blob: 559db7216ccc210bc569010c678c249fef8971aa [file] [log] [blame]
/* ssl/s3_clnt.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <openssl/ssl.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/dh.h>
#include <openssl/ec_key.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include "internal.h"
#include "../crypto/dh/internal.h"
int ssl3_connect(SSL *s) {
BUF_MEM *buf = NULL;
void (*cb)(const SSL *ssl, int type, int val) = NULL;
int ret = -1;
int new_state, state, skip = 0;
assert(s->handshake_func == ssl3_connect);
assert(!s->server);
assert(!SSL_IS_DTLS(s));
ERR_clear_error();
ERR_clear_system_error();
if (s->info_callback != NULL) {
cb = s->info_callback;
} else if (s->ctx->info_callback != NULL) {
cb = s->ctx->info_callback;
}
s->in_handshake++;
for (;;) {
state = s->state;
switch (s->state) {
case SSL_ST_CONNECT:
if (cb != NULL) {
cb(s, SSL_CB_HANDSHAKE_START, 1);
}
if (s->init_buf == NULL) {
buf = BUF_MEM_new();
if (buf == NULL ||
!BUF_MEM_grow(buf, SSL3_RT_MAX_PLAIN_LENGTH)) {
ret = -1;
goto end;
}
s->init_buf = buf;
buf = NULL;
}
if (!ssl_init_wbio_buffer(s, 0)) {
ret = -1;
goto end;
}
/* don't push the buffering BIO quite yet */
if (!ssl3_init_handshake_buffer(s)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
ret = -1;
goto end;
}
s->state = SSL3_ST_CW_CLNT_HELLO_A;
s->init_num = 0;
break;
case SSL3_ST_CW_CLNT_HELLO_A:
case SSL3_ST_CW_CLNT_HELLO_B:
s->shutdown = 0;
ret = ssl3_send_client_hello(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CR_SRVR_HELLO_A;
s->init_num = 0;
/* turn on buffering for the next lot of output */
if (s->bbio != s->wbio) {
s->wbio = BIO_push(s->bbio, s->wbio);
}
break;
case SSL3_ST_CR_SRVR_HELLO_A:
case SSL3_ST_CR_SRVR_HELLO_B:
ret = ssl3_get_server_hello(s);
if (ret <= 0) {
goto end;
}
if (s->hit) {
s->state = SSL3_ST_CR_CHANGE;
if (s->tlsext_ticket_expected) {
/* receive renewed session ticket */
s->state = SSL3_ST_CR_SESSION_TICKET_A;
}
} else {
s->state = SSL3_ST_CR_CERT_A;
}
s->init_num = 0;
break;
case SSL3_ST_CR_CERT_A:
case SSL3_ST_CR_CERT_B:
if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) {
ret = ssl3_get_server_certificate(s);
if (ret <= 0) {
goto end;
}
if (s->s3->tmp.certificate_status_expected) {
s->state = SSL3_ST_CR_CERT_STATUS_A;
} else {
s->state = SSL3_ST_VERIFY_SERVER_CERT;
}
} else {
skip = 1;
s->state = SSL3_ST_CR_KEY_EXCH_A;
}
s->init_num = 0;
break;
case SSL3_ST_VERIFY_SERVER_CERT:
ret = ssl3_verify_server_cert(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CR_KEY_EXCH_A;
s->init_num = 0;
break;
case SSL3_ST_CR_KEY_EXCH_A:
case SSL3_ST_CR_KEY_EXCH_B:
ret = ssl3_get_server_key_exchange(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CR_CERT_REQ_A;
s->init_num = 0;
break;
case SSL3_ST_CR_CERT_REQ_A:
case SSL3_ST_CR_CERT_REQ_B:
ret = ssl3_get_certificate_request(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CR_SRVR_DONE_A;
s->init_num = 0;
break;
case SSL3_ST_CR_SRVR_DONE_A:
case SSL3_ST_CR_SRVR_DONE_B:
ret = ssl3_get_server_done(s);
if (ret <= 0) {
goto end;
}
if (s->s3->tmp.cert_req) {
s->state = SSL3_ST_CW_CERT_A;
} else {
s->state = SSL3_ST_CW_KEY_EXCH_A;
}
s->init_num = 0;
break;
case SSL3_ST_CW_CERT_A:
case SSL3_ST_CW_CERT_B:
case SSL3_ST_CW_CERT_C:
case SSL3_ST_CW_CERT_D:
ret = ssl3_send_client_certificate(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CW_KEY_EXCH_A;
s->init_num = 0;
break;
case SSL3_ST_CW_KEY_EXCH_A:
case SSL3_ST_CW_KEY_EXCH_B:
ret = ssl3_send_client_key_exchange(s);
if (ret <= 0) {
goto end;
}
/* For TLS, cert_req is set to 2, so a cert chain
* of nothing is sent, but no verify packet is sent */
if (s->s3->tmp.cert_req == 1) {
s->state = SSL3_ST_CW_CERT_VRFY_A;
} else {
s->state = SSL3_ST_CW_CHANGE_A;
s->s3->change_cipher_spec = 0;
}
s->init_num = 0;
break;
case SSL3_ST_CW_CERT_VRFY_A:
case SSL3_ST_CW_CERT_VRFY_B:
case SSL3_ST_CW_CERT_VRFY_C:
ret = ssl3_send_cert_verify(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CW_CHANGE_A;
s->init_num = 0;
s->s3->change_cipher_spec = 0;
break;
case SSL3_ST_CW_CHANGE_A:
case SSL3_ST_CW_CHANGE_B:
ret = ssl3_send_change_cipher_spec(s, SSL3_ST_CW_CHANGE_A,
SSL3_ST_CW_CHANGE_B);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CW_FINISHED_A;
if (s->s3->tlsext_channel_id_valid) {
s->state = SSL3_ST_CW_CHANNEL_ID_A;
}
if (s->s3->next_proto_neg_seen) {
s->state = SSL3_ST_CW_NEXT_PROTO_A;
}
s->init_num = 0;
s->session->cipher = s->s3->tmp.new_cipher;
if (!s->enc_method->setup_key_block(s) ||
!s->enc_method->change_cipher_state(
s, SSL3_CHANGE_CIPHER_CLIENT_WRITE)) {
ret = -1;
goto end;
}
break;
case SSL3_ST_CW_NEXT_PROTO_A:
case SSL3_ST_CW_NEXT_PROTO_B:
ret = ssl3_send_next_proto(s);
if (ret <= 0) {
goto end;
}
if (s->s3->tlsext_channel_id_valid) {
s->state = SSL3_ST_CW_CHANNEL_ID_A;
} else {
s->state = SSL3_ST_CW_FINISHED_A;
}
break;
case SSL3_ST_CW_CHANNEL_ID_A:
case SSL3_ST_CW_CHANNEL_ID_B:
ret = ssl3_send_channel_id(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CW_FINISHED_A;
break;
case SSL3_ST_CW_FINISHED_A:
case SSL3_ST_CW_FINISHED_B:
ret =
ssl3_send_finished(s, SSL3_ST_CW_FINISHED_A, SSL3_ST_CW_FINISHED_B,
s->enc_method->client_finished_label,
s->enc_method->client_finished_label_len);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CW_FLUSH;
if (s->hit) {
s->s3->tmp.next_state = SSL_ST_OK;
} else {
/* This is a non-resumption handshake. If it involves ChannelID, then
* record the handshake hashes at this point in the session so that
* any resumption of this session with ChannelID can sign those
* hashes. */
ret = tls1_record_handshake_hashes_for_channel_id(s);
if (ret <= 0) {
goto end;
}
if ((SSL_get_mode(s) & SSL_MODE_ENABLE_FALSE_START) &&
ssl3_can_false_start(s) &&
/* No False Start on renegotiation (would complicate the state
* machine). */
!s->s3->initial_handshake_complete) {
s->s3->tmp.next_state = SSL3_ST_FALSE_START;
} else {
/* Allow NewSessionTicket if ticket expected */
if (s->tlsext_ticket_expected) {
s->s3->tmp.next_state = SSL3_ST_CR_SESSION_TICKET_A;
} else {
s->s3->tmp.next_state = SSL3_ST_CR_CHANGE;
}
}
}
s->init_num = 0;
break;
case SSL3_ST_CR_SESSION_TICKET_A:
case SSL3_ST_CR_SESSION_TICKET_B:
ret = ssl3_get_new_session_ticket(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_CR_CHANGE;
s->init_num = 0;
break;
case SSL3_ST_CR_CERT_STATUS_A:
case SSL3_ST_CR_CERT_STATUS_B:
ret = ssl3_get_cert_status(s);
if (ret <= 0) {
goto end;
}
s->state = SSL3_ST_VERIFY_SERVER_CERT;
s->init_num = 0;
break;
case SSL3_ST_CR_CHANGE:
/* At this point, the next message must be entirely behind a
* ChangeCipherSpec. */
if (!ssl3_expect_change_cipher_spec(s)) {
ret = -1;
goto end;
}
s->state = SSL3_ST_CR_FINISHED_A;
break;
case SSL3_ST_CR_FINISHED_A:
case SSL3_ST_CR_FINISHED_B:
ret =
ssl3_get_finished(s, SSL3_ST_CR_FINISHED_A, SSL3_ST_CR_FINISHED_B);
if (ret <= 0) {
goto end;
}
if (s->hit) {
s->state = SSL3_ST_CW_CHANGE_A;
} else {
s->state = SSL_ST_OK;
}
s->init_num = 0;
break;
case SSL3_ST_CW_FLUSH:
s->rwstate = SSL_WRITING;
if (BIO_flush(s->wbio) <= 0) {
ret = -1;
goto end;
}
s->rwstate = SSL_NOTHING;
s->state = s->s3->tmp.next_state;
break;
case SSL3_ST_FALSE_START:
/* Allow NewSessionTicket if ticket expected */
if (s->tlsext_ticket_expected) {
s->state = SSL3_ST_CR_SESSION_TICKET_A;
} else {
s->state = SSL3_ST_CR_CHANGE;
}
s->s3->tmp.in_false_start = 1;
ssl_free_wbio_buffer(s);
ret = 1;
goto end;
case SSL_ST_OK:
/* clean a few things up */
ssl3_cleanup_key_block(s);
BUF_MEM_free(s->init_buf);
s->init_buf = NULL;
/* Remove write buffering now. */
ssl_free_wbio_buffer(s);
const int is_initial_handshake = !s->s3->initial_handshake_complete;
s->init_num = 0;
s->s3->tmp.in_false_start = 0;
s->s3->initial_handshake_complete = 1;
if (is_initial_handshake) {
/* Renegotiations do not participate in session resumption. */
ssl_update_cache(s, SSL_SESS_CACHE_CLIENT);
}
ret = 1;
/* s->server=0; */
if (cb != NULL) {
cb(s, SSL_CB_HANDSHAKE_DONE, 1);
}
goto end;
default:
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE);
ret = -1;
goto end;
}
if (!s->s3->tmp.reuse_message && !skip) {
if (cb != NULL && s->state != state) {
new_state = s->state;
s->state = state;
cb(s, SSL_CB_CONNECT_LOOP, 1);
s->state = new_state;
}
}
skip = 0;
}
end:
s->in_handshake--;
BUF_MEM_free(buf);
if (cb != NULL) {
cb(s, SSL_CB_CONNECT_EXIT, ret);
}
return ret;
}
int ssl3_send_client_hello(SSL *s) {
uint8_t *buf, *p, *d;
int i;
unsigned long l;
buf = (uint8_t *)s->init_buf->data;
if (s->state == SSL3_ST_CW_CLNT_HELLO_A) {
if (!s->s3->have_version) {
uint16_t max_version = ssl3_get_max_client_version(s);
/* Disabling all versions is silly: return an error. */
if (max_version == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
goto err;
}
s->version = max_version;
s->client_version = max_version;
}
/* If the configured session was created at a version higher than our
* maximum version, drop it. */
if (s->session &&
(s->session->session_id_length == 0 || s->session->not_resumable ||
(!SSL_IS_DTLS(s) && s->session->ssl_version > s->version) ||
(SSL_IS_DTLS(s) && s->session->ssl_version < s->version))) {
SSL_set_session(s, NULL);
}
/* else use the pre-loaded session */
p = s->s3->client_random;
/* If resending the ClientHello in DTLS after a HelloVerifyRequest, don't
* renegerate the client_random. The random must be reused. */
if ((!SSL_IS_DTLS(s) || !s->d1->send_cookie) &&
!ssl_fill_hello_random(p, sizeof(s->s3->client_random),
0 /* client */)) {
goto err;
}
/* Do the message type and length last. Note: the final argument to
* ssl_add_clienthello_tlsext below depends on the size of this prefix. */
d = p = ssl_handshake_start(s);
/* version indicates the negotiated version: for example from an SSLv2/v3
* compatible client hello). The client_version field is the maximum
* version we permit and it is also used in RSA encrypted premaster
* secrets. Some servers can choke if we initially report a higher version
* then renegotiate to a lower one in the premaster secret. This didn't
* happen with TLS 1.0 as most servers supported it but it can with TLS 1.1
* or later if the server only supports 1.0.
*
* Possible scenario with previous logic:
* 1. Client hello indicates TLS 1.2
* 2. Server hello says TLS 1.0
* 3. RSA encrypted premaster secret uses 1.2.
* 4. Handhaked proceeds using TLS 1.0.
* 5. Server sends hello request to renegotiate.
* 6. Client hello indicates TLS v1.0 as we now
* know that is maximum server supports.
* 7. Server chokes on RSA encrypted premaster secret
* containing version 1.0.
*
* For interoperability it should be OK to always use the maximum version
* we support in client hello and then rely on the checking of version to
* ensure the servers isn't being inconsistent: for example initially
* negotiating with TLS 1.0 and renegotiating with TLS 1.2. We do this by
* using client_version in client hello and not resetting it to the
* negotiated version. */
*(p++) = s->client_version >> 8;
*(p++) = s->client_version & 0xff;
/* Random stuff */
memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
p += SSL3_RANDOM_SIZE;
/* Session ID */
if (s->s3->initial_handshake_complete || s->session == NULL) {
/* Renegotiations do not participate in session resumption. */
i = 0;
} else {
i = s->session->session_id_length;
}
*(p++) = i;
if (i != 0) {
if (i > (int)sizeof(s->session->session_id)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
memcpy(p, s->session->session_id, i);
p += i;
}
/* cookie stuff for DTLS */
if (SSL_IS_DTLS(s)) {
if (s->d1->cookie_len > sizeof(s->d1->cookie)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
*(p++) = s->d1->cookie_len;
memcpy(p, s->d1->cookie, s->d1->cookie_len);
p += s->d1->cookie_len;
}
/* Ciphers supported */
i = ssl_cipher_list_to_bytes(s, SSL_get_ciphers(s), &p[2]);
if (i == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
goto err;
}
s2n(i, p);
p += i;
/* COMPRESSION */
*(p++) = 1;
*(p++) = 0; /* Add the NULL method */
/* TLS extensions*/
p = ssl_add_clienthello_tlsext(s, p, buf + SSL3_RT_MAX_PLAIN_LENGTH,
p - buf);
if (p == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
l = p - d;
if (!ssl_set_handshake_header(s, SSL3_MT_CLIENT_HELLO, l)) {
goto err;
}
s->state = SSL3_ST_CW_CLNT_HELLO_B;
}
/* SSL3_ST_CW_CLNT_HELLO_B */
return ssl_do_write(s);
err:
return -1;
}
int ssl3_get_server_hello(SSL *s) {
STACK_OF(SSL_CIPHER) *sk;
const SSL_CIPHER *c;
CERT *ct = s->cert;
int al = SSL_AD_INTERNAL_ERROR, ok;
long n;
CBS server_hello, server_random, session_id;
uint16_t server_version, cipher_suite;
uint8_t compression_method;
uint32_t mask_ssl;
n = s->method->ssl_get_message(s, SSL3_ST_CR_SRVR_HELLO_A,
SSL3_ST_CR_SRVR_HELLO_B, SSL3_MT_SERVER_HELLO,
20000, /* ?? */
ssl_hash_message, &ok);
if (!ok) {
uint32_t err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_SSL &&
ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) {
/* Add a dedicated error code to the queue for a handshake_failure alert
* in response to ClientHello. This matches NSS's client behavior and
* gives a better error on a (probable) failure to negotiate initial
* parameters. Note: this error code comes after the original one.
*
* See https://crbug.com/446505. */
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO);
}
return n;
}
CBS_init(&server_hello, s->init_msg, n);
if (!CBS_get_u16(&server_hello, &server_version) ||
!CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) ||
!CBS_get_u8_length_prefixed(&server_hello, &session_id) ||
CBS_len(&session_id) > SSL3_SESSION_ID_SIZE ||
!CBS_get_u16(&server_hello, &cipher_suite) ||
!CBS_get_u8(&server_hello, &compression_method)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
assert(s->s3->have_version == s->s3->initial_handshake_complete);
if (!s->s3->have_version) {
if (!ssl3_is_version_enabled(s, server_version)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
s->version = server_version;
/* Mark the version as fixed so the record-layer version is not clamped
* to TLS 1.0. */
s->s3->have_version = 1;
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
s->version = server_version;
s->enc_method = ssl3_get_enc_method(server_version);
assert(s->enc_method != NULL);
/* At this point, the connection's version is known and s->version is
* fixed. Begin enforcing the record-layer version. */
s->s3->have_version = 1;
} else if (server_version != s->version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
/* Copy over the server random. */
memcpy(s->s3->server_random, CBS_data(&server_random), SSL3_RANDOM_SIZE);
assert(s->session == NULL || s->session->session_id_length > 0);
if (!s->s3->initial_handshake_complete && s->session != NULL &&
CBS_mem_equal(&session_id, s->session->session_id,
s->session->session_id_length)) {
if (s->sid_ctx_length != s->session->sid_ctx_length ||
memcmp(s->session->sid_ctx, s->sid_ctx, s->sid_ctx_length)) {
/* actually a client application bug */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL,
SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
goto f_err;
}
s->hit = 1;
} else {
/* The session wasn't resumed. Create a fresh SSL_SESSION to
* fill out. */
s->hit = 0;
if (!ssl_get_new_session(s, 0)) {
goto f_err;
}
/* Note: session_id could be empty. */
s->session->session_id_length = CBS_len(&session_id);
memcpy(s->session->session_id, CBS_data(&session_id), CBS_len(&session_id));
}
c = SSL_get_cipher_by_value(cipher_suite);
if (c == NULL) {
/* unknown cipher */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED);
goto f_err;
}
/* ct->mask_ssl was computed from client capabilities. Now
* that the final version is known, compute a new mask_ssl. */
if (!SSL_USE_TLS1_2_CIPHERS(s)) {
mask_ssl = SSL_TLSV1_2;
} else {
mask_ssl = 0;
}
/* If the cipher is disabled then we didn't sent it in the ClientHello, so if
* the server selected it, it's an error. */
if ((c->algorithm_ssl & mask_ssl) ||
(c->algorithm_mkey & ct->mask_k) ||
(c->algorithm_auth & ct->mask_a)) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
goto f_err;
}
sk = ssl_get_ciphers_by_id(s);
if (!sk_SSL_CIPHER_find(sk, NULL, c)) {
/* we did not say we would use this cipher */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
goto f_err;
}
if (s->hit) {
if (s->session->cipher != c) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
goto f_err;
}
if (s->session->ssl_version != s->version) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
goto f_err;
}
}
s->s3->tmp.new_cipher = c;
/* Now that the cipher is known, initialize the handshake hash. */
if (!ssl3_init_handshake_hash(s)) {
goto f_err;
}
/* If doing a full handshake with TLS 1.2, the server may request a client
* certificate which requires hashing the handshake transcript under a
* different hash. Otherwise, the handshake buffer may be released. */
if (!SSL_USE_SIGALGS(s) || s->hit) {
ssl3_free_handshake_buffer(s);
}
/* Only the NULL compression algorithm is supported. */
if (compression_method != 0) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
goto f_err;
}
/* TLS extensions */
if (!ssl_parse_serverhello_tlsext(s, &server_hello)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
goto err;
}
/* There should be nothing left over in the record. */
if (CBS_len(&server_hello) != 0) {
/* wrong packet length */
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
goto f_err;
}
if (s->hit &&
s->s3->tmp.extended_master_secret != s->session->extended_master_secret) {
al = SSL_AD_HANDSHAKE_FAILURE;
if (s->session->extended_master_secret) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
}
goto f_err;
}
return 1;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
return -1;
}
/* ssl3_check_certificate_for_cipher returns one if |leaf| is a suitable server
* certificate type for |cipher|. Otherwise, it returns zero and pushes an error
* on the error queue. */
static int ssl3_check_certificate_for_cipher(X509 *leaf,
const SSL_CIPHER *cipher) {
int ret = 0;
EVP_PKEY *pkey = X509_get_pubkey(leaf);
if (pkey == NULL) {
goto err;
}
/* Check the certificate's type matches the cipher. */
int expected_type = ssl_cipher_get_key_type(cipher);
assert(expected_type != EVP_PKEY_NONE);
if (pkey->type != expected_type) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CERTIFICATE_TYPE);
goto err;
}
/* TODO(davidben): This behavior is preserved from upstream. Should key usages
* be checked in other cases as well? */
if (cipher->algorithm_auth & SSL_aECDSA) {
/* This call populates the ex_flags field correctly */
X509_check_purpose(leaf, -1, 0);
if ((leaf->ex_flags & EXFLAG_KUSAGE) &&
!(leaf->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING);
goto err;
}
}
ret = 1;
err:
EVP_PKEY_free(pkey);
return ret;
}
int ssl3_get_server_certificate(SSL *s) {
int al, ok, ret = -1;
unsigned long n;
X509 *x = NULL;
STACK_OF(X509) *sk = NULL;
EVP_PKEY *pkey = NULL;
CBS cbs, certificate_list;
const uint8_t *data;
n = s->method->ssl_get_message(s, SSL3_ST_CR_CERT_A, SSL3_ST_CR_CERT_B,
SSL3_MT_CERTIFICATE, (long)s->max_cert_list,
ssl_hash_message, &ok);
if (!ok) {
return n;
}
CBS_init(&cbs, s->init_msg, n);
sk = sk_X509_new_null();
if (sk == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!CBS_get_u24_length_prefixed(&cbs, &certificate_list) ||
CBS_len(&certificate_list) == 0 ||
CBS_len(&cbs) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
while (CBS_len(&certificate_list) > 0) {
CBS certificate;
if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
goto f_err;
}
data = CBS_data(&certificate);
x = d2i_X509(NULL, &data, CBS_len(&certificate));
if (x == NULL) {
al = SSL_AD_BAD_CERTIFICATE;
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
goto f_err;
}
if (data != CBS_data(&certificate) + CBS_len(&certificate)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH);
goto f_err;
}
if (!sk_X509_push(sk, x)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
x = NULL;
}
X509 *leaf = sk_X509_value(sk, 0);
if (!ssl3_check_certificate_for_cipher(leaf, s->s3->tmp.new_cipher)) {
al = SSL_AD_ILLEGAL_PARAMETER;
goto f_err;
}
/* NOTE: Unlike the server half, the client's copy of |cert_chain| includes
* the leaf. */
sk_X509_pop_free(s->session->cert_chain, X509_free);
s->session->cert_chain = sk;
sk = NULL;
X509_free(s->session->peer);
s->session->peer = X509_up_ref(leaf);
s->session->verify_result = s->verify_result;
ret = 1;
if (0) {
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
}
err:
EVP_PKEY_free(pkey);
X509_free(x);
sk_X509_pop_free(sk, X509_free);
return ret;
}
int ssl3_get_server_key_exchange(SSL *s) {
EVP_MD_CTX md_ctx;
int al, ok;
long n, alg_k, alg_a;
EVP_PKEY *pkey = NULL;
const EVP_MD *md = NULL;
RSA *rsa = NULL;
DH *dh = NULL;
EC_KEY *ecdh = NULL;
BN_CTX *bn_ctx = NULL;
EC_POINT *srvr_ecpoint = NULL;
CBS server_key_exchange, server_key_exchange_orig, parameter;
/* use same message size as in ssl3_get_certificate_request() as
* ServerKeyExchange message may be skipped */
n = s->method->ssl_get_message(s, SSL3_ST_CR_KEY_EXCH_A,
SSL3_ST_CR_KEY_EXCH_B, -1, s->max_cert_list,
ssl_hash_message, &ok);
if (!ok) {
return n;
}
if (s->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE) {
if (ssl_cipher_requires_server_key_exchange(s->s3->tmp.new_cipher)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return -1;
}
/* In plain PSK ciphersuite, ServerKeyExchange may be omitted to send no
* identity hint. */
if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aPSK) {
/* TODO(davidben): This should be reset in one place with the rest of the
* handshake state. */
OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
s->s3->tmp.peer_psk_identity_hint = NULL;
}
s->s3->tmp.reuse_message = 1;
return 1;
}
/* Retain a copy of the original CBS to compute the signature over. */
CBS_init(&server_key_exchange, s->init_msg, n);
server_key_exchange_orig = server_key_exchange;
alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
alg_a = s->s3->tmp.new_cipher->algorithm_auth;
EVP_MD_CTX_init(&md_ctx);
if (alg_a & SSL_aPSK) {
CBS psk_identity_hint;
/* Each of the PSK key exchanges begins with a psk_identity_hint. */
if (!CBS_get_u16_length_prefixed(&server_key_exchange,
&psk_identity_hint)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
/* Store PSK identity hint for later use, hint is used in
* ssl3_send_client_key_exchange. Assume that the maximum length of a PSK
* identity hint can be as long as the maximum length of a PSK identity.
* Also do not allow NULL characters; identities are saved as C strings.
*
* TODO(davidben): Should invalid hints be ignored? It's a hint rather than
* a specific identity. */
if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
CBS_contains_zero_byte(&psk_identity_hint)) {
al = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
goto f_err;
}
/* Save the identity hint as a C string. */
if (!CBS_strdup(&psk_identity_hint, &s->s3->tmp.peer_psk_identity_hint)) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto f_err;
}
}
if (alg_k & SSL_kDHE) {
CBS dh_p, dh_g, dh_Ys;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_p) ||
CBS_len(&dh_p) == 0 ||
!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_g) ||
CBS_len(&dh_g) == 0 ||
!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_Ys) ||
CBS_len(&dh_Ys) == 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
dh = DH_new();
if (dh == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB);
goto err;
}
if ((dh->p = BN_bin2bn(CBS_data(&dh_p), CBS_len(&dh_p), NULL)) == NULL ||
(dh->g = BN_bin2bn(CBS_data(&dh_g), CBS_len(&dh_g), NULL)) == NULL ||
(dh->pub_key = BN_bin2bn(CBS_data(&dh_Ys), CBS_len(&dh_Ys), NULL)) ==
NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_BN_LIB);
goto err;
}
s->session->key_exchange_info = DH_num_bits(dh);
if (s->session->key_exchange_info < 1024) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_DH_P_LENGTH);
goto err;
}
DH_free(s->s3->tmp.peer_dh_tmp);
s->s3->tmp.peer_dh_tmp = dh;
dh = NULL;
} else if (alg_k & SSL_kECDHE) {
uint16_t curve_id;
int curve_nid = 0;
const EC_GROUP *group;
CBS point;
/* Extract elliptic curve parameters and the server's ephemeral ECDH public
* key. Check curve is one of our preferences, if not server has sent an
* invalid curve. */
if (!tls1_check_curve(s, &server_key_exchange, &curve_id)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
goto f_err;
}
curve_nid = tls1_ec_curve_id2nid(curve_id);
if (curve_nid == 0) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS);
goto f_err;
}
ecdh = EC_KEY_new_by_curve_name(curve_nid);
s->session->key_exchange_info = curve_id;
if (ecdh == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EC_LIB);
goto err;
}
group = EC_KEY_get0_group(ecdh);
/* Next, get the encoded ECPoint */
if (!CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (((srvr_ecpoint = EC_POINT_new(group)) == NULL) ||
((bn_ctx = BN_CTX_new()) == NULL)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_POINT_oct2point(group, srvr_ecpoint, CBS_data(&point),
CBS_len(&point), bn_ctx)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
goto f_err;
}
EC_KEY_set_public_key(ecdh, srvr_ecpoint);
EC_KEY_free(s->s3->tmp.peer_ecdh_tmp);
s->s3->tmp.peer_ecdh_tmp = ecdh;
ecdh = NULL;
BN_CTX_free(bn_ctx);
bn_ctx = NULL;
EC_POINT_free(srvr_ecpoint);
srvr_ecpoint = NULL;
} else if (!(alg_k & SSL_kPSK)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
/* At this point, |server_key_exchange| contains the signature, if any, while
* |server_key_exchange_orig| contains the entire message. From that, derive
* a CBS containing just the parameter. */
CBS_init(&parameter, CBS_data(&server_key_exchange_orig),
CBS_len(&server_key_exchange_orig) - CBS_len(&server_key_exchange));
/* ServerKeyExchange should be signed by the server's public key. */
if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) {
pkey = X509_get_pubkey(s->session->peer);
if (pkey == NULL) {
goto err;
}
if (SSL_USE_SIGALGS(s)) {
if (!tls12_check_peer_sigalg(&md, &al, s, &server_key_exchange, pkey)) {
goto f_err;
}
} else if (pkey->type == EVP_PKEY_RSA) {
md = EVP_md5_sha1();
} else {
md = EVP_sha1();
}
/* The last field in |server_key_exchange| is the signature. */
CBS signature;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
CBS_len(&server_key_exchange) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) ||
!EVP_DigestVerifyUpdate(&md_ctx, s->s3->client_random,
SSL3_RANDOM_SIZE) ||
!EVP_DigestVerifyUpdate(&md_ctx, s->s3->server_random,
SSL3_RANDOM_SIZE) ||
!EVP_DigestVerifyUpdate(&md_ctx, CBS_data(&parameter),
CBS_len(&parameter)) ||
!EVP_DigestVerifyFinal(&md_ctx, CBS_data(&signature),
CBS_len(&signature))) {
/* bad signature */
al = SSL_AD_DECRYPT_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
goto f_err;
}
} else {
/* PSK ciphers are the only supported certificate-less ciphers. */
assert(alg_a == SSL_aPSK);
if (CBS_len(&server_key_exchange) > 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
goto f_err;
}
}
EVP_PKEY_free(pkey);
EVP_MD_CTX_cleanup(&md_ctx);
return 1;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
EVP_PKEY_free(pkey);
RSA_free(rsa);
DH_free(dh);
BN_CTX_free(bn_ctx);
EC_POINT_free(srvr_ecpoint);
EC_KEY_free(ecdh);
EVP_MD_CTX_cleanup(&md_ctx);
return -1;
}
static int ca_dn_cmp(const X509_NAME **a, const X509_NAME **b) {
return X509_NAME_cmp(*a, *b);
}
int ssl3_get_certificate_request(SSL *s) {
int ok, ret = 0;
unsigned long n;
X509_NAME *xn = NULL;
STACK_OF(X509_NAME) *ca_sk = NULL;
CBS cbs;
CBS certificate_types;
CBS certificate_authorities;
const uint8_t *data;
n = s->method->ssl_get_message(s, SSL3_ST_CR_CERT_REQ_A,
SSL3_ST_CR_CERT_REQ_B, -1, s->max_cert_list,
ssl_hash_message, &ok);
if (!ok) {
return n;
}
s->s3->tmp.cert_req = 0;
if (s->s3->tmp.message_type == SSL3_MT_SERVER_DONE) {
s->s3->tmp.reuse_message = 1;
/* If we get here we don't need the handshake buffer as we won't be doing
* client auth. */
ssl3_free_handshake_buffer(s);
return 1;
}
if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_MESSAGE_TYPE);
goto err;
}
CBS_init(&cbs, s->init_msg, n);
ca_sk = sk_X509_NAME_new(ca_dn_cmp);
if (ca_sk == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* get the certificate types */
if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto err;
}
if (!CBS_stow(&certificate_types, &s->s3->tmp.certificate_types,
&s->s3->tmp.num_certificate_types)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
goto err;
}
if (SSL_USE_SIGALGS(s)) {
CBS supported_signature_algorithms;
if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms) ||
!tls1_parse_peer_sigalgs(s, &supported_signature_algorithms)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto err;
}
}
/* get the CA RDNs */
if (!CBS_get_u16_length_prefixed(&cbs, &certificate_authorities)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH);
goto err;
}
while (CBS_len(&certificate_authorities) > 0) {
CBS distinguished_name;
if (!CBS_get_u16_length_prefixed(&certificate_authorities,
&distinguished_name)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_TOO_LONG);
goto err;
}
data = CBS_data(&distinguished_name);
xn = d2i_X509_NAME(NULL, &data, CBS_len(&distinguished_name));
if (xn == NULL) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
goto err;
}
if (!CBS_skip(&distinguished_name, data - CBS_data(&distinguished_name))) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
if (CBS_len(&distinguished_name) != 0) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_CA_DN_LENGTH_MISMATCH);
goto err;
}
if (!sk_X509_NAME_push(ca_sk, xn)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
}
/* we should setup a certificate to return.... */
s->s3->tmp.cert_req = 1;
sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free);
s->s3->tmp.ca_names = ca_sk;
ca_sk = NULL;
ret = 1;
err:
sk_X509_NAME_pop_free(ca_sk, X509_NAME_free);
return ret;
}
int ssl3_get_new_session_ticket(SSL *s) {
int ok, al;
long n;
CBS new_session_ticket, ticket;
n = s->method->ssl_get_message(
s, SSL3_ST_CR_SESSION_TICKET_A, SSL3_ST_CR_SESSION_TICKET_B,
SSL3_MT_NEWSESSION_TICKET, 16384, ssl_hash_message, &ok);
if (!ok) {
return n;
}
if (s->hit) {
/* The server is sending a new ticket for an existing session. Sessions are
* immutable once established, so duplicate all but the ticket of the
* existing session. */
uint8_t *bytes;
size_t bytes_len;
if (!SSL_SESSION_to_bytes_for_ticket(s->session, &bytes, &bytes_len)) {
goto err;
}
SSL_SESSION *new_session = SSL_SESSION_from_bytes(bytes, bytes_len);
OPENSSL_free(bytes);
if (new_session == NULL) {
/* This should never happen. */
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
SSL_SESSION_free(s->session);
s->session = new_session;
}
CBS_init(&new_session_ticket, s->init_msg, n);
if (!CBS_get_u32(&new_session_ticket,
&s->session->tlsext_tick_lifetime_hint) ||
!CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
CBS_len(&new_session_ticket) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!CBS_stow(&ticket, &s->session->tlsext_tick,
&s->session->tlsext_ticklen)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Generate a session ID for this session based on the session ticket. We use
* the session ID mechanism for detecting ticket resumption. This also fits in
* with assumptions elsewhere in OpenSSL.*/
if (!EVP_Digest(CBS_data(&ticket), CBS_len(&ticket), s->session->session_id,
&s->session->session_id_length, EVP_sha256(), NULL)) {
goto err;
}
return 1;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
return -1;
}
int ssl3_get_cert_status(SSL *s) {
int ok, al;
long n;
CBS certificate_status, ocsp_response;
uint8_t status_type;
n = s->method->ssl_get_message(
s, SSL3_ST_CR_CERT_STATUS_A, SSL3_ST_CR_CERT_STATUS_B,
-1, 16384, ssl_hash_message, &ok);
if (!ok) {
return n;
}
if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_STATUS) {
/* A server may send status_request in ServerHello and then change
* its mind about sending CertificateStatus. */
s->s3->tmp.reuse_message = 1;
return 1;
}
CBS_init(&certificate_status, s->init_msg, n);
if (!CBS_get_u8(&certificate_status, &status_type) ||
status_type != TLSEXT_STATUSTYPE_ocsp ||
!CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
CBS_len(&ocsp_response) == 0 ||
CBS_len(&certificate_status) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!CBS_stow(&ocsp_response, &s->session->ocsp_response,
&s->session->ocsp_response_length)) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto f_err;
}
return 1;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return -1;
}
int ssl3_get_server_done(SSL *s) {
int ok;
long n;
n = s->method->ssl_get_message(s, SSL3_ST_CR_SRVR_DONE_A,
SSL3_ST_CR_SRVR_DONE_B, SSL3_MT_SERVER_DONE,
30, /* should be very small, like 0 :-) */
ssl_hash_message, &ok);
if (!ok) {
return n;
}
if (n > 0) {
/* should contain no data */
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_LENGTH_MISMATCH);
return -1;
}
return 1;
}
int ssl3_send_client_key_exchange(SSL *s) {
uint8_t *p;
int n = 0;
uint32_t alg_k;
uint32_t alg_a;
uint8_t *q;
EVP_PKEY *pkey = NULL;
EC_KEY *clnt_ecdh = NULL;
const EC_POINT *srvr_ecpoint = NULL;
EVP_PKEY *srvr_pub_pkey = NULL;
uint8_t *encodedPoint = NULL;
int encoded_pt_len = 0;
BN_CTX *bn_ctx = NULL;
unsigned int psk_len = 0;
uint8_t psk[PSK_MAX_PSK_LEN];
uint8_t *pms = NULL;
size_t pms_len = 0;
if (s->state == SSL3_ST_CW_KEY_EXCH_A) {
p = ssl_handshake_start(s);
alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
alg_a = s->s3->tmp.new_cipher->algorithm_auth;
/* If using a PSK key exchange, prepare the pre-shared key. */
if (alg_a & SSL_aPSK) {
char identity[PSK_MAX_IDENTITY_LEN + 1];
size_t identity_len;
if (s->psk_client_callback == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
goto err;
}
memset(identity, 0, sizeof(identity));
psk_len =
s->psk_client_callback(s, s->s3->tmp.peer_psk_identity_hint, identity,
sizeof(identity), psk, sizeof(psk));
if (psk_len > PSK_MAX_PSK_LEN) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
} else if (psk_len == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
goto err;
}
identity_len = OPENSSL_strnlen(identity, sizeof(identity));
if (identity_len > PSK_MAX_IDENTITY_LEN) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
OPENSSL_free(s->session->psk_identity);
s->session->psk_identity = BUF_strdup(identity);
if (s->session->psk_identity == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Write out psk_identity. */
s2n(identity_len, p);
memcpy(p, identity, identity_len);
p += identity_len;
n = 2 + identity_len;
}
/* Depending on the key exchange method, compute |pms| and |pms_len|. */
if (alg_k & SSL_kRSA) {
RSA *rsa;
size_t enc_pms_len;
pms_len = SSL_MAX_MASTER_KEY_LENGTH;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
pkey = X509_get_pubkey(s->session->peer);
if (pkey == NULL ||
pkey->type != EVP_PKEY_RSA ||
pkey->pkey.rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
EVP_PKEY_free(pkey);
goto err;
}
s->session->key_exchange_info = EVP_PKEY_bits(pkey);
rsa = pkey->pkey.rsa;
EVP_PKEY_free(pkey);
pms[0] = s->client_version >> 8;
pms[1] = s->client_version & 0xff;
if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
goto err;
}
s->session->master_key_length = SSL_MAX_MASTER_KEY_LENGTH;
q = p;
/* In TLS and beyond, reserve space for the length prefix. */
if (s->version > SSL3_VERSION) {
p += 2;
n += 2;
}
if (!RSA_encrypt(rsa, &enc_pms_len, p, RSA_size(rsa), pms, pms_len,
RSA_PKCS1_PADDING)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_RSA_ENCRYPT);
goto err;
}
n += enc_pms_len;
/* Log the premaster secret, if logging is enabled. */
if (!ssl_ctx_log_rsa_client_key_exchange(s->ctx, p, enc_pms_len, pms,
pms_len)) {
goto err;
}
/* Fill in the length prefix. */
if (s->version > SSL3_VERSION) {
s2n(enc_pms_len, q);
}
} else if (alg_k & SSL_kDHE) {
DH *dh_srvr, *dh_clnt;
int dh_len;
size_t pub_len;
if (s->s3->tmp.peer_dh_tmp == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
dh_srvr = s->s3->tmp.peer_dh_tmp;
/* generate a new random key */
dh_clnt = DHparams_dup(dh_srvr);
if (dh_clnt == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB);
goto err;
}
if (!DH_generate_key(dh_clnt)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB);
DH_free(dh_clnt);
goto err;
}
pms_len = DH_size(dh_clnt);
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
DH_free(dh_clnt);
goto err;
}
dh_len = DH_compute_key(pms, dh_srvr->pub_key, dh_clnt);
if (dh_len <= 0) {
OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB);
DH_free(dh_clnt);
goto err;
}
pms_len = dh_len;
/* send off the data */
pub_len = BN_num_bytes(dh_clnt->pub_key);
s2n(pub_len, p);
BN_bn2bin(dh_clnt->pub_key, p);
n += 2 + pub_len;
DH_free(dh_clnt);
} else if (alg_k & SSL_kECDHE) {
const EC_GROUP *srvr_group = NULL;
EC_KEY *tkey;
int field_size = 0, ecdh_len;
if (s->s3->tmp.peer_ecdh_tmp == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
tkey = s->s3->tmp.peer_ecdh_tmp;
srvr_group = EC_KEY_get0_group(tkey);
srvr_ecpoint = EC_KEY_get0_public_key(tkey);
if (srvr_group == NULL || srvr_ecpoint == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
clnt_ecdh = EC_KEY_new();
if (clnt_ecdh == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_KEY_set_group(clnt_ecdh, srvr_group)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EC_LIB);
goto err;
}
/* Generate a new ECDH key pair */
if (!EC_KEY_generate_key(clnt_ecdh)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB);
goto err;
}
field_size = EC_GROUP_get_degree(srvr_group);
if (field_size <= 0) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB);
goto err;
}
pms_len = (field_size + 7) / 8;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
ecdh_len = ECDH_compute_key(pms, pms_len, srvr_ecpoint, clnt_ecdh, NULL);
if (ecdh_len <= 0) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB);
goto err;
}
pms_len = ecdh_len;
/* First check the size of encoding and allocate memory accordingly. */
encoded_pt_len =
EC_POINT_point2oct(srvr_group, EC_KEY_get0_public_key(clnt_ecdh),
POINT_CONVERSION_UNCOMPRESSED, NULL, 0, NULL);
encodedPoint =
(uint8_t *)OPENSSL_malloc(encoded_pt_len * sizeof(uint8_t));
bn_ctx = BN_CTX_new();
if (encodedPoint == NULL || bn_ctx == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Encode the public key */
encoded_pt_len = EC_POINT_point2oct(
srvr_group, EC_KEY_get0_public_key(clnt_ecdh),
POINT_CONVERSION_UNCOMPRESSED, encodedPoint, encoded_pt_len, bn_ctx);
*p = encoded_pt_len; /* length of encoded point */
/* Encoded point will be copied here */
p += 1;
n += 1;
/* copy the point */
memcpy(p, encodedPoint, encoded_pt_len);
/* increment n to account for length field */
n += encoded_pt_len;
/* Free allocated memory */
BN_CTX_free(bn_ctx);
bn_ctx = NULL;
OPENSSL_free(encodedPoint);
encodedPoint = NULL;
EC_KEY_free(clnt_ecdh);
clnt_ecdh = NULL;
EVP_PKEY_free(srvr_pub_pkey);
srvr_pub_pkey = NULL;
} else if (alg_k & SSL_kPSK) {
/* For plain PSK, other_secret is a block of 0s with the same length as
* the pre-shared key. */
pms_len = psk_len;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
memset(pms, 0, pms_len);
} else {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
/* For a PSK cipher suite, other_secret is combined with the pre-shared
* key. */
if (alg_a & SSL_aPSK) {
CBB cbb, child;
uint8_t *new_pms;
size_t new_pms_len;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 2 + psk_len + 2 + pms_len) ||
!CBB_add_u16_length_prefixed(&cbb, &child) ||
!CBB_add_bytes(&child, pms, pms_len) ||
!CBB_add_u16_length_prefixed(&cbb, &child) ||
!CBB_add_bytes(&child, psk, psk_len) ||
!CBB_finish(&cbb, &new_pms, &new_pms_len)) {
CBB_cleanup(&cbb);
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
pms = new_pms;
pms_len = new_pms_len;
}
/* The message must be added to the finished hash before calculating the
* master secret. */
if (!ssl_set_handshake_header(s, SSL3_MT_CLIENT_KEY_EXCHANGE, n)) {
goto err;
}
s->state = SSL3_ST_CW_KEY_EXCH_B;
s->session->master_key_length = s->enc_method->generate_master_secret(
s, s->session->master_key, pms, pms_len);
if (s->session->master_key_length == 0) {
goto err;
}
s->session->extended_master_secret = s->s3->tmp.extended_master_secret;
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
}
/* SSL3_ST_CW_KEY_EXCH_B */
return s->method->do_write(s);
err:
BN_CTX_free(bn_ctx);
OPENSSL_free(encodedPoint);
EC_KEY_free(clnt_ecdh);
EVP_PKEY_free(srvr_pub_pkey);
if (pms) {
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
}
return -1;
}
int ssl3_send_cert_verify(SSL *s) {
if (s->state == SSL3_ST_CW_CERT_VRFY_A ||
s->state == SSL3_ST_CW_CERT_VRFY_B) {
enum ssl_private_key_result_t sign_result;
uint8_t *p = ssl_handshake_start(s);
size_t signature_length = 0;
unsigned long n = 0;
assert(ssl_has_private_key(s));
if (s->state == SSL3_ST_CW_CERT_VRFY_A) {
uint8_t *buf = (uint8_t *)s->init_buf->data;
const EVP_MD *md = NULL;
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_length;
/* Write out the digest type if need be. */
if (SSL_USE_SIGALGS(s)) {
md = tls1_choose_signing_digest(s);
if (!tls12_get_sigandhash(s, p, md)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
p += 2;
n += 2;
}
/* Compute the digest. */
const int pkey_type = ssl_private_key_type(s);
if (!ssl3_cert_verify_hash(s, digest, &digest_length, &md, pkey_type)) {
return -1;
}
/* The handshake buffer is no longer necessary. */
ssl3_free_handshake_buffer(s);
/* Sign the digest. */
signature_length = ssl_private_key_max_signature_len(s);
if (p + 2 + signature_length > buf + SSL3_RT_MAX_PLAIN_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
return -1;
}
s->rwstate = SSL_PRIVATE_KEY_OPERATION;
sign_result = ssl_private_key_sign(s, &p[2], &signature_length,
signature_length, md, digest,
digest_length);
} else {
if (SSL_USE_SIGALGS(s)) {
/* The digest has already been selected and written. */
p += 2;
n += 2;
}
signature_length = ssl_private_key_max_signature_len(s);
s->rwstate = SSL_PRIVATE_KEY_OPERATION;
sign_result = ssl_private_key_sign_complete(s, &p[2], &signature_length,
signature_length);
}
if (sign_result == ssl_private_key_retry) {
s->state = SSL3_ST_CW_CERT_VRFY_B;
return -1;
}
s->rwstate = SSL_NOTHING;
if (sign_result != ssl_private_key_success) {
return -1;
}
s2n(signature_length, p);
n += signature_length + 2;
if (!ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE_VERIFY, n)) {
return -1;
}
s->state = SSL3_ST_CW_CERT_VRFY_C;
}
return ssl_do_write(s);
}
/* ssl3_has_client_certificate returns true if a client certificate is
* configured. */
static int ssl3_has_client_certificate(SSL *ssl) {
return ssl->cert && ssl->cert->x509 && ssl_has_private_key(ssl);
}
int ssl3_send_client_certificate(SSL *s) {
X509 *x509 = NULL;
EVP_PKEY *pkey = NULL;
int i;
if (s->state == SSL3_ST_CW_CERT_A) {
/* Let cert callback update client certificates if required */
if (s->cert->cert_cb) {
i = s->cert->cert_cb(s, s->cert->cert_cb_arg);
if (i < 0) {
s->rwstate = SSL_X509_LOOKUP;
return -1;
}
if (i == 0) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
s->rwstate = SSL_NOTHING;
}
if (ssl3_has_client_certificate(s)) {
s->state = SSL3_ST_CW_CERT_C;
} else {
s->state = SSL3_ST_CW_CERT_B;
}
}
/* We need to get a client cert */
if (s->state == SSL3_ST_CW_CERT_B) {
/* If we get an error, we need to:
* ssl->rwstate=SSL_X509_LOOKUP; return(-1);
* We then get retried later */
i = ssl_do_client_cert_cb(s, &x509, &pkey);
if (i < 0) {
s->rwstate = SSL_X509_LOOKUP;
return -1;
}
s->rwstate = SSL_NOTHING;
if (i == 1 && pkey != NULL && x509 != NULL) {
s->state = SSL3_ST_CW_CERT_B;
if (!SSL_use_certificate(s, x509) || !SSL_use_PrivateKey(s, pkey)) {
i = 0;
}
} else if (i == 1) {
i = 0;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_DATA_RETURNED_BY_CALLBACK);
}
X509_free(x509);
EVP_PKEY_free(pkey);
if (i && !ssl3_has_client_certificate(s)) {
i = 0;
}
if (i == 0) {
if (s->version == SSL3_VERSION) {
s->s3->tmp.cert_req = 0;
ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_CERTIFICATE);
return 1;
} else {
s->s3->tmp.cert_req = 2;
/* There is no client certificate, so the handshake buffer may be
* released. */
ssl3_free_handshake_buffer(s);
}
}
/* Ok, we have a cert */
s->state = SSL3_ST_CW_CERT_C;
}
if (s->state == SSL3_ST_CW_CERT_C) {
if (s->s3->tmp.cert_req == 2) {
/* Send an empty Certificate message. */
uint8_t *p = ssl_handshake_start(s);
l2n3(0, p);
if (!ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE, 3)) {
return -1;
}
} else if (!ssl3_output_cert_chain(s)) {
return -1;
}
s->state = SSL3_ST_CW_CERT_D;
}
/* SSL3_ST_CW_CERT_D */
return ssl_do_write(s);
}
int ssl3_send_next_proto(SSL *s) {
unsigned int len, padding_len;
uint8_t *d, *p;
if (s->state == SSL3_ST_CW_NEXT_PROTO_A) {
len = s->next_proto_negotiated_len;
padding_len = 32 - ((len + 2) % 32);
d = p = ssl_handshake_start(s);
*(p++) = len;
memcpy(p, s->next_proto_negotiated, len);
p += len;
*(p++) = padding_len;
memset(p, 0, padding_len);
p += padding_len;
if (!ssl_set_handshake_header(s, SSL3_MT_NEXT_PROTO, p - d)) {
return -1;
}
s->state = SSL3_ST_CW_NEXT_PROTO_B;
}
return ssl_do_write(s);
}
int ssl3_send_channel_id(SSL *s) {
uint8_t *d;
int ret = -1, public_key_len;
EVP_MD_CTX md_ctx;
ECDSA_SIG *sig = NULL;
uint8_t *public_key = NULL, *derp, *der_sig = NULL;
if (s->state != SSL3_ST_CW_CHANNEL_ID_A) {
return ssl_do_write(s);
}
if (!s->tlsext_channel_id_private && s->ctx->channel_id_cb) {
EVP_PKEY *key = NULL;
s->ctx->channel_id_cb(s, &key);
if (key != NULL) {
s->tlsext_channel_id_private = key;
}
}
if (!s->tlsext_channel_id_private) {
s->rwstate = SSL_CHANNEL_ID_LOOKUP;
return -1;
}
s->rwstate = SSL_NOTHING;
if (EVP_PKEY_id(s->tlsext_channel_id_private) != EVP_PKEY_EC) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
EC_KEY *ec_key = s->tlsext_channel_id_private->pkey.ec;
d = ssl_handshake_start(s);
s2n(TLSEXT_TYPE_channel_id, d);
s2n(TLSEXT_CHANNEL_ID_SIZE, d);
EVP_MD_CTX_init(&md_ctx);
public_key_len = i2o_ECPublicKey(ec_key, NULL);
if (public_key_len <= 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CANNOT_SERIALIZE_PUBLIC_KEY);
goto err;
}
/* i2o_ECPublicKey will produce an ANSI X9.62 public key which, for a
* P-256 key, is 0x04 (meaning uncompressed) followed by the x and y
* field elements as 32-byte, big-endian numbers. */
if (public_key_len != 65) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256);
goto err;
}
public_key = OPENSSL_malloc(public_key_len);
if (!public_key) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
derp = public_key;
i2o_ECPublicKey(ec_key, &derp);
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_len;
if (!tls1_channel_id_hash(s, digest, &digest_len)) {
goto err;
}
sig = ECDSA_do_sign(digest, digest_len, ec_key);
if (sig == NULL) {
goto err;
}
/* The first byte of public_key will be 0x4, denoting an uncompressed key. */
memcpy(d, public_key + 1, 64);
d += 64;
if (!BN_bn2bin_padded(d, 32, sig->r) ||
!BN_bn2bin_padded(d + 32, 32, sig->s)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!ssl_set_handshake_header(s, SSL3_MT_ENCRYPTED_EXTENSIONS,
2 + 2 + TLSEXT_CHANNEL_ID_SIZE)) {
goto err;
}
s->state = SSL3_ST_CW_CHANNEL_ID_B;
ret = ssl_do_write(s);
err:
EVP_MD_CTX_cleanup(&md_ctx);
OPENSSL_free(public_key);
OPENSSL_free(der_sig);
ECDSA_SIG_free(sig);
return ret;
}
int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey) {
int i = 0;
if (s->ctx->client_cert_cb) {
i = s->ctx->client_cert_cb(s, px509, ppkey);
}
return i;
}
int ssl3_verify_server_cert(SSL *s) {
int ret = ssl_verify_cert_chain(s, s->session->cert_chain);
if (s->verify_mode != SSL_VERIFY_NONE && ret <= 0) {
int al = ssl_verify_alarm_type(s->verify_result);
ssl3_send_alert(s, SSL3_AL_FATAL, al);
OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
} else {
ret = 1;
ERR_clear_error(); /* but we keep s->verify_result */
}
return ret;
}