); |
| const size_t nonce_len = EVP_AEAD_nonce_length(aead()); |
| ASSERT_GE(sizeof(nonce), nonce_len); |
| |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key, key_len, |
| 1 /* one byte tag */, NULL /* ENGINE */)); |
| |
| const uint8_t plaintext[1] = {'A'}; |
| |
| uint8_t ciphertext[128]; |
| size_t ciphertext_len; |
| constexpr uint8_t kSentinel = 42; |
| OPENSSL_memset(ciphertext, kSentinel, sizeof(ciphertext)); |
| |
| ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), ciphertext, &ciphertext_len, |
| sizeof(ciphertext), nonce, nonce_len, plaintext, |
| sizeof(plaintext), nullptr /* ad */, 0)); |
| |
| for (size_t i = ciphertext_len; i < sizeof(ciphertext); i++) { |
| // Sealing must not write past where it said it did. |
| EXPECT_EQ(kSentinel, ciphertext[i]) |
| << "Sealing wrote off the end of the buffer."; |
| } |
| |
| const size_t overhead_used = ciphertext_len - sizeof(plaintext); |
| const size_t expected_overhead = |
| 1 + EVP_AEAD_max_overhead(aead()) - EVP_AEAD_max_tag_len(aead()); |
| EXPECT_EQ(overhead_used, expected_overhead) |
| << "AEAD is probably ignoring request to truncate tags."; |
| |
| uint8_t plaintext2[sizeof(plaintext) + 16]; |
| OPENSSL_memset(plaintext2, kSentinel, sizeof(plaintext2)); |
| |
| size_t plaintext2_len; |
| ASSERT_TRUE(EVP_AEAD_CTX_open( |
| ctx.get(), plaintext2, &plaintext2_len, sizeof(plaintext2), nonce, |
| nonce_len, ciphertext, ciphertext_len, nullptr /* ad */, 0)) |
| << "Opening with truncated tag didn't work."; |
| |
| for (size_t i = plaintext2_len; i < sizeof(plaintext2); i++) { |
| // Likewise, opening should also stay within bounds. |
| EXPECT_EQ(kSentinel, plaintext2[i]) |
| << "Opening wrote off the end of the buffer."; |
| } |
| |
| EXPECT_EQ(Bytes(plaintext), Bytes(plaintext2, plaintext2_len)); |
| } |
| |
| TEST_P(PerAEADTest, AliasedBuffers) { |
| if (GetParam().limited_implementation) { |
| return; |
| } |
| |
| const size_t key_len = EVP_AEAD_key_length(aead()); |
| const size_t nonce_len = EVP_AEAD_nonce_length(aead()); |
| const size_t max_overhead = EVP_AEAD_max_overhead(aead()); |
| |
| std::vector<uint8_t> key(key_len, 'a'); |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key.data(), key_len, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); |
| |
| static const uint8_t kPlaintext[260] = |
| "testing123456testing123456testing123456testing123456testing123456testing" |
| "123456testing123456testing123456testing123456testing123456testing123456t" |
| "esting123456testing123456testing123456testing123456testing123456testing1" |
| "23456testing123456testing123456testing12345"; |
| const std::vector<size_t> offsets = { |
| 0, 1, 2, 8, 15, 16, 17, 31, 32, 33, 63, |
| 64, 65, 95, 96, 97, 127, 128, 129, 255, 256, 257, |
| }; |
| |
| std::vector<uint8_t> nonce(nonce_len, 'b'); |
| std::vector<uint8_t> valid_encryption(sizeof(kPlaintext) + max_overhead); |
| size_t valid_encryption_len; |
| ASSERT_TRUE(EVP_AEAD_CTX_seal( |
| ctx.get(), valid_encryption.data(), &valid_encryption_len, |
| sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len, kPlaintext, |
| sizeof(kPlaintext), nullptr, 0)) |
| << "EVP_AEAD_CTX_seal failed with disjoint buffers."; |
| |
| // Test with out != in which we expect to fail. |
| std::vector<uint8_t> buffer(2 + valid_encryption_len); |
| uint8_t *in = buffer.data() + 1; |
| uint8_t *out1 = buffer.data(); |
| uint8_t *out2 = buffer.data() + 2; |
| |
| OPENSSL_memcpy(in, kPlaintext, sizeof(kPlaintext)); |
| size_t out_len; |
| EXPECT_FALSE(EVP_AEAD_CTX_seal( |
| ctx.get(), out1 /* in - 1 */, &out_len, sizeof(kPlaintext) + max_overhead, |
| nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0)); |
| EXPECT_FALSE(EVP_AEAD_CTX_seal( |
| ctx.get(), out2 /* in + 1 */, &out_len, sizeof(kPlaintext) + max_overhead, |
| nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0)); |
| ERR_clear_error(); |
| |
| OPENSSL_memcpy(in, valid_encryption.data(), valid_encryption_len); |
| EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out1 /* in - 1 */, &out_len, |
| valid_encryption_len, nonce.data(), nonce_len, |
| in, valid_encryption_len, nullptr, 0)); |
| EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out2 /* in + 1 */, &out_len, |
| valid_encryption_len, nonce.data(), nonce_len, |
| in, valid_encryption_len, nullptr, 0)); |
| ERR_clear_error(); |
| |
| // Test with out == in, which we expect to work. |
| OPENSSL_memcpy(in, kPlaintext, sizeof(kPlaintext)); |
| |
| ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), in, &out_len, |
| sizeof(kPlaintext) + max_overhead, nonce.data(), |
| nonce_len, in, sizeof(kPlaintext), nullptr, 0)); |
| EXPECT_EQ(Bytes(valid_encryption.data(), valid_encryption_len), |
| Bytes(in, out_len)); |
| |
| OPENSSL_memcpy(in, valid_encryption.data(), valid_encryption_len); |
| ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), in, &out_len, valid_encryption_len, |
| nonce.data(), nonce_len, in, |
| valid_encryption_len, nullptr, 0)); |
| EXPECT_EQ(Bytes(kPlaintext), Bytes(in, out_len)); |
| } |
| |
| TEST_P(PerAEADTest, UnalignedInput) { |
| alignas(64) uint8_t key[EVP_AEAD_MAX_KEY_LENGTH + 1]; |
| alignas(64) uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH + 1]; |
| alignas(64) uint8_t plaintext[32 + 1]; |
| alignas(64) uint8_t ad[32 + 1]; |
| OPENSSL_memset(key, 'K', sizeof(key)); |
| OPENSSL_memset(nonce, 'N', sizeof(nonce)); |
| OPENSSL_memset(plaintext, 'P', sizeof(plaintext)); |
| OPENSSL_memset(ad, 'A', sizeof(ad)); |
| const size_t key_len = EVP_AEAD_key_length(aead()); |
| ASSERT_GE(sizeof(key) - 1, key_len); |
| const size_t nonce_len = EVP_AEAD_nonce_length(aead()); |
| ASSERT_GE(sizeof(nonce) - 1, nonce_len); |
| const size_t ad_len = |
| GetParam().ad_len != 0 ? GetParam().ad_len : sizeof(ad) - 1; |
| ASSERT_GE(sizeof(ad) - 1, ad_len); |
| |
| // Encrypt some input. |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key + 1, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, |
| evp_aead_seal)); |
| alignas(64) uint8_t ciphertext[sizeof(plaintext) + EVP_AEAD_MAX_OVERHEAD]; |
| size_t ciphertext_len; |
| ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), ciphertext + 1, &ciphertext_len, |
| sizeof(ciphertext) - 1, nonce + 1, nonce_len, |
| plaintext + 1, sizeof(plaintext) - 1, ad + 1, |
| ad_len)); |
| |
| // It must successfully decrypt. |
| alignas(64) uint8_t out[sizeof(ciphertext)]; |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction( |
| ctx.get(), aead(), key + 1, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH, |
| evp_aead_open)); |
| size_t out_len; |
| ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), out + 1, &out_len, sizeof(out) - 1, |
| nonce + 1, nonce_len, ciphertext + 1, |
| ciphertext_len, ad + 1, ad_len)); |
| EXPECT_EQ(Bytes(plaintext + 1, sizeof(plaintext) - 1), |
| Bytes(out + 1, out_len)); |
| } |
| |
| // Test that EVP_aead_aes_128_gcm and EVP_aead_aes_256_gcm reject empty nonces. |
| // AES-GCM is not defined for those. |
| TEST(AEADTest, AESGCMEmptyNonce) { |
| static const uint8_t kZeros[32] = {0}; |
| |
| // Test AES-128-GCM. |
| uint8_t buf[16]; |
| size_t len; |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), EVP_aead_aes_128_gcm(), kZeros, 16, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); |
| |
| EXPECT_FALSE(EVP_AEAD_CTX_seal(ctx.get(), buf, &len, sizeof(buf), |
| nullptr /* nonce */, 0, nullptr /* in */, 0, |
| nullptr /* ad */, 0)); |
| uint32_t err = ERR_get_error(); |
| EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err)); |
| EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err)); |
| |
| EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), buf, &len, sizeof(buf), |
| nullptr /* nonce */, 0, kZeros /* in */, |
| sizeof(kZeros), nullptr /* ad */, 0)); |
| err = ERR_get_error(); |
| EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err)); |
| EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err)); |
| |
| // Test AES-256-GCM. |
| ctx.Reset(); |
| ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), EVP_aead_aes_256_gcm(), kZeros, 32, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); |
| |
| EXPECT_FALSE(EVP_AEAD_CTX_seal(ctx.get(), buf, &len, sizeof(buf), |
| nullptr /* nonce */, 0, nullptr /* in */, 0, |
| nullptr /* ad */, 0)); |
| err = ERR_get_error(); |
| EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err)); |
| EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err)); |
| |
| EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), buf, &len, sizeof(buf), |
| nullptr /* nonce */, 0, kZeros /* in */, |
| sizeof(kZeros), nullptr /* ad */, 0)); |
| err = ERR_get_error(); |
| EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err)); |
| EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err)); |
| } |