blob: 632dbbe122bd3310c76af61e9b5d10b4ce35bdbb [file] [log] [blame]
#!/usr/bin/env perl
# ====================================================================
# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
# functions were re-implemented to address P4 performance issue [see
# commentary below], and in 2006 the rest was rewritten in order to
# gain freedom to liberate licensing terms.
# January, September 2004.
#
# It was noted that Intel IA-32 C compiler generates code which
# performs ~30% *faster* on P4 CPU than original *hand-coded*
# SHA1 assembler implementation. To address this problem (and
# prove that humans are still better than machines:-), the
# original code was overhauled, which resulted in following
# performance changes:
#
# compared with original compared with Intel cc
# assembler impl. generated code
# Pentium -16% +48%
# PIII/AMD +8% +16%
# P4 +85%(!) +45%
#
# As you can see Pentium came out as looser:-( Yet I reckoned that
# improvement on P4 outweights the loss and incorporate this
# re-tuned code to 0.9.7 and later.
# ----------------------------------------------------------------
# <appro@fy.chalmers.se>
# August 2009.
#
# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
# '(c&d) + (b&(c^d))', which allows to accumulate partial results
# and lighten "pressure" on scratch registers. This resulted in
# >12% performance improvement on contemporary AMD cores (with no
# degradation on other CPUs:-). Also, the code was revised to maximize
# "distance" between instructions producing input to 'lea' instruction
# and the 'lea' instruction itself, which is essential for Intel Atom
# core and resulted in ~15% improvement.
# October 2010.
#
# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
# is to offload message schedule denoted by Wt in NIST specification,
# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
# and in SSE2 context was first explored by Dean Gaudet in 2004, see
# http://arctic.org/~dean/crypto/sha1.html. Since then several things
# have changed that made it interesting again:
#
# a) XMM units became faster and wider;
# b) instruction set became more versatile;
# c) an important observation was made by Max Locktykhin, which made
# it possible to reduce amount of instructions required to perform
# the operation in question, for further details see
# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
# April 2011.
#
# Add AVX code path, probably most controversial... The thing is that
# switch to AVX alone improves performance by as little as 4% in
# comparison to SSSE3 code path. But below result doesn't look like
# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
# pair of µ-ops, and it's the additional µ-ops, two per round, that
# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
# cycles per processed byte. But 'sh[rl]d' is not something that used
# to be fast, nor does it appear to be fast in upcoming Bulldozer
# [according to its optimization manual]. Which is why AVX code path
# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
# makes no sense to keep the AVX code path. If somebody feels that
# strongly, it's probably more appropriate to discuss possibility of
# using vector rotate XOP on AMD...
######################################################################
# Current performance is summarized in following table. Numbers are
# CPU clock cycles spent to process single byte (less is better).
#
# x86 SSSE3 AVX
# Pentium 15.7 -
# PIII 11.5 -
# P4 10.6 -
# AMD K8 7.1 -
# Core2 7.3 6.0/+22% -
# Atom 12.5 9.3(*)/+35% -
# Westmere 7.3 5.5/+33% -
# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+73%
# Ivy Bridge 7.2 4.8/+51% 4.7(**)/+53%
# Bulldozer 11.6 6.0/+92%
# VIA Nano 10.6 7.4/+43%
#
# (*) Loop is 1056 instructions long and expected result is ~8.25.
# It remains mystery [to me] why ILP is limited to 1.7.
#
# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
$xmm=$ymm=0;
for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
$ymm=1 if ($xmm &&
`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
$1>=2.19); # first version supporting AVX
$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
$1>=2.03); # first version supporting AVX
$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" &&
`ml 2>&1` =~ /Version ([0-9]+)\./ &&
$1>=10); # first version supporting AVX
&external_label("OPENSSL_ia32cap_P") if ($xmm);
$A="eax";
$B="ebx";
$C="ecx";
$D="edx";
$E="edi";
$T="esi";
$tmp1="ebp";
@V=($A,$B,$C,$D,$E,$T);
$alt=0; # 1 denotes alternative IALU implementation, which performs
# 8% *worse* on P4, same on Westmere and Atom, 2% better on
# Sandy Bridge...
sub BODY_00_15
{
local($n,$a,$b,$c,$d,$e,$f)=@_;
&comment("00_15 $n");
&mov($f,$c); # f to hold F_00_19(b,c,d)
if ($n==0) { &mov($tmp1,$a); }
else { &mov($a,$tmp1); }
&rotl($tmp1,5); # tmp1=ROTATE(a,5)
&xor($f,$d);
&add($tmp1,$e); # tmp1+=e;
&mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
# with xi, also note that e becomes
# f in next round...
&and($f,$b);
&rotr($b,2); # b=ROTATE(b,30)
&xor($f,$d); # f holds F_00_19(b,c,d)
&lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
&add($f,$tmp1); } # f+=tmp1
else { &add($tmp1,$f); } # f becomes a in next round
&mov($tmp1,$a) if ($alt && $n==15);
}
sub BODY_16_19
{
local($n,$a,$b,$c,$d,$e,$f)=@_;
&comment("16_19 $n");
if ($alt) {
&xor($c,$d);
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
&and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
&xor($f,&swtmp(($n+8)%16));
&xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
&rotl($f,1); # f=ROTATE(f,1)
&add($e,$tmp1); # e+=F_00_19(b,c,d)
&xor($c,$d); # restore $c
&mov($tmp1,$a); # b in next round
&rotr($b,$n==16?2:7); # b=ROTATE(b,30)
&mov(&swtmp($n%16),$f); # xi=f
&rotl($a,5); # ROTATE(a,5)
&lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
&add($f,$a); # f+=ROTATE(a,5)
} else {
&mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
&xor($tmp1,$d);
&xor($f,&swtmp(($n+8)%16));
&and($tmp1,$b);
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
&rotl($f,1); # f=ROTATE(f,1)
&xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
&add($e,$tmp1); # e+=F_00_19(b,c,d)
&mov($tmp1,$a);
&rotr($b,2); # b=ROTATE(b,30)
&mov(&swtmp($n%16),$f); # xi=f
&rotl($tmp1,5); # ROTATE(a,5)
&lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
&add($f,$tmp1); # f+=ROTATE(a,5)
}
}
sub BODY_20_39
{
local($n,$a,$b,$c,$d,$e,$f)=@_;
local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
&comment("20_39 $n");
if ($alt) {
&xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
&xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
&xor($f,&swtmp(($n+8)%16));
&add($e,$tmp1); # e+=F_20_39(b,c,d)
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
&rotl($f,1); # f=ROTATE(f,1)
&mov($tmp1,$a); # b in next round
&rotr($b,7); # b=ROTATE(b,30)
&mov(&swtmp($n%16),$f) if($n<77);# xi=f
&rotl($a,5); # ROTATE(a,5)
&xor($b,$c) if($n==39);# warm up for BODY_40_59
&and($tmp1,$b) if($n==39);
&lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
&mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
&add($f,$a); # f+=ROTATE(a,5)
&rotr($a,5) if ($n==79);
} else {
&mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
&xor($tmp1,$c);
&xor($f,&swtmp(($n+8)%16));
&xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
&rotl($f,1); # f=ROTATE(f,1)
&add($e,$tmp1); # e+=F_20_39(b,c,d)
&rotr($b,2); # b=ROTATE(b,30)
&mov($tmp1,$a);
&rotl($tmp1,5); # ROTATE(a,5)
&mov(&swtmp($n%16),$f) if($n<77);# xi=f
&lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
&mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
&add($f,$tmp1); # f+=ROTATE(a,5)
}
}
sub BODY_40_59
{
local($n,$a,$b,$c,$d,$e,$f)=@_;
&comment("40_59 $n");
if ($alt) {
&add($e,$tmp1); # e+=b&(c^d)
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
&mov($tmp1,$d);
&xor($f,&swtmp(($n+8)%16));
&xor($c,$d); # restore $c
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
&rotl($f,1); # f=ROTATE(f,1)
&and($tmp1,$c);
&rotr($b,7); # b=ROTATE(b,30)
&add($e,$tmp1); # e+=c&d
&mov($tmp1,$a); # b in next round
&mov(&swtmp($n%16),$f); # xi=f
&rotl($a,5); # ROTATE(a,5)
&xor($b,$c) if ($n<59);
&and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
&lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
&add($f,$a); # f+=ROTATE(a,5)
} else {
&mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
&xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
&xor($tmp1,$d);
&xor($f,&swtmp(($n+8)%16));
&and($tmp1,$b);
&xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
&rotl($f,1); # f=ROTATE(f,1)
&add($tmp1,$e); # b&(c^d)+=e
&rotr($b,2); # b=ROTATE(b,30)
&mov($e,$a); # e becomes volatile
&rotl($e,5); # ROTATE(a,5)
&mov(&swtmp($n%16),$f); # xi=f
&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
&mov($tmp1,$c);
&add($f,$e); # f+=ROTATE(a,5)
&and($tmp1,$d);
&mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
&add($f,$tmp1); # f+=c&d
}
}
&function_begin("sha1_block_data_order");
if ($xmm) {
&static_label("ssse3_shortcut");
&static_label("avx_shortcut") if ($ymm);
&static_label("K_XX_XX");
&call (&label("pic_point")); # make it PIC!
&set_label("pic_point");
&blindpop($tmp1);
&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
&lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
&mov ($A,&DWP(0,$T));
&mov ($D,&DWP(4,$T));
&test ($D,1<<9); # check SSSE3 bit
&jz (&label("x86"));
&test ($A,1<<24); # check FXSR bit
&jz (&label("x86"));
if ($ymm) {
&and ($D,1<<28); # mask AVX bit
&and ($A,1<<30); # mask "Intel CPU" bit
&or ($A,$D);
&cmp ($A,1<<28|1<<30);
&je (&label("avx_shortcut"));
}
&jmp (&label("ssse3_shortcut"));
&set_label("x86",16);
}
&mov($tmp1,&wparam(0)); # SHA_CTX *c
&mov($T,&wparam(1)); # const void *input
&mov($A,&wparam(2)); # size_t num
&stack_push(16+3); # allocate X[16]
&shl($A,6);
&add($A,$T);
&mov(&wparam(2),$A); # pointer beyond the end of input
&mov($E,&DWP(16,$tmp1));# pre-load E
&jmp(&label("loop"));
&set_label("loop",16);
# copy input chunk to X, but reversing byte order!
for ($i=0; $i<16; $i+=4)
{
&mov($A,&DWP(4*($i+0),$T));
&mov($B,&DWP(4*($i+1),$T));
&mov($C,&DWP(4*($i+2),$T));
&mov($D,&DWP(4*($i+3),$T));
&bswap($A);
&bswap($B);
&bswap($C);
&bswap($D);
&mov(&swtmp($i+0),$A);
&mov(&swtmp($i+1),$B);
&mov(&swtmp($i+2),$C);
&mov(&swtmp($i+3),$D);
}
&mov(&wparam(1),$T); # redundant in 1st spin
&mov($A,&DWP(0,$tmp1)); # load SHA_CTX
&mov($B,&DWP(4,$tmp1));
&mov($C,&DWP(8,$tmp1));
&mov($D,&DWP(12,$tmp1));
# E is pre-loaded
for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
(($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
&mov($tmp1,&wparam(0)); # re-load SHA_CTX*
&mov($D,&wparam(1)); # D is last "T" and is discarded
&add($E,&DWP(0,$tmp1)); # E is last "A"...
&add($T,&DWP(4,$tmp1));
&add($A,&DWP(8,$tmp1));
&add($B,&DWP(12,$tmp1));
&add($C,&DWP(16,$tmp1));
&mov(&DWP(0,$tmp1),$E); # update SHA_CTX
&add($D,64); # advance input pointer
&mov(&DWP(4,$tmp1),$T);
&cmp($D,&wparam(2)); # have we reached the end yet?
&mov(&DWP(8,$tmp1),$A);
&mov($E,$C); # C is last "E" which needs to be "pre-loaded"
&mov(&DWP(12,$tmp1),$B);
&mov($T,$D); # input pointer
&mov(&DWP(16,$tmp1),$C);
&jb(&label("loop"));
&stack_pop(16+3);
&function_end("sha1_block_data_order");
if ($xmm) {
######################################################################
# The SSSE3 implementation.
#
# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
# 32 elements of the message schedule or Xupdate outputs. First 4
# quadruples are simply byte-swapped input, next 4 are calculated
# according to method originally suggested by Dean Gaudet (modulo
# being implemented in SSSE3). Once 8 quadruples or 32 elements are
# collected, it switches to routine proposed by Max Locktyukhin.
#
# Calculations inevitably require temporary reqisters, and there are
# no %xmm registers left to spare. For this reason part of the ring
# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
# X[-5], and X[4] - X[-4]...
#
# Another notable optimization is aggressive stack frame compression
# aiming to minimize amount of 9-byte instructions...
#
# Yet another notable optimization is "jumping" $B variable. It means
# that there is no register permanently allocated for $B value. This
# allowed to eliminate one instruction from body_20_39...
#
my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
my @V=($A,$B,$C,$D,$E);
my $j=0; # hash round
my $rx=0;
my @T=($T,$tmp1);
my $inp;
my $_rol=sub { &rol(@_) };
my $_ror=sub { &ror(@_) };
&function_begin("_sha1_block_data_order_ssse3");
&call (&label("pic_point")); # make it PIC!
&set_label("pic_point");
&blindpop($tmp1);
&lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
&set_label("ssse3_shortcut");
&movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
&movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
&movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
&movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
&movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
&mov ($E,&wparam(0)); # load argument block
&mov ($inp=@T[1],&wparam(1));
&mov ($D,&wparam(2));
&mov (@T[0],"esp");
# stack frame layout
#
# +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
# X[4]+K X[5]+K X[6]+K X[7]+K
# X[8]+K X[9]+K X[10]+K X[11]+K
# X[12]+K X[13]+K X[14]+K X[15]+K
#
# +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
# X[4] X[5] X[6] X[7]
# X[8] X[9] X[10] X[11] # even borrowed for K_00_19
#
# +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
# K_40_59 K_40_59 K_40_59 K_40_59
# K_60_79 K_60_79 K_60_79 K_60_79
# K_00_19 K_00_19 K_00_19 K_00_19
# pbswap mask
#
# +192 ctx # argument block
# +196 inp
# +200 end
# +204 esp
&sub ("esp",208);
&and ("esp",-64);
&movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
&movdqa (&QWP(112+16,"esp"),@X[5]);
&movdqa (&QWP(112+32,"esp"),@X[6]);
&shl ($D,6); # len*64
&movdqa (&QWP(112+48,"esp"),@X[3]);
&add ($D,$inp); # end of input
&movdqa (&QWP(112+64,"esp"),@X[2]);
&add ($inp,64);
&mov (&DWP(192+0,"esp"),$E); # save argument block
&mov (&DWP(192+4,"esp"),$inp);
&mov (&DWP(192+8,"esp"),$D);
&mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
&mov ($A,&DWP(0,$E)); # load context
&mov ($B,&DWP(4,$E));
&mov ($C,&DWP(8,$E));
&mov ($D,&DWP(12,$E));
&mov ($E,&DWP(16,$E));
&mov (@T[0],$B); # magic seed
&movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
&movdqu (@X[-3&7],&QWP(-48,$inp));
&movdqu (@X[-2&7],&QWP(-32,$inp));
&movdqu (@X[-1&7],&QWP(-16,$inp));
&pshufb (@X[-4&7],@X[2]); # byte swap
&pshufb (@X[-3&7],@X[2]);
&pshufb (@X[-2&7],@X[2]);
&movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
&pshufb (@X[-1&7],@X[2]);
&paddd (@X[-4&7],@X[3]); # add K_00_19
&paddd (@X[-3&7],@X[3]);
&paddd (@X[-2&7],@X[3]);
&movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
&psubd (@X[-4&7],@X[3]); # restore X[]
&movdqa (&QWP(0+16,"esp"),@X[-3&7]);
&psubd (@X[-3&7],@X[3]);
&movdqa (&QWP(0+32,"esp"),@X[-2&7]);
&mov (@T[1],$C);
&psubd (@X[-2&7],@X[3]);
&xor (@T[1],$D);
&movdqa (@X[0],@X[-3&7]);
&and (@T[0],@T[1]);
&jmp (&label("loop"));
######################################################################
# SSE instruction sequence is first broken to groups of indepentent
# instructions, independent in respect to their inputs and shifter
# (not all architectures have more than one). Then IALU instructions
# are "knitted in" between the SSE groups. Distance is maintained for
# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
# [which allegedly also implements SSSE3]...
#
# Temporary registers usage. X[2] is volatile at the entry and at the
# end is restored from backtrace ring buffer. X[3] is expected to
# contain current K_XX_XX constant and is used to caclulate X[-1]+K
# from previous round, it becomes volatile the moment the value is
# saved to stack for transfer to IALU. X[4] becomes volatile whenever
# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
# end it is loaded with next K_XX_XX [which becomes X[3] in next
# round]...
#
sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
&movdqa (@X[2],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[3],@X[-1&7]);
&movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
eval(shift(@insns));
eval(shift(@insns));
&psrldq (@X[2],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&movdqa (@X[4],@X[0]);
&movdqa (@X[2],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pslldq (@X[4],12); # "X[0]"<<96, extract one dword
&paddd (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&psrld (@X[2],31);
eval(shift(@insns));
eval(shift(@insns));
&movdqa (@X[3],@X[4]);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@X[4],30);
&por (@X[0],@X[2]); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
&movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
eval(shift(@insns));
eval(shift(@insns));
&pslld (@X[3],2);
&pxor (@X[0],@X[4]);
eval(shift(@insns));
eval(shift(@insns));
&movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
&movdqa (@X[1],@X[-2&7]) if ($Xi<7);
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_ssse3_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
my ($a,$b,$c,$d,$e);
&movdqa (@X[2],@X[-1&7]) if ($Xi==8);
eval(shift(@insns)); # body_20_39
&pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
&palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
&movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
eval(shift(@insns));
eval(shift(@insns));
if ($Xi%5) {
&movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
} else { # ... or load next one
&movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
}
&paddd (@X[3],@X[-1&7]);
eval(shift(@insns)); # ror
eval(shift(@insns));
&pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&movdqa (@X[2],@X[0]);
&movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&pslld (@X[0],2);
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
&psrld (@X[2],30);
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&por (@X[0],@X[2]); # "X[0]"<<<=2
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
&movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
&movdqa (@X[3],@X[0]) if ($Xi<19);
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xuplast_ssse3_80()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
&paddd (@X[3],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
foreach (@insns) { eval; } # remaining instructions
&mov ($inp=@T[1],&DWP(192+4,"esp"));
&cmp ($inp,&DWP(192+8,"esp"));
&je (&label("done"));
&movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
&movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
&movdqu (@X[-4&7],&QWP(0,$inp)); # load input
&movdqu (@X[-3&7],&QWP(16,$inp));
&movdqu (@X[-2&7],&QWP(32,$inp));
&movdqu (@X[-1&7],&QWP(48,$inp));
&add ($inp,64);
&pshufb (@X[-4&7],@X[2]); # byte swap
&mov (&DWP(192+4,"esp"),$inp);
&movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
$Xi=0;
}
sub Xloop_ssse3()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&pshufb (@X[($Xi-3)&7],@X[2]);
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[($Xi-4)&7],@X[3]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&psubd (@X[($Xi-4)&7],@X[3]);
foreach (@insns) { eval; }
$Xi++;
}
sub Xtail_ssse3()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
sub body_00_19 () { # ((c^d)&b)^d
# on start @T[0]=(c^d)&b
return &body_20_39() if ($rx==19); $rx++;
(
'($a,$b,$c,$d,$e)=@V;'.
'&$_ror ($b,$j?7:2);', # $b>>>2
'&xor (@T[0],$d);',
'&mov (@T[1],$a);', # $b in next round
'&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
'&xor ($b,$c);', # $c^$d for next round
'&$_rol ($a,5);',
'&add ($e,@T[0]);',
'&and (@T[1],$b);', # ($b&($c^$d)) for next round
'&xor ($b,$c);', # restore $b
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
}
sub body_20_39 () { # b^d^c
# on entry @T[0]=b^d
return &body_40_59() if ($rx==39); $rx++;
(
'($a,$b,$c,$d,$e)=@V;'.
'&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
'&xor (@T[0],$d) if($j==19);'.
'&xor (@T[0],$c) if($j> 19);', # ($b^$d^$c)
'&mov (@T[1],$a);', # $b in next round
'&$_rol ($a,5);',
'&add ($e,@T[0]);',
'&xor (@T[1],$c) if ($j< 79);', # $b^$d for next round
'&$_ror ($b,7);', # $b>>>2
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
}
sub body_40_59 () { # ((b^c)&(c^d))^c
# on entry @T[0]=(b^c), (c^=d)
$rx++;
(
'($a,$b,$c,$d,$e)=@V;'.
'&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
'&and (@T[0],$c) if ($j>=40);', # (b^c)&(c^d)
'&xor ($c,$d) if ($j>=40);', # restore $c
'&$_ror ($b,7);', # $b>>>2
'&mov (@T[1],$a);', # $b for next round
'&xor (@T[0],$c);',
'&$_rol ($a,5);',
'&add ($e,@T[0]);',
'&xor (@T[1],$c) if ($j==59);'.
'&xor (@T[1],$b) if ($j< 59);', # b^c for next round
'&xor ($b,$c) if ($j< 59);', # c^d for next round
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
}
&set_label("loop",16);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_32_79(\&body_00_19);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
$saved_j=$j; @saved_V=@V;
&Xloop_ssse3(\&body_20_39);
&Xloop_ssse3(\&body_20_39);
&Xloop_ssse3(\&body_20_39);
&mov (@T[1],&DWP(192,"esp")); # update context
&add ($A,&DWP(0,@T[1]));
&add (@T[0],&DWP(4,@T[1])); # $b
&add ($C,&DWP(8,@T[1]));
&mov (&DWP(0,@T[1]),$A);
&add ($D,&DWP(12,@T[1]));
&mov (&DWP(4,@T[1]),@T[0]);
&add ($E,&DWP(16,@T[1]));
&mov (&DWP(8,@T[1]),$C);
&mov ($B,$C);
&mov (&DWP(12,@T[1]),$D);
&xor ($B,$D);
&mov (&DWP(16,@T[1]),$E);
&and ($B,@T[0]);
&movdqa (@X[0],@X[-3&7]);
&xchg ($B,@T[0]);
&jmp (&label("loop"));
&set_label("done",16); $j=$saved_j; @V=@saved_V;
&Xtail_ssse3(\&body_20_39);
&Xtail_ssse3(\&body_20_39);
&Xtail_ssse3(\&body_20_39);
&mov (@T[1],&DWP(192,"esp")); # update context
&add ($A,&DWP(0,@T[1]));
&mov ("esp",&DWP(192+12,"esp")); # restore %esp
&add (@T[0],&DWP(4,@T[1])); # $b
&add ($C,&DWP(8,@T[1]));
&mov (&DWP(0,@T[1]),$A);
&add ($D,&DWP(12,@T[1]));
&mov (&DWP(4,@T[1]),@T[0]);
&add ($E,&DWP(16,@T[1]));
&mov (&DWP(8,@T[1]),$C);
&mov (&DWP(12,@T[1]),$D);
&mov (&DWP(16,@T[1]),$E);
&function_end("_sha1_block_data_order_ssse3");
$rx=0; # reset
if ($ymm) {
my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
my @V=($A,$B,$C,$D,$E);
my $j=0; # hash round
my @T=($T,$tmp1);
my $inp;
my $_rol=sub { &shld(@_[0],@_) };
my $_ror=sub { &shrd(@_[0],@_) };
&function_begin("_sha1_block_data_order_avx");
&call (&label("pic_point")); # make it PIC!
&set_label("pic_point");
&blindpop($tmp1);
&lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
&set_label("avx_shortcut");
&vzeroall();
&vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
&vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
&vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
&vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
&vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
&mov ($E,&wparam(0)); # load argument block
&mov ($inp=@T[1],&wparam(1));
&mov ($D,&wparam(2));
&mov (@T[0],"esp");
# stack frame layout
#
# +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
# X[4]+K X[5]+K X[6]+K X[7]+K
# X[8]+K X[9]+K X[10]+K X[11]+K
# X[12]+K X[13]+K X[14]+K X[15]+K
#
# +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
# X[4] X[5] X[6] X[7]
# X[8] X[9] X[10] X[11] # even borrowed for K_00_19
#
# +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
# K_40_59 K_40_59 K_40_59 K_40_59
# K_60_79 K_60_79 K_60_79 K_60_79
# K_00_19 K_00_19 K_00_19 K_00_19
# pbswap mask
#
# +192 ctx # argument block
# +196 inp
# +200 end
# +204 esp
&sub ("esp",208);
&and ("esp",-64);
&vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
&vmovdqa(&QWP(112+16,"esp"),@X[5]);
&vmovdqa(&QWP(112+32,"esp"),@X[6]);
&shl ($D,6); # len*64
&vmovdqa(&QWP(112+48,"esp"),@X[3]);
&add ($D,$inp); # end of input
&vmovdqa(&QWP(112+64,"esp"),@X[2]);
&add ($inp,64);
&mov (&DWP(192+0,"esp"),$E); # save argument block
&mov (&DWP(192+4,"esp"),$inp);
&mov (&DWP(192+8,"esp"),$D);
&mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
&mov ($A,&DWP(0,$E)); # load context
&mov ($B,&DWP(4,$E));
&mov ($C,&DWP(8,$E));
&mov ($D,&DWP(12,$E));
&mov ($E,&DWP(16,$E));
&mov (@T[0],$B); # magic seed
&vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
&vmovdqu(@X[-3&7],&QWP(-48,$inp));
&vmovdqu(@X[-2&7],&QWP(-32,$inp));
&vmovdqu(@X[-1&7],&QWP(-16,$inp));
&vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
&vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
&vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
&vpaddd (@X[1],@X[-3&7],@X[3]);
&vpaddd (@X[2],@X[-2&7],@X[3]);
&vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
&mov (@T[1],$C);
&vmovdqa(&QWP(0+16,"esp"),@X[1]);
&xor (@T[1],$D);
&vmovdqa(&QWP(0+32,"esp"),@X[2]);
&and (@T[0],@T[1]);
&jmp (&label("loop"));
sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[3],@X[3],@X[-1&7]);
&vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
eval(shift(@insns));
eval(shift(@insns));
&vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@X[2],@X[0],31);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
&vpaddd (@X[0],@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@X[3],@X[4],30);
&vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslld (@X[4],@X[4],2);
&vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[3]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_avx_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
my ($a,$b,$c,$d,$e);
&vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
&vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
eval(shift(@insns));
eval(shift(@insns));
if ($Xi%5) {
&vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
} else { # ... or load next one
&vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
}
&vpaddd (@X[3],@X[3],@X[-1&7]);
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&vpsrld (@X[2],@X[0],30);
&vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpslld (@X[0],@X[0],2);
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
&vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xuplast_avx_80()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
&vpaddd (@X[3],@X[3],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
foreach (@insns) { eval; } # remaining instructions
&mov ($inp=@T[1],&DWP(192+4,"esp"));
&cmp ($inp,&DWP(192+8,"esp"));
&je (&label("done"));
&vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
&vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
&vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
&vmovdqu(@X[-3&7],&QWP(16,$inp));
&vmovdqu(@X[-2&7],&QWP(32,$inp));
&vmovdqu(@X[-1&7],&QWP(48,$inp));
&add ($inp,64);
&vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
&mov (&DWP(192+4,"esp"),$inp);
&vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
$Xi=0;
}
sub Xloop_avx()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; }
$Xi++;
}
sub Xtail_avx()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
&set_label("loop",16);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_32_79(\&body_00_19);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_20_39);
&Xuplast_avx_80(\&body_20_39); # can jump to "done"
$saved_j=$j; @saved_V=@V;
&Xloop_avx(\&body_20_39);
&Xloop_avx(\&body_20_39);
&Xloop_avx(\&body_20_39);
&mov (@T[1],&DWP(192,"esp")); # update context
&add ($A,&DWP(0,@T[1]));
&add (@T[0],&DWP(4,@T[1])); # $b
&add ($C,&DWP(8,@T[1]));
&mov (&DWP(0,@T[1]),$A);
&add ($D,&DWP(12,@T[1]));
&mov (&DWP(4,@T[1]),@T[0]);
&add ($E,&DWP(16,@T[1]));
&mov ($B,$C);
&mov (&DWP(8,@T[1]),$C);
&xor ($B,$D);
&mov (&DWP(12,@T[1]),$D);
&and ($B,@T[0]);
&mov (&DWP(16,@T[1]),$E);
&xchg ($B,@T[0]);
&jmp (&label("loop"));
&set_label("done",16); $j=$saved_j; @V=@saved_V;
&Xtail_avx(\&body_20_39);
&Xtail_avx(\&body_20_39);
&Xtail_avx(\&body_20_39);
&vzeroall();
&mov (@T[1],&DWP(192,"esp")); # update context
&add ($A,&DWP(0,@T[1]));
&mov ("esp",&DWP(192+12,"esp")); # restore %esp
&add (@T[0],&DWP(4,@T[1])); # $b
&add ($C,&DWP(8,@T[1]));
&mov (&DWP(0,@T[1]),$A);
&add ($D,&DWP(12,@T[1]));
&mov (&DWP(4,@T[1]),@T[0]);
&add ($E,&DWP(16,@T[1]));
&mov (&DWP(8,@T[1]),$C);
&mov (&DWP(12,@T[1]),$D);
&mov (&DWP(16,@T[1]),$E);
&function_end("_sha1_block_data_order_avx");
}
&set_label("K_XX_XX",64);
&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
}
&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();