| /* Copyright (c) 2020, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/ec.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| #include <openssl/trust_token.h> |
| |
| #include "../ec_extra/internal.h" |
| #include "../fipsmodule/bn/internal.h" |
| #include "../fipsmodule/ec/internal.h" |
| |
| #include "internal.h" |
| |
| |
| // get_h returns the generator H for PMBTokens. |
| // |
| // x: 66591746412783875033873351891229753622964683369847172829242944646280287810 |
| // 81195403447871073952234683395256591180452378091073292247502091640572714366 |
| // 588045092 |
| // y: 12347430519393087872533727997980072129796839266949808299436682045034861065 |
| // 18810630511924722292325611253427311923464047364545304196431830383014967865 |
| // 162306253 |
| // |
| // This point was generated with the following Python code. |
| |
| /* |
| import hashlib |
| |
| SEED_H = 'PrivacyPass H' |
| |
| A = -3 |
| B = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 |
| P = 2**521 - 1 |
| |
| def get_y(x): |
| y2 = (x**3 + A*x + B) % P |
| y = pow(y2, (P+1)/4, P) |
| if (y*y) % P != y2: |
| raise ValueError("point not on curve") |
| return y |
| |
| def bit(h,i): |
| return (ord(h[i/8]) >> (i%8)) & 1 |
| |
| b = 521 |
| def decode_point(so): |
| s = hashlib.sha256(so + '0').digest() + hashlib.sha256(so + '1').digest() + \ |
| hashlib.sha256(so + '2').digest() |
| |
| x = 0 |
| for i in range(0,b): |
| x = x + (long(bit(s,i))<<i) |
| if x >= P: |
| raise ValueError("x out of range") |
| y = get_y(x) |
| if y & 1 != bit(s,b-1): y = P-y |
| return (x, y) |
| |
| |
| def gen_point(seed): |
| v = hashlib.sha256(seed).digest() |
| it = 1 |
| while True: |
| try: |
| x,y = decode_point(v) |
| except Exception, e: |
| print e |
| it += 1 |
| v = hashlib.sha256(v).digest() |
| continue |
| print "Found in %d iterations:" % it |
| print " x = %d" % x |
| print " y = %d" % y |
| print " Encoded (hex): (%x, %x)" % (x, y) |
| return (x, y) |
| |
| if __name__ == "__main__": |
| gen_point(SEED_H) |
| */ |
| |
| static const uint8_t kDefaultAdditionalData[32] = {0}; |
| |
| // TODO(svaldez): Update to use hash2curve to generate H. |
| static int get_h(EC_RAW_POINT *out_h) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| static const uint8_t kH[] = { |
| 0x04, 0x01, 0xf0, 0xa9, 0xf7, 0x9e, 0xbc, 0x12, 0x6c, 0xef, 0xd1, 0xab, |
| 0x29, 0x10, 0x03, 0x6f, 0x4e, 0xf5, 0xbd, 0xeb, 0x0f, 0x6b, 0xc0, 0x5c, |
| 0x0e, 0xce, 0xfe, 0x59, 0x45, 0xd1, 0x3e, 0x25, 0x33, 0x7e, 0x4c, 0xda, |
| 0x64, 0x53, 0x54, 0x4e, 0xf9, 0x76, 0x0d, 0x6d, 0xc5, 0x39, 0x2a, 0xd4, |
| 0xce, 0x84, 0x6e, 0x31, 0xc2, 0x86, 0x21, 0xf9, 0x5c, 0x98, 0xb9, 0x3d, |
| 0x01, 0x74, 0x9f, 0xc5, 0x1e, 0x47, 0x24, 0x00, 0x5c, 0x17, 0x62, 0x51, |
| 0x7d, 0x32, 0x5e, 0x29, 0xac, 0x52, 0x14, 0x75, 0x6f, 0x36, 0xd9, 0xc7, |
| 0xfa, 0xbb, 0xa9, 0x3b, 0x9d, 0x70, 0x49, 0x1e, 0xb4, 0x53, 0xbc, 0x55, |
| 0xea, 0xad, 0x8f, 0x26, 0x1d, 0xe0, 0xbc, 0xf3, 0x50, 0x5c, 0x7e, 0x66, |
| 0x41, 0xb5, 0x61, 0x70, 0x12, 0x72, 0xac, 0x6a, 0xb0, 0x6e, 0x78, 0x3d, |
| 0x17, 0x08, 0xe3, 0xdf, 0x3c, 0xff, 0xa6, 0xa0, 0xea, 0x96, 0x67, 0x92, |
| 0xcd, |
| }; |
| |
| return ec_point_from_uncompressed(group, out_h, kH, sizeof(kH)); |
| } |
| |
| static int mul_twice(const EC_GROUP *group, EC_RAW_POINT *out, |
| const EC_RAW_POINT *g, const EC_SCALAR *g_scalar, |
| const EC_RAW_POINT *p, const EC_SCALAR *p_scalar) { |
| EC_RAW_POINT tmp1, tmp2; |
| if (!ec_point_mul_scalar(group, &tmp1, g, g_scalar) || |
| !ec_point_mul_scalar(group, &tmp2, p, p_scalar)) { |
| return 0; |
| } |
| |
| group->meth->add(group, out, &tmp1, &tmp2); |
| return 1; |
| } |
| |
| static int mul_twice_base(const EC_GROUP *group, EC_RAW_POINT *out, |
| const EC_SCALAR *base_scalar, const EC_RAW_POINT *p, |
| const EC_SCALAR *p_scalar) { |
| EC_RAW_POINT tmp1, tmp2; |
| if (!ec_point_mul_scalar_base(group, &tmp1, base_scalar) || |
| !ec_point_mul_scalar(group, &tmp2, p, p_scalar)) { |
| return 0; |
| } |
| |
| group->meth->add(group, out, &tmp1, &tmp2); |
| return 1; |
| } |
| |
| // (v0;v1) = p_scalar*(G;p1) + q_scalar*(q0;q1) - r_scalar*(r0;r1) |
| static int mul_add_and_sub(const EC_GROUP *group, EC_RAW_POINT *out_v0, |
| EC_RAW_POINT *out_v1, const EC_RAW_POINT *p1, |
| const EC_SCALAR *p_scalar, const EC_RAW_POINT *q0, |
| const EC_RAW_POINT *q1, const EC_SCALAR *q_scalar, |
| const EC_RAW_POINT *r0, const EC_RAW_POINT *r1, |
| const EC_SCALAR *r_scalar) { |
| EC_RAW_POINT tmp0, tmp1, v0, v1; |
| if (!mul_twice_base(group, &v0, p_scalar, q0, q_scalar) || |
| !mul_twice(group, &v1, p1, p_scalar, q1, q_scalar) || |
| !ec_point_mul_scalar(group, &tmp0, r0, r_scalar) || |
| !ec_point_mul_scalar(group, &tmp1, r1, r_scalar)) { |
| return 0; |
| } |
| ec_GFp_simple_invert(group, &tmp0); |
| ec_GFp_simple_invert(group, &tmp1); |
| group->meth->add(group, out_v0, &v0, &tmp0); |
| group->meth->add(group, out_v1, &v1, &tmp1); |
| return 1; |
| } |
| |
| // generate_keypair generates a keypair for the PMBTokens construction. |
| // |out_x| and |out_y| are set to the secret half of the keypair, while |
| // |*out_pub| is set to the public half of the keypair. It returns one on |
| // success and zero on failure. |
| static int generate_keypair(EC_SCALAR *out_x, EC_SCALAR *out_y, |
| EC_RAW_POINT *out_pub, const EC_GROUP *group) { |
| EC_RAW_POINT h; |
| if (!get_h(&h) || |
| !ec_random_nonzero_scalar(group, out_x, kDefaultAdditionalData) || |
| !ec_random_nonzero_scalar(group, out_y, kDefaultAdditionalData) || |
| !mul_twice_base(group, out_pub, out_x, &h, out_y)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int point_to_cbb(CBB *out, const EC_GROUP *group, |
| const EC_RAW_POINT *point) { |
| size_t len = |
| ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, NULL, 0); |
| if (len == 0) { |
| return 0; |
| } |
| uint8_t *p; |
| return CBB_add_space(out, &p, len) && |
| ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, p, |
| len) == len; |
| } |
| |
| int TRUST_TOKEN_generate_key(uint8_t *out_priv_key, size_t *out_priv_key_len, |
| size_t max_priv_key_len, uint8_t *out_pub_key, |
| size_t *out_pub_key_len, size_t max_pub_key_len, |
| uint32_t id) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| EC_RAW_POINT pub0, pub1, pubs; |
| EC_SCALAR x0, y0, x1, y1, xs, ys; |
| if (!generate_keypair(&x0, &y0, &pub0, group) || |
| !generate_keypair(&x1, &y1, &pub1, group) || |
| !generate_keypair(&xs, &ys, &pubs, group)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE); |
| return 0; |
| } |
| |
| int ret = 0; |
| CBB cbb; |
| CBB_zero(&cbb); |
| size_t scalar_len = BN_num_bytes(&group->order); |
| if (!CBB_init_fixed(&cbb, out_priv_key, max_priv_key_len) || |
| !CBB_add_u32(&cbb, id)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| |
| const EC_SCALAR *scalars[] = {&x0, &y0, &x1, &y1, &xs, &ys}; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(scalars); i++) { |
| uint8_t *buf; |
| if (!CBB_add_space(&cbb, &buf, scalar_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| ec_scalar_to_bytes(group, buf, &scalar_len, scalars[i]); |
| } |
| |
| if (!CBB_finish(&cbb, NULL, out_priv_key_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| |
| CBB pub_cbb; |
| if (!CBB_init_fixed(&cbb, out_pub_key, max_pub_key_len) || |
| !CBB_add_u32(&cbb, id) || |
| !CBB_add_u16_length_prefixed(&cbb, &pub_cbb) || |
| !point_to_cbb(&pub_cbb, group, &pub0) || |
| !CBB_add_u16_length_prefixed(&cbb, &pub_cbb) || |
| !point_to_cbb(&pub_cbb, group, &pub1) || |
| !CBB_add_u16_length_prefixed(&cbb, &pub_cbb) || |
| !point_to_cbb(&pub_cbb, group, &pubs) || |
| !CBB_finish(&cbb, NULL, out_pub_key_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| CBB_cleanup(&cbb); |
| return ret; |
| } |
| |
| void PMBTOKEN_PRETOKEN_free(PMBTOKEN_PRETOKEN *pretoken) { |
| OPENSSL_free(pretoken); |
| } |
| |
| void PMBTOKEN_TOKEN_free(PMBTOKEN_TOKEN *token) { |
| OPENSSL_free(token); |
| } |
| |
| int pmbtoken_compute_public(struct trust_token_issuer_key_st *key) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| EC_RAW_POINT h; |
| if (!get_h(&h) || |
| !mul_twice_base(group, &key->pubs, &key->xs, &h, &key->ys) || |
| !mul_twice_base(group, &key->pub0, &key->x0, &h, &key->y0) || |
| !mul_twice_base(group, &key->pub1, &key->x1, &h, &key->y1)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // hash_t implements the H_t operation in PMBTokens. It returns on on success |
| // and zero on error. |
| static int hash_t(EC_GROUP *group, EC_RAW_POINT *out, |
| const uint8_t t[PMBTOKEN_NONCE_SIZE]) { |
| const uint8_t kHashTLabel[] = "PMBTokensV0 HashT"; |
| return ec_hash_to_curve_p521_xmd_sha512_sswu( |
| group, out, kHashTLabel, sizeof(kHashTLabel), t, PMBTOKEN_NONCE_SIZE); |
| } |
| |
| // hash_s implements the H_s operation in PMBTokens. It returns on on success |
| // and zero on error. |
| static int hash_s(EC_GROUP *group, EC_RAW_POINT *out, const EC_RAW_POINT *t, |
| const uint8_t s[PMBTOKEN_NONCE_SIZE]) { |
| const uint8_t kHashSLabel[] = "PMBTokensV0 HashS"; |
| int ret = 0; |
| CBB cbb; |
| uint8_t *buf = NULL; |
| size_t len; |
| if (!CBB_init(&cbb, 0) || |
| !point_to_cbb(&cbb, group, t) || |
| !CBB_add_bytes(&cbb, s, PMBTOKEN_NONCE_SIZE) || |
| !CBB_finish(&cbb, &buf, &len) || |
| !ec_hash_to_curve_p521_xmd_sha512_sswu(group, out, kHashSLabel, |
| sizeof(kHashSLabel), buf, len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(buf); |
| CBB_cleanup(&cbb); |
| return ret; |
| } |
| |
| PMBTOKEN_PRETOKEN *pmbtoken_blind(void) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return NULL; |
| } |
| |
| PMBTOKEN_PRETOKEN *pretoken = OPENSSL_malloc(sizeof(PMBTOKEN_PRETOKEN)); |
| if (pretoken == NULL) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| RAND_bytes(pretoken->t, sizeof(pretoken->t)); |
| |
| // We sample |pretoken->r| in Montgomery form to simplify inverting. |
| if (!ec_random_nonzero_scalar(group, &pretoken->r, |
| kDefaultAdditionalData)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| EC_SCALAR rinv; |
| ec_scalar_inv0_montgomery(group, &rinv, &pretoken->r); |
| // Convert both out of Montgomery form. |
| ec_scalar_from_montgomery(group, &pretoken->r, &pretoken->r); |
| ec_scalar_from_montgomery(group, &rinv, &rinv); |
| |
| if (!hash_t(group, &pretoken->T, pretoken->t) || |
| !ec_point_mul_scalar(group, &pretoken->Tp, &pretoken->T, &rinv)) { |
| goto err; |
| } |
| |
| return pretoken; |
| |
| err: |
| OPENSSL_free(pretoken); |
| return NULL; |
| } |
| |
| static int hash_c(const EC_GROUP *group, EC_SCALAR *out, uint8_t *buf, |
| size_t len) { |
| const uint8_t kHashCLabel[] = "PMBTokensV0 HashC"; |
| return ec_hash_to_scalar_p521_xmd_sha512(group, out, kHashCLabel, |
| sizeof(kHashCLabel), buf, len); |
| } |
| |
| static int scalar_to_cbb(CBB *out, const EC_GROUP *group, |
| const EC_SCALAR *scalar) { |
| uint8_t *buf; |
| size_t scalar_len = BN_num_bytes(&group->order); |
| if (!CBB_add_space(out, &buf, scalar_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ec_scalar_to_bytes(group, buf, &scalar_len, scalar); |
| return 1; |
| } |
| |
| static int scalar_from_cbs(CBS *cbs, const EC_GROUP *group, EC_SCALAR *out) { |
| size_t scalar_len = BN_num_bytes(&group->order); |
| CBS tmp; |
| if (!CBS_get_bytes(cbs, &tmp, scalar_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
| return 0; |
| } |
| |
| ec_scalar_from_bytes(group, out, CBS_data(&tmp), CBS_len(&tmp)); |
| return 1; |
| } |
| |
| static int hash_c_dleq(const EC_GROUP *group, EC_SCALAR *out, |
| const EC_RAW_POINT *X, const EC_RAW_POINT *T, |
| const EC_RAW_POINT *S, const EC_RAW_POINT *W, |
| const EC_RAW_POINT *K0, const EC_RAW_POINT *K1) { |
| static const uint8_t kDLEQ2Label[] = "DLEQ2"; |
| |
| int ok = 0; |
| CBB cbb; |
| CBB_zero(&cbb); |
| uint8_t *buf = NULL; |
| size_t len; |
| if (!CBB_init(&cbb, 0) || |
| !CBB_add_bytes(&cbb, kDLEQ2Label, sizeof(kDLEQ2Label)) || |
| !point_to_cbb(&cbb, group, X) || |
| !point_to_cbb(&cbb, group, T) || |
| !point_to_cbb(&cbb, group, S) || |
| !point_to_cbb(&cbb, group, W) || |
| !point_to_cbb(&cbb, group, K0) || |
| !point_to_cbb(&cbb, group, K1) || |
| !CBB_finish(&cbb, &buf, &len) || |
| !hash_c(group, out, buf, len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| CBB_cleanup(&cbb); |
| OPENSSL_free(buf); |
| return ok; |
| } |
| |
| static int hash_c_dleqor(const EC_GROUP *group, EC_SCALAR *out, |
| const EC_RAW_POINT *X0, const EC_RAW_POINT *X1, |
| const EC_RAW_POINT *T, const EC_RAW_POINT *S, |
| const EC_RAW_POINT *W, const EC_RAW_POINT *K00, |
| const EC_RAW_POINT *K01, const EC_RAW_POINT *K10, |
| const EC_RAW_POINT *K11) { |
| static const uint8_t kDLEQOR2Label[] = "DLEQOR2"; |
| |
| int ok = 0; |
| CBB cbb; |
| CBB_zero(&cbb); |
| uint8_t *buf = NULL; |
| size_t len; |
| if (!CBB_init(&cbb, 0) || |
| !CBB_add_bytes(&cbb, kDLEQOR2Label, sizeof(kDLEQOR2Label)) || |
| !point_to_cbb(&cbb, group, X0) || |
| !point_to_cbb(&cbb, group, X1) || |
| !point_to_cbb(&cbb, group, T) || |
| !point_to_cbb(&cbb, group, S) || |
| !point_to_cbb(&cbb, group, W) || |
| !point_to_cbb(&cbb, group, K00) || |
| !point_to_cbb(&cbb, group, K01) || |
| !point_to_cbb(&cbb, group, K10) || |
| !point_to_cbb(&cbb, group, K11) || |
| !CBB_finish(&cbb, &buf, &len) || |
| !hash_c(group, out, buf, len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| CBB_cleanup(&cbb); |
| OPENSSL_free(buf); |
| return ok; |
| } |
| |
| // The DLEQ2 and DLEQOR2 constructions are described in appendix B of |
| // https://eprint.iacr.org/2020/072/20200324:214215. DLEQ2 is an instance of |
| // DLEQOR2 with only one value (n=1). |
| |
| static int dleq_generate(const EC_GROUP *group, uint8_t **out_proof, |
| size_t *out_proof_len, |
| const struct trust_token_issuer_key_st *priv, |
| const EC_RAW_POINT *T, const EC_RAW_POINT *S, |
| const EC_RAW_POINT *W, const EC_RAW_POINT *Ws, |
| uint8_t private_metadata) { |
| int ok = 0; |
| CBB proof; |
| if (!CBB_init(&proof, 0)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| EC_RAW_POINT h; |
| if (!get_h(&h)) { |
| goto err; |
| } |
| |
| // Generate DLEQ2 proof for the validity token. |
| |
| // ks0, ks1 <- Zp |
| EC_SCALAR ks0, ks1; |
| if (!ec_random_nonzero_scalar(group, &ks0, kDefaultAdditionalData) || |
| !ec_random_nonzero_scalar(group, &ks1, kDefaultAdditionalData)) { |
| goto err; |
| } |
| |
| // Ks = ks0*(G;T) + ks1*(H;S) |
| EC_RAW_POINT Ks0, Ks1; |
| if (!mul_twice_base(group, &Ks0, &ks0, &h, &ks1) || |
| !mul_twice(group, &Ks1, T, &ks0, S, &ks1)) { |
| goto err; |
| } |
| |
| // cs = Hc(...) |
| EC_SCALAR cs; |
| if (!hash_c_dleq(group, &cs, &priv->pubs, T, S, Ws, &Ks0, &Ks1)) { |
| goto err; |
| } |
| |
| EC_SCALAR cs_mont; |
| ec_scalar_to_montgomery(group, &cs_mont, &cs); |
| |
| // In each of these products, only one operand is in Montgomery form, so the |
| // product does not need to be converted. |
| |
| // us = ks0 + cs*xs |
| EC_SCALAR us; |
| ec_scalar_mul_montgomery(group, &us, &priv->xs, &cs_mont); |
| ec_scalar_add(group, &us, &ks0, &us); |
| |
| // vs = ks1 + cs*ys |
| EC_SCALAR vs; |
| ec_scalar_mul_montgomery(group, &vs, &priv->ys, &cs_mont); |
| ec_scalar_add(group, &vs, &ks1, &vs); |
| |
| // Store DLEQ2 proof in transcript. |
| if (!scalar_to_cbb(&proof, group, &cs) || |
| !scalar_to_cbb(&proof, group, &us) || |
| !scalar_to_cbb(&proof, group, &vs)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| // Generate DLEQOR2 proof for the private metadata token. |
| BN_ULONG mask = ((BN_ULONG)0) - (private_metadata&1); |
| |
| // Select values of xb, yb (keys corresponding to the private metadata value) |
| // and pubo (public key corresponding to the other value) in constant time. |
| EC_RAW_POINT pubo; |
| EC_SCALAR xb, yb; |
| ec_scalar_select(group, &xb, mask, &priv->x1, &priv->x0); |
| ec_scalar_select(group, &yb, mask, &priv->y1, &priv->y0); |
| ec_point_select(group, &pubo, mask, &priv->pub0, &priv->pub1); |
| |
| // k0, k1 <- Zp |
| EC_SCALAR k0, k1; |
| if (!ec_random_nonzero_scalar(group, &k0, kDefaultAdditionalData) || |
| !ec_random_nonzero_scalar(group, &k1, kDefaultAdditionalData)) { |
| goto err; |
| } |
| |
| // Kb = k0*(G;T) + k1*(H;S) |
| EC_RAW_POINT Kb0, Kb1; |
| if (!mul_twice_base(group, &Kb0, &k0, &h, &k1) || |
| !mul_twice(group, &Kb1, T, &k0, S, &k1)) { |
| goto err; |
| } |
| |
| // co, uo, vo <- Zp |
| EC_SCALAR co, uo, vo; |
| if (!ec_random_nonzero_scalar(group, &co, kDefaultAdditionalData) || |
| !ec_random_nonzero_scalar(group, &uo, kDefaultAdditionalData) || |
| !ec_random_nonzero_scalar(group, &vo, kDefaultAdditionalData)) { |
| goto err; |
| } |
| |
| // Ko = uo*(G;T) + vo*(H;S) - co*(pubo;W) |
| EC_RAW_POINT Ko0, Ko1; |
| if (!mul_add_and_sub(group, &Ko0, &Ko1, T, &uo, &h, S, &vo, &pubo, W, &co)) { |
| goto err; |
| } |
| |
| // Select the K corresponding to K0 and K1 in constant-time. |
| EC_RAW_POINT K00, K01, K10, K11; |
| ec_point_select(group, &K00, mask, &Ko0, &Kb0); |
| ec_point_select(group, &K01, mask, &Ko1, &Kb1); |
| ec_point_select(group, &K10, mask, &Kb0, &Ko0); |
| ec_point_select(group, &K11, mask, &Kb1, &Ko1); |
| |
| // c = Hc(...) |
| EC_SCALAR c; |
| if (!hash_c_dleqor(group, &c, &priv->pub0, &priv->pub1, T, S, W, &K00, &K01, |
| &K10, &K11)) { |
| goto err; |
| } |
| |
| // cb = c - co |
| EC_SCALAR cb, ub, vb; |
| ec_scalar_sub(group, &cb, &c, &co); |
| |
| EC_SCALAR cb_mont; |
| ec_scalar_to_montgomery(group, &cb_mont, &cb); |
| |
| // In each of these products, only one operand is in Montgomery form, so the |
| // product does not need to be converted. |
| |
| // ub = k0 + cb*xb |
| ec_scalar_mul_montgomery(group, &ub, &xb, &cb_mont); |
| ec_scalar_add(group, &ub, &k0, &ub); |
| |
| // vb = k1 + cb*yb |
| ec_scalar_mul_montgomery(group, &vb, &yb, &cb_mont); |
| ec_scalar_add(group, &vb, &k1, &vb); |
| |
| // Select c, u, v in constant-time. |
| EC_SCALAR c0, c1, u0, u1, v0, v1; |
| ec_scalar_select(group, &c0, mask, &co, &cb); |
| ec_scalar_select(group, &u0, mask, &uo, &ub); |
| ec_scalar_select(group, &v0, mask, &vo, &vb); |
| ec_scalar_select(group, &c1, mask, &cb, &co); |
| ec_scalar_select(group, &u1, mask, &ub, &uo); |
| ec_scalar_select(group, &v1, mask, &vb, &vo); |
| |
| // Store DLEQOR2 proof in transcript. |
| if (!scalar_to_cbb(&proof, group, &c0) || |
| !scalar_to_cbb(&proof, group, &c1) || |
| !scalar_to_cbb(&proof, group, &u0) || |
| !scalar_to_cbb(&proof, group, &u1) || |
| !scalar_to_cbb(&proof, group, &v0) || |
| !scalar_to_cbb(&proof, group, &v1) || |
| !CBB_finish(&proof, out_proof, out_proof_len)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| CBB_cleanup(&proof); |
| return ok; |
| } |
| |
| static int dleq_verify(const EC_GROUP *group, const uint8_t *proof, |
| size_t proof_len, |
| const struct trust_token_client_key_st *pub, |
| const EC_RAW_POINT *T, const EC_RAW_POINT *S, |
| const EC_RAW_POINT *W, const EC_RAW_POINT *Ws) { |
| EC_RAW_POINT h; |
| if (!get_h(&h)) { |
| return 0; |
| } |
| |
| // Verify the DLEQ2 proof over the validity token. |
| |
| CBS cbs; |
| CBS_init(&cbs, proof, proof_len); |
| EC_SCALAR cs, us, vs; |
| if (!scalar_from_cbs(&cbs, group, &cs) || |
| !scalar_from_cbs(&cbs, group, &us) || |
| !scalar_from_cbs(&cbs, group, &vs)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
| return 0; |
| } |
| |
| // Ks = us*(G;T) + vs*(H;S) - cs*(pubs;Ws) |
| EC_RAW_POINT Ks0, Ks1; |
| if (!mul_add_and_sub(group, &Ks0, &Ks1, T, &us, &h, S, &vs, &pub->pubs, Ws, |
| &cs)) { |
| return 0; |
| } |
| |
| // calculated = Hc(...) |
| EC_SCALAR calculated; |
| if (!hash_c_dleq(group, &calculated, &pub->pubs, T, S, Ws, &Ks0, &Ks1)) { |
| return 0; |
| } |
| |
| // cs == calculated |
| if (!ec_scalar_equal_vartime(group, &cs, &calculated)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_PROOF); |
| return 0; |
| } |
| |
| // Verify the DLEQOR2 proof over the private metadata token. |
| |
| EC_SCALAR c0, c1, u0, u1, v0, v1; |
| if (!scalar_from_cbs(&cbs, group, &c0) || |
| !scalar_from_cbs(&cbs, group, &c1) || |
| !scalar_from_cbs(&cbs, group, &u0) || |
| !scalar_from_cbs(&cbs, group, &u1) || |
| !scalar_from_cbs(&cbs, group, &v0) || |
| !scalar_from_cbs(&cbs, group, &v1) || |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE); |
| return 0; |
| } |
| |
| // K0 = u0*(G;T) + v0*(H;S) - c0*(pub0;W) |
| EC_RAW_POINT K00, K01; |
| if (!mul_add_and_sub(group, &K00, &K01, T, &u0, &h, S, &v0, &pub->pub0, W, |
| &c0)) { |
| return 0; |
| } |
| |
| // K1 = u1*(G;T) + v1*(H;S) - c1*(pub1;Ws) |
| EC_RAW_POINT K10, K11; |
| if (!mul_add_and_sub(group, &K10, &K11, T, &u1, &h, S, &v1, &pub->pub1, W, |
| &c1)) { |
| return 0; |
| } |
| |
| // calculated = Hc(...) |
| if (!hash_c_dleqor(group, &calculated, &pub->pub0, &pub->pub1, T, S, W, &K00, |
| &K01, &K10, &K11)) { |
| return 0; |
| } |
| |
| // c = c0 + c1 |
| EC_SCALAR c; |
| ec_scalar_add(group, &c, &c0, &c1); |
| |
| // c == calculated |
| if (!ec_scalar_equal_vartime(group, &c, &calculated)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_PROOF); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int pmbtoken_sign(const TRUST_TOKEN_ISSUER *ctx, |
| uint8_t out_s[PMBTOKEN_NONCE_SIZE], EC_RAW_POINT *out_Wp, |
| EC_RAW_POINT *out_Wsp, uint8_t **out_proof, |
| size_t *out_proof_len, const EC_RAW_POINT *Tp, |
| uint32_t key_id, uint8_t private_metadata) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| if (ctx->num_keys == 0) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_NO_KEYS_CONFIGURED); |
| return 0; |
| } |
| const struct trust_token_issuer_key_st *key = NULL; |
| for (size_t i = 0; i < ctx->num_keys; i++) { |
| if (ctx->keys[i].id == key_id) { |
| key = &ctx->keys[i]; |
| break; |
| } |
| } |
| |
| if (key == NULL) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_KEY_ID); |
| return 0; |
| } |
| |
| EC_SCALAR xb, yb; |
| BN_ULONG mask = ((BN_ULONG)0) - (private_metadata & 1); |
| ec_scalar_select(group, &xb, mask, &key->x1, &key->x0); |
| ec_scalar_select(group, &yb, mask, &key->y1, &key->y0); |
| |
| RAND_bytes(out_s, PMBTOKEN_NONCE_SIZE); |
| |
| EC_RAW_POINT Sp; |
| if (!hash_s(group, &Sp, Tp, out_s)) { |
| return 0; |
| } |
| |
| if (!mul_twice(group, out_Wp, Tp, &xb, &Sp, &yb) || |
| !mul_twice(group, out_Wsp, Tp, &key->xs, &Sp, &key->ys)) { |
| return 0; |
| } |
| |
| return dleq_generate(group, out_proof, out_proof_len, key, Tp, &Sp, out_Wp, |
| out_Wsp, private_metadata); |
| } |
| |
| int pmbtoken_unblind(PMBTOKEN_TOKEN *out_token, |
| const struct trust_token_client_key_st *key, |
| const uint8_t s[PMBTOKEN_NONCE_SIZE], |
| const EC_RAW_POINT *Wp, const EC_RAW_POINT *Wsp, |
| const uint8_t *proof, size_t proof_len, |
| const PMBTOKEN_PRETOKEN *pretoken) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| EC_RAW_POINT Sp; |
| if (!hash_s(group, &Sp, &pretoken->Tp, s)) { |
| return 0; |
| } |
| |
| if (!dleq_verify(group, proof, proof_len, key, &pretoken->Tp, &Sp, Wp, Wsp)) { |
| return 0; |
| } |
| |
| OPENSSL_memcpy(out_token->t, pretoken->t, PMBTOKEN_NONCE_SIZE); |
| if (!ec_point_mul_scalar(group, &out_token->S, &Sp, &pretoken->r) || |
| !ec_point_mul_scalar(group, &out_token->W, Wp, &pretoken->r) || |
| !ec_point_mul_scalar(group, &out_token->Ws, Wsp, &pretoken->r)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int pmbtoken_read(const TRUST_TOKEN_ISSUER *ctx, uint8_t *out_private_metadata, |
| const PMBTOKEN_TOKEN *token, uint32_t key_id) { |
| EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp521r1); |
| if (group == NULL) { |
| return 0; |
| } |
| |
| if (ctx->num_keys == 0) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_NO_KEYS_CONFIGURED); |
| return 0; |
| } |
| const struct trust_token_issuer_key_st *key = NULL; |
| for (size_t i = 0; i < ctx->num_keys; i++) { |
| if (ctx->keys[i].id == key_id) { |
| key = &ctx->keys[i]; |
| break; |
| } |
| } |
| |
| if (key == NULL) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_KEY_ID); |
| return 0; |
| } |
| |
| EC_RAW_POINT T; |
| if (!hash_t(group, &T, token->t)) { |
| return 0; |
| } |
| |
| EC_RAW_POINT calculated; |
| // Check the validity of the token. |
| if (!mul_twice(group, &calculated, &T, &key->xs, &token->S, &key->ys) || |
| !ec_GFp_simple_points_equal(group, &calculated, &token->Ws)) { |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BAD_VALIDITY_CHECK); |
| return 0; |
| } |
| |
| EC_RAW_POINT W0, W1; |
| if (!mul_twice(group, &W0, &T, &key->x0, &token->S, &key->y0) || |
| !mul_twice(group, &W1, &T, &key->x1, &token->S, &key->y1)) { |
| return 0; |
| } |
| |
| const int is_W0 = ec_GFp_simple_points_equal(group, &W0, &token->W); |
| const int is_W1 = ec_GFp_simple_points_equal(group, &W1, &token->W); |
| const int is_valid = is_W0 ^ is_W1; |
| if (!is_valid) { |
| // Invalid tokens will fail the validity check above. |
| OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| *out_private_metadata = is_W1; |
| return 1; |
| } |