| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * ECC cipher suite support in OpenSSL originally developed by |
| * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. |
| */ |
| |
| #ifndef OPENSSL_HEADER_SSL_H |
| #define OPENSSL_HEADER_SSL_H |
| |
| #include <openssl/base.h> |
| |
| #include <openssl/bio.h> |
| #include <openssl/buf.h> |
| #include <openssl/hmac.h> |
| #include <openssl/lhash.h> |
| #include <openssl/pem.h> |
| #include <openssl/ssl3.h> |
| #include <openssl/thread.h> |
| #include <openssl/tls1.h> |
| #include <openssl/x509.h> |
| |
| #if !defined(OPENSSL_WINDOWS) |
| #include <sys/time.h> |
| #endif |
| |
| /* wpa_supplicant expects to get the version functions from ssl.h */ |
| #include <openssl/crypto.h> |
| |
| /* Forward-declare struct timeval. On Windows, it is defined in winsock2.h and |
| * Windows headers define too many macros to be included in public headers. |
| * However, only a forward declaration is needed. */ |
| struct timeval; |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /* SSL implementation. */ |
| |
| |
| /* SSL contexts. |
| * |
| * |SSL_CTX| objects manage shared state and configuration between multiple TLS |
| * or DTLS connections. Whether the connections are TLS or DTLS is selected by |
| * an |SSL_METHOD| on creation. |
| * |
| * |SSL_CTX| are reference-counted and may be shared by connections across |
| * multiple threads. Once shared, functions which change the |SSL_CTX|'s |
| * configuration may not be used. */ |
| |
| /* TLS_method is the |SSL_METHOD| used for TLS (and SSLv3) connections. */ |
| OPENSSL_EXPORT const SSL_METHOD *TLS_method(void); |
| |
| /* DTLS_method is the |SSL_METHOD| used for DTLS connections. */ |
| OPENSSL_EXPORT const SSL_METHOD *DTLS_method(void); |
| |
| /* SSL_CTX_new returns a newly-allocated |SSL_CTX| with default settings or NULL |
| * on error. */ |
| OPENSSL_EXPORT SSL_CTX *SSL_CTX_new(const SSL_METHOD *method); |
| |
| /* SSL_CTX_free releases memory associated with |ctx|. */ |
| OPENSSL_EXPORT void SSL_CTX_free(SSL_CTX *ctx); |
| |
| |
| /* SSL connections. |
| * |
| * An |SSL| object represents a single TLS or DTLS connection. Although the |
| * shared |SSL_CTX| is thread-safe, an |SSL| is not thread-safe and may only be |
| * used on one thread at a time. */ |
| |
| /* SSL_new returns a newly-allocated |SSL| using |ctx| or NULL on error. The new |
| * connection inherits settings from |ctx| at the time of creation. Settings may |
| * also be individually configured on the connection. |
| * |
| * On creation, an |SSL| is not configured to be either a client or server. Call |
| * |SSL_set_connect_state| or |SSL_set_accept_state| to set this. */ |
| OPENSSL_EXPORT SSL *SSL_new(SSL_CTX *ctx); |
| |
| /* SSL_free releases memory associated with |ssl|. */ |
| OPENSSL_EXPORT void SSL_free(SSL *ssl); |
| |
| /* SSL_get_SSL_CTX returns the |SSL_CTX| associated with |ssl|. If |
| * |SSL_set_SSL_CTX| is called, it returns the new |SSL_CTX|, not the initial |
| * one. */ |
| OPENSSL_EXPORT SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl); |
| |
| /* SSL_set_connect_state configures |ssl| to be a client. */ |
| OPENSSL_EXPORT void SSL_set_connect_state(SSL *ssl); |
| |
| /* SSL_set_accept_state configures |ssl| to be a server. */ |
| OPENSSL_EXPORT void SSL_set_accept_state(SSL *ssl); |
| |
| /* SSL_is_server returns one if |ssl| is configured as a server and zero |
| * otherwise. */ |
| OPENSSL_EXPORT int SSL_is_server(SSL *ssl); |
| |
| /* SSL_set_bio configures |ssl| to read from |rbio| and write to |wbio|. |ssl| |
| * takes ownership of the two |BIO|s. If |rbio| and |wbio| are the same, |ssl| |
| * only takes ownership of one reference. |
| * |
| * In DTLS, if |rbio| is blocking, it must handle |
| * |BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT| control requests to set read timeouts. |
| * |
| * Calling this function on an already-configured |ssl| is deprecated. */ |
| OPENSSL_EXPORT void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio); |
| |
| /* SSL_get_rbio returns the |BIO| that |ssl| reads from. */ |
| OPENSSL_EXPORT BIO *SSL_get_rbio(const SSL *ssl); |
| |
| /* SSL_get_wbio returns the |BIO| that |ssl| writes to. */ |
| OPENSSL_EXPORT BIO *SSL_get_wbio(const SSL *ssl); |
| |
| /* SSL_get_fd calls |SSL_get_rfd|. */ |
| OPENSSL_EXPORT int SSL_get_fd(const SSL *ssl); |
| |
| /* SSL_get_rfd returns the file descriptor that |ssl| is configured to read |
| * from. If |ssl|'s read |BIO| is not configured or doesn't wrap a file |
| * descriptor then it returns -1. */ |
| OPENSSL_EXPORT int SSL_get_rfd(const SSL *ssl); |
| |
| /* SSL_get_wfd returns the file descriptor that |ssl| is configured to write |
| * to. If |ssl|'s write |BIO| is not configured or doesn't wrap a file |
| * descriptor then it returns -1. */ |
| OPENSSL_EXPORT int SSL_get_wfd(const SSL *ssl); |
| |
| /* SSL_set_wfd configures |ssl| to read from and write to |fd|. It returns one |
| * on success and zero on allocation error. The caller retains ownership of |
| * |fd|. */ |
| OPENSSL_EXPORT int SSL_set_fd(SSL *ssl, int fd); |
| |
| /* SSL_set_rfd configures |ssl| to read from |fd|. It returns one on success and |
| * zero on allocation error. The caller retains ownership of |fd|. */ |
| OPENSSL_EXPORT int SSL_set_rfd(SSL *ssl, int fd); |
| |
| /* SSL_set_wfd configures |ssl| to write to |fd|. It returns one on success and |
| * zero on allocation error. The caller retains ownership of |fd|. */ |
| OPENSSL_EXPORT int SSL_set_wfd(SSL *ssl, int fd); |
| |
| /* SSL_do_handshake continues the current handshake. If there is none or the |
| * handshake has completed or False Started, it returns one. Otherwise, it |
| * returns <= 0. The caller should pass the value into |SSL_get_error| to |
| * determine how to proceed. |
| * |
| * In DTLS, if the read |BIO| is non-blocking, the caller must drive |
| * retransmissions. Whenever |SSL_get_error| signals |SSL_ERROR_WANT_READ|, use |
| * |DTLSv1_get_timeout| to determine the current timeout. If it expires before |
| * the next retry, call |DTLSv1_handle_timeout|. Note that DTLS handshake |
| * retransmissions use fresh sequence numbers, so it is not sufficient to replay |
| * packets at the transport. |
| * |
| * TODO(davidben): Ensure 0 is only returned on transport EOF. |
| * https://crbug.com/466303. */ |
| OPENSSL_EXPORT int SSL_do_handshake(SSL *ssl); |
| |
| /* SSL_connect configures |ssl| as a client, if unconfigured, and calls |
| * |SSL_do_handshake|. */ |
| OPENSSL_EXPORT int SSL_connect(SSL *ssl); |
| |
| /* SSL_accept configures |ssl| as a server, if unconfigured, and calls |
| * |SSL_do_handshake|. */ |
| OPENSSL_EXPORT int SSL_accept(SSL *ssl); |
| |
| /* SSL_read reads up to |num| bytes from |ssl| into |buf|. It implicitly runs |
| * any pending handshakes, including renegotiations when enabled. On success, it |
| * returns the number of bytes read. Otherwise, it returns <= 0. The caller |
| * should pass the value into |SSL_get_error| to determine how to proceed. |
| * |
| * TODO(davidben): Ensure 0 is only returned on transport EOF. |
| * https://crbug.com/466303. */ |
| OPENSSL_EXPORT int SSL_read(SSL *ssl, void *buf, int num); |
| |
| /* SSL_peek behaves like |SSL_read| but does not consume any bytes returned. */ |
| OPENSSL_EXPORT int SSL_peek(SSL *ssl, void *buf, int num); |
| |
| /* SSL_pending returns the number of bytes available in |ssl|. It does not read |
| * from the transport. */ |
| OPENSSL_EXPORT int SSL_pending(const SSL *ssl); |
| |
| /* SSL_write writes up to |num| bytes from |buf| into |ssl|. It implicitly runs |
| * any pending handshakes, including renegotiations when enabled. On success, it |
| * returns the number of bytes read. Otherwise, it returns <= 0. The caller |
| * should pass the value into |SSL_get_error| to determine how to proceed. |
| * |
| * In TLS, a non-blocking |SSL_write| differs from non-blocking |write| in that |
| * a failed |SSL_write| still commits to the data passed in. When retrying, the |
| * caller must supply the original write buffer (or a larger one containing the |
| * original as a prefix). By default, retries will fail if they also do not |
| * reuse the same |buf| pointer. This may be relaxed with |
| * |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, but the buffer contents still must be |
| * unchanged. |
| * |
| * By default, in TLS, |SSL_write| will not return success until all |num| bytes |
| * are written. This may be relaxed with |SSL_MODE_ENABLE_PARTIAL_WRITE|. It |
| * allows |SSL_write| to complete with a partial result when only part of the |
| * input was written in a single record. |
| * |
| * In DTLS, neither |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| and |
| * |SSL_MODE_ENABLE_PARTIAL_WRITE| do anything. The caller may retry with a |
| * different buffer freely. A single call to |SSL_write| only ever writes a |
| * single record in a single packet, so |num| must be at most |
| * |SSL3_RT_MAX_PLAIN_LENGTH|. |
| * |
| * TODO(davidben): Ensure 0 is only returned on transport EOF. |
| * https://crbug.com/466303. */ |
| OPENSSL_EXPORT int SSL_write(SSL *ssl, const void *buf, int num); |
| |
| /* SSL_shutdown shuts down |ssl|. On success, it completes in two stages. First, |
| * it returns 0 if |ssl| completed uni-directional shutdown; close_notify has |
| * been sent, but the peer's close_notify has not been received. Most callers |
| * may stop at this point. For bi-directional shutdown, call |SSL_shutdown| |
| * again. It returns 1 if close_notify has been both sent and received. |
| * |
| * If the peer's close_notify arrived first, the first stage is skipped. |
| * |SSL_shutdown| will return 1 once close_notify is sent and skip 0. Callers |
| * only interested in uni-directional shutdown must therefore allow for the |
| * first stage returning either 0 or 1. |
| * |
| * |SSL_shutdown| returns -1 on failure. The caller should pass the return value |
| * into |SSL_get_error| to determine how to proceed. If the underlying |BIO| is |
| * non-blocking, both stages may require retry. |
| * |
| * |SSL_shutdown| must be called to retain |ssl|'s session in the session |
| * cache. Use |SSL_CTX_set_quiet_shutdown| to configure |SSL_shutdown| to |
| * neither send nor wait for close_notify but still retain the session. |
| * |
| * TODO(davidben): Is there any point in the session cache interaction? Remove |
| * it? */ |
| OPENSSL_EXPORT int SSL_shutdown(SSL *ssl); |
| |
| /* SSL_CTX_set_quiet_shutdown sets quiet shutdown on |ctx| to |mode|. If |
| * enabled, |SSL_shutdown| will not send a close_notify alert or wait for one |
| * from the peer. It will instead synchronously return one. */ |
| OPENSSL_EXPORT void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode); |
| |
| /* SSL_CTX_get_quiet_shutdown returns whether quiet shutdown is enabled for |
| * |ctx|. */ |
| OPENSSL_EXPORT int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx); |
| |
| /* SSL_set_quiet_shutdown sets quiet shutdown on |ssl| to |mode|. If enabled, |
| * |SSL_shutdown| will not send a close_notify alert or wait for one from the |
| * peer. It will instead synchronously return one. */ |
| OPENSSL_EXPORT void SSL_set_quiet_shutdown(SSL *ssl, int mode); |
| |
| /* SSL_get_quiet_shutdown returns whether quiet shutdown is enabled for |
| * |ssl|. */ |
| OPENSSL_EXPORT int SSL_get_quiet_shutdown(const SSL *ssl); |
| |
| /* SSL_get_error returns a |SSL_ERROR_*| value for the most recent operation on |
| * |ssl|. It should be called after an operation failed to determine whether the |
| * error was fatal and, if not, when to retry. */ |
| OPENSSL_EXPORT int SSL_get_error(const SSL *ssl, int ret_code); |
| |
| /* SSL_ERROR_NONE indicates the operation succeeded. */ |
| #define SSL_ERROR_NONE 0 |
| |
| /* SSL_ERROR_SSL indicates the operation failed within the library. The caller |
| * may inspect the error queue for more information. */ |
| #define SSL_ERROR_SSL 1 |
| |
| /* SSL_ERROR_WANT_READ indicates the operation failed attempting to read from |
| * the transport. The caller may retry the operation when the transport is ready |
| * for reading. |
| * |
| * If signaled by a DTLS handshake, the caller must also call |
| * |DTLSv1_get_timeout| and |DTLSv1_handle_timeout| as appropriate. See |
| * |SSL_do_handshake|. */ |
| #define SSL_ERROR_WANT_READ 2 |
| |
| /* SSL_ERROR_WANT_WRITE indicates the operation failed attempting to write to |
| * the transport. The caller may retry the operation when the transport is ready |
| * for writing. */ |
| #define SSL_ERROR_WANT_WRITE 3 |
| |
| /* SSL_ERROR_WANT_X509_LOOKUP indicates the operation failed in calling the |
| * |cert_cb| or |client_cert_cb|. The caller may retry the operation when the |
| * callback is ready to return a certificate or one has been configured |
| * externally. |
| * |
| * See also |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb|. */ |
| #define SSL_ERROR_WANT_X509_LOOKUP 4 |
| |
| /* SSL_ERROR_WANT_SYSCALL indicates the operation failed externally to the |
| * library. The caller should consult the system-specific error mechanism. This |
| * is typically |errno| but may be something custom if using a custom |BIO|. It |
| * may also be signaled if the transport returned EOF, in which case the |
| * operation's return value will be zero. */ |
| #define SSL_ERROR_SYSCALL 5 |
| |
| /* SSL_ERROR_ZERO_RETURN indicates the operation failed because the connection |
| * was cleanly shut down with a close_notify alert. */ |
| #define SSL_ERROR_ZERO_RETURN 6 |
| |
| /* SSL_ERROR_WANT_CONNECT indicates the operation failed attempting to connect |
| * the transport (the |BIO| signaled |BIO_RR_CONNECT|). The caller may retry the |
| * operation when the transport is ready. */ |
| #define SSL_ERROR_WANT_CONNECT 7 |
| |
| /* SSL_ERROR_WANT_ACCEPT indicates the operation failed attempting to accept a |
| * connection from the transport (the |BIO| signaled |BIO_RR_ACCEPT|). The |
| * caller may retry the operation when the transport is ready. |
| * |
| * TODO(davidben): Remove this. It's used by accept BIOs which are bizarre. */ |
| #define SSL_ERROR_WANT_ACCEPT 8 |
| |
| /* SSL_ERROR_WANT_CHANNEL_ID_LOOKUP indicates the operation failed looking up |
| * the Channel ID key. The caller may retry the operation when |channel_id_cb| |
| * is ready to return a key or one has been configured with |
| * |SSL_set1_tls_channel_id|. |
| * |
| * See also |SSL_CTX_set_channel_id_cb|. */ |
| #define SSL_ERROR_WANT_CHANNEL_ID_LOOKUP 9 |
| |
| /* SSL_ERROR_PENDING_SESSION indicates the operation failed because the session |
| * lookup callback indicated the session was unavailable. The caller may retry |
| * the operation when lookup has completed. |
| * |
| * See also |SSL_CTX_sess_set_get_cb| and |SSL_magic_pending_session_ptr|. */ |
| #define SSL_ERROR_PENDING_SESSION 11 |
| |
| /* SSL_ERROR_PENDING_CERTIFICATE indicates the operation failed because the |
| * early callback indicated certificate lookup was incomplete. The caller may |
| * retry the operation when lookup has completed. Note: when the operation is |
| * retried, the early callback will not be called a second time. |
| * |
| * See also |SSL_CTX_set_select_certificate_cb|. */ |
| #define SSL_ERROR_PENDING_CERTIFICATE 12 |
| |
| /* SSL_ERROR_WANT_PRIVATE_KEY_OPERATION indicates the operation failed because |
| * a private key operation was unfinished. The caller may retry the operation |
| * when the private key operation is complete. |
| * |
| * See also |SSL_set_private_key_method|. */ |
| #define SSL_ERROR_WANT_PRIVATE_KEY_OPERATION 13 |
| |
| /* SSL_set_mtu sets the |ssl|'s MTU in DTLS to |mtu|. It returns one on success |
| * and zero on failure. */ |
| OPENSSL_EXPORT int SSL_set_mtu(SSL *ssl, unsigned mtu); |
| |
| /* DTLSv1_get_timeout queries the next DTLS handshake timeout. If there is a |
| * timeout in progress, it sets |*out| to the time remaining and returns one. |
| * Otherwise, it returns zero. |
| * |
| * When the timeout expires, call |DTLSv1_handle_timeout| to handle the |
| * retransmit behavior. |
| * |
| * NOTE: This function must be queried again whenever the handshake state |
| * machine changes, including when |DTLSv1_handle_timeout| is called. */ |
| OPENSSL_EXPORT int DTLSv1_get_timeout(const SSL *ssl, struct timeval *out); |
| |
| /* DTLSv1_handle_timeout is called when a DTLS handshake timeout expires. If no |
| * timeout had expired, it returns 0. Otherwise, it retransmits the previous |
| * flight of handshake messages and returns 1. If too many timeouts had expired |
| * without progress or an error occurs, it returns -1. |
| * |
| * The caller's external timer should be compatible with the one |ssl| queries |
| * within some fudge factor. Otherwise, the call will be a no-op, but |
| * |DTLSv1_get_timeout| will return an updated timeout. |
| * |
| * If the function returns -1, checking if |SSL_get_error| returns |
| * |SSL_ERROR_WANT_WRITE| may be used to determine if the retransmit failed due |
| * to a non-fatal error at the write |BIO|. However, the operation may not be |
| * retried until the next timeout fires. |
| * |
| * WARNING: This function breaks the usual return value convention. |
| * |
| * TODO(davidben): This |SSL_ERROR_WANT_WRITE| behavior is kind of bizarre. */ |
| OPENSSL_EXPORT int DTLSv1_handle_timeout(SSL *ssl); |
| |
| |
| /* Protocol versions. */ |
| |
| #define DTLS1_VERSION_MAJOR 0xfe |
| #define SSL3_VERSION_MAJOR 0x03 |
| |
| #define SSL3_VERSION 0x0300 |
| #define TLS1_VERSION 0x0301 |
| #define TLS1_1_VERSION 0x0302 |
| #define TLS1_2_VERSION 0x0303 |
| |
| #define DTLS1_VERSION 0xfeff |
| #define DTLS1_2_VERSION 0xfefd |
| |
| /* SSL_CTX_set_min_version sets the minimum protocol version for |ctx| to |
| * |version|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_min_version(SSL_CTX *ctx, uint16_t version); |
| |
| /* SSL_CTX_set_max_version sets the maximum protocol version for |ctx| to |
| * |version|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_max_version(SSL_CTX *ctx, uint16_t version); |
| |
| /* SSL_set_min_version sets the minimum protocol version for |ssl| to |
| * |version|. */ |
| OPENSSL_EXPORT void SSL_set_min_version(SSL *ssl, uint16_t version); |
| |
| /* SSL_set_max_version sets the maximum protocol version for |ssl| to |
| * |version|. */ |
| OPENSSL_EXPORT void SSL_set_max_version(SSL *ssl, uint16_t version); |
| |
| /* SSL_version returns the TLS or DTLS protocol version used by |ssl|, which is |
| * one of the |*_VERSION| values. (E.g. |TLS1_2_VERSION|.) Before the version |
| * is negotiated, the result is undefined. */ |
| OPENSSL_EXPORT int SSL_version(const SSL *ssl); |
| |
| |
| /* Options. |
| * |
| * Options configure protocol behavior. */ |
| |
| /* SSL_OP_LEGACY_SERVER_CONNECT allows initial connections to servers that don't |
| * support the renegotiation_info extension (RFC 5746). It is on by default. */ |
| #define SSL_OP_LEGACY_SERVER_CONNECT 0x00000004L |
| |
| /* SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER allows for record sizes |SSL3_RT_MAX_EXTRA| |
| * bytes above the maximum record size. */ |
| #define SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER 0x00000020L |
| |
| /* SSL_OP_TLS_D5_BUG accepts an RSAClientKeyExchange in TLS encoded as in SSL3 |
| * (i.e. without a length prefix). */ |
| #define SSL_OP_TLS_D5_BUG 0x00000100L |
| |
| /* SSL_OP_ALL enables the above bug workarounds that are enabled by many |
| * consumers. |
| * TODO(davidben): Determine which of the remaining may be removed now. */ |
| #define SSL_OP_ALL 0x00000BFFL |
| |
| /* SSL_OP_NO_QUERY_MTU, in DTLS, disables querying the MTU from the underlying |
| * |BIO|. Instead, the MTU is configured with |SSL_set_mtu|. */ |
| #define SSL_OP_NO_QUERY_MTU 0x00001000L |
| |
| /* SSL_OP_NO_TICKET disables session ticket support (RFC 5077). */ |
| #define SSL_OP_NO_TICKET 0x00004000L |
| |
| /* SSL_OP_CIPHER_SERVER_PREFERENCE configures servers to select ciphers and |
| * ECDHE curves according to the server's preferences instead of the |
| * client's. */ |
| #define SSL_OP_CIPHER_SERVER_PREFERENCE 0x00400000L |
| |
| /* SSL_OP_DISABLE_NPN configures an individual |SSL| to not advertise NPN, |
| * despite |SSL_CTX_set_next_proto_select_cb| being configured on the |
| * |SSL_CTX|. */ |
| #define SSL_OP_DISABLE_NPN 0x00800000L |
| |
| /* SSL_CTX_set_options enables all options set in |options| (which should be one |
| * or more of the |SSL_OP_*| values, ORed together) in |ctx|. It returns a |
| * bitmask representing the resulting enabled options. */ |
| OPENSSL_EXPORT uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options); |
| |
| /* SSL_CTX_clear_options disables all options set in |options| (which should be |
| * one or more of the |SSL_OP_*| values, ORed together) in |ctx|. It returns a |
| * bitmask representing the resulting enabled options. */ |
| OPENSSL_EXPORT uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options); |
| |
| /* SSL_CTX_get_options returns a bitmask of |SSL_OP_*| values that represent all |
| * the options enabled for |ctx|. */ |
| OPENSSL_EXPORT uint32_t SSL_CTX_get_options(const SSL_CTX *ctx); |
| |
| /* SSL_set_options enables all options set in |options| (which should be one or |
| * more of the |SSL_OP_*| values, ORed together) in |ssl|. It returns a bitmask |
| * representing the resulting enabled options. */ |
| OPENSSL_EXPORT uint32_t SSL_set_options(SSL *ssl, uint32_t options); |
| |
| /* SSL_clear_options disables all options set in |options| (which should be one |
| * or more of the |SSL_OP_*| values, ORed together) in |ssl|. It returns a |
| * bitmask representing the resulting enabled options. */ |
| OPENSSL_EXPORT uint32_t SSL_clear_options(SSL *ssl, uint32_t options); |
| |
| /* SSL_get_options returns a bitmask of |SSL_OP_*| values that represent all the |
| * options enabled for |ssl|. */ |
| OPENSSL_EXPORT uint32_t SSL_get_options(const SSL *ssl); |
| |
| |
| /* Modes. |
| * |
| * Modes configure API behavior. */ |
| |
| /* SSL_MODE_ENABLE_PARTIAL_WRITE, in TLS, allows |SSL_write| to complete with a |
| * partial result when the only part of the input was written in a single |
| * record. In DTLS, it does nothing. */ |
| #define SSL_MODE_ENABLE_PARTIAL_WRITE 0x00000001L |
| |
| /* SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER, in TLS, allows retrying an incomplete |
| * |SSL_write| with a different buffer. However, |SSL_write| still assumes the |
| * buffer contents are unchanged. This is not the default to avoid the |
| * misconception that non-blocking |SSL_write| behaves like non-blocking |
| * |write|. In DTLS, it does nothing. */ |
| #define SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER 0x00000002L |
| |
| /* SSL_MODE_NO_AUTO_CHAIN disables automatically building a certificate chain |
| * before sending certificates to the peer. |
| * TODO(davidben): Remove this behavior. https://crbug.com/486295. */ |
| #define SSL_MODE_NO_AUTO_CHAIN 0x00000008L |
| |
| /* SSL_MODE_ENABLE_FALSE_START allows clients to send application data before |
| * receipt of ChangeCipherSpec and Finished. This mode enables full-handshakes |
| * to 'complete' in one RTT. See draft-bmoeller-tls-falsestart-01. |
| * |
| * When False Start is enabled, |SSL_do_handshake| may succeed before the |
| * handshake has completely finished. |SSL_write| will function at this point, |
| * and |SSL_read| will transparently wait for the final handshake leg before |
| * returning application data. To determine if False Start occurred or when the |
| * handshake is completely finished, see |SSL_in_false_start|, |SSL_in_init|, |
| * and |SSL_CB_HANDSHAKE_DONE| from |SSL_CTX_set_info_callback|. */ |
| #define SSL_MODE_ENABLE_FALSE_START 0x00000080L |
| |
| /* SSL_MODE_CBC_RECORD_SPLITTING causes multi-byte CBC records in SSL 3.0 and |
| * TLS 1.0 to be split in two: the first record will contain a single byte and |
| * the second will contain the remainder. This effectively randomises the IV and |
| * prevents BEAST attacks. */ |
| #define SSL_MODE_CBC_RECORD_SPLITTING 0x00000100L |
| |
| /* SSL_MODE_NO_SESSION_CREATION will cause any attempts to create a session to |
| * fail with SSL_R_SESSION_MAY_NOT_BE_CREATED. This can be used to enforce that |
| * session resumption is used for a given SSL*. */ |
| #define SSL_MODE_NO_SESSION_CREATION 0x00000200L |
| |
| /* SSL_MODE_SEND_FALLBACK_SCSV sends TLS_FALLBACK_SCSV in the ClientHello. |
| * To be set only by applications that reconnect with a downgraded protocol |
| * version; see RFC 7507 for details. |
| * |
| * DO NOT ENABLE THIS if your application attempts a normal handshake. Only use |
| * this in explicit fallback retries, following the guidance in RFC 7507. */ |
| #define SSL_MODE_SEND_FALLBACK_SCSV 0x00000400L |
| |
| /* SSL_CTX_set_mode enables all modes set in |mode| (which should be one or more |
| * of the |SSL_MODE_*| values, ORed together) in |ctx|. It returns a bitmask |
| * representing the resulting enabled modes. */ |
| OPENSSL_EXPORT uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode); |
| |
| /* SSL_CTX_clear_mode disables all modes set in |mode| (which should be one or |
| * more of the |SSL_MODE_*| values, ORed together) in |ctx|. It returns a |
| * bitmask representing the resulting enabled modes. */ |
| OPENSSL_EXPORT uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode); |
| |
| /* SSL_CTX_get_mode returns a bitmask of |SSL_MODE_*| values that represent all |
| * the modes enabled for |ssl|. */ |
| OPENSSL_EXPORT uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx); |
| |
| /* SSL_set_mode enables all modes set in |mode| (which should be one or more of |
| * the |SSL_MODE_*| values, ORed together) in |ssl|. It returns a bitmask |
| * representing the resulting enabled modes. */ |
| OPENSSL_EXPORT uint32_t SSL_set_mode(SSL *ssl, uint32_t mode); |
| |
| /* SSL_clear_mode disables all modes set in |mode| (which should be one or more |
| * of the |SSL_MODE_*| values, ORed together) in |ssl|. It returns a bitmask |
| * representing the resulting enabled modes. */ |
| OPENSSL_EXPORT uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode); |
| |
| /* SSL_get_mode returns a bitmask of |SSL_MODE_*| values that represent all the |
| * modes enabled for |ssl|. */ |
| OPENSSL_EXPORT uint32_t SSL_get_mode(const SSL *ssl); |
| |
| |
| /* Configuring certificates and private keys. |
| * |
| * These functions configure the connection's leaf certificate, private key, and |
| * certificate chain. The certificate chain is ordered leaf to root (as sent on |
| * the wire) but does not include the leaf. Both client and server certificates |
| * use these functions. |
| * |
| * Certificates and keys may be configured before the handshake or dynamically |
| * in the early callback and certificate callback. */ |
| |
| /* SSL_CTX_use_certificate sets |ctx|'s leaf certificate to |x509|. It returns |
| * one on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x509); |
| |
| /* SSL_use_certificate sets |ssl|'s leaf certificate to |x509|. It returns one |
| * on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_use_certificate(SSL *ssl, X509 *x509); |
| |
| /* SSL_CTX_use_PrivateKey sets |ctx|'s private key to |pkey|. It returns one on |
| * success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey); |
| |
| /* SSL_use_PrivateKey sets |ssl|'s private key to |pkey|. It returns one on |
| * success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey); |
| |
| /* SSL_CTX_set0_chain sets |ctx|'s certificate chain, excluding the leaf, to |
| * |chain|. On success, it returns one and takes ownership of |chain|. |
| * Otherwise, it returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_set0_chain(SSL_CTX *ctx, STACK_OF(X509) *chain); |
| |
| /* SSL_CTX_set1_chain sets |ctx|'s certificate chain, excluding the leaf, to |
| * |chain|. It returns one on success and zero on failure. The caller retains |
| * ownership of |chain| and may release it freely. */ |
| OPENSSL_EXPORT int SSL_CTX_set1_chain(SSL_CTX *ctx, STACK_OF(X509) *chain); |
| |
| /* SSL_set0_chain sets |ssl|'s certificate chain, excluding the leaf, to |
| * |chain|. On success, it returns one and takes ownership of |chain|. |
| * Otherwise, it returns zero. */ |
| OPENSSL_EXPORT int SSL_set0_chain(SSL *ssl, STACK_OF(X509) *chain); |
| |
| /* SSL_set1_chain sets |ssl|'s certificate chain, excluding the leaf, to |
| * |chain|. It returns one on success and zero on failure. The caller retains |
| * ownership of |chain| and may release it freely. */ |
| OPENSSL_EXPORT int SSL_set1_chain(SSL *ssl, STACK_OF(X509) *chain); |
| |
| /* SSL_CTX_add0_chain_cert appends |x509| to |ctx|'s certificate chain. On |
| * success, it returns one and takes ownership of |x509|. Otherwise, it returns |
| * zero. */ |
| OPENSSL_EXPORT int SSL_CTX_add0_chain_cert(SSL_CTX *ctx, X509 *x509); |
| |
| /* SSL_CTX_add1_chain_cert appends |x509| to |ctx|'s certificate chain. It |
| * returns one on success and zero on failure. The caller retains ownership of |
| * |x509| and may release it freely. */ |
| OPENSSL_EXPORT int SSL_CTX_add1_chain_cert(SSL_CTX *ctx, X509 *x509); |
| |
| /* SSL_add0_chain_cert appends |x509| to |ctx|'s certificate chain. On success, |
| * it returns one and takes ownership of |x509|. Otherwise, it returns zero. */ |
| OPENSSL_EXPORT int SSL_add0_chain_cert(SSL *ssl, X509 *x509); |
| |
| /* SSL_CTX_add_extra_chain_cert calls |SSL_CTX_add0_chain_cert|. */ |
| OPENSSL_EXPORT int SSL_CTX_add_extra_chain_cert(SSL_CTX *ctx, X509 *x509); |
| |
| /* SSL_add1_chain_cert appends |x509| to |ctx|'s certificate chain. It returns |
| * one on success and zero on failure. The caller retains ownership of |x509| |
| * and may release it freely. */ |
| OPENSSL_EXPORT int SSL_add1_chain_cert(SSL *ssl, X509 *x509); |
| |
| /* SSL_CTX_clear_chain_certs clears |ctx|'s certificate chain and returns |
| * one. */ |
| OPENSSL_EXPORT int SSL_CTX_clear_chain_certs(SSL_CTX *ctx); |
| |
| /* SSL_CTX_clear_extra_chain_certs calls |SSL_CTX_clear_chain_certs|. */ |
| OPENSSL_EXPORT int SSL_CTX_clear_extra_chain_certs(SSL_CTX *ctx); |
| |
| /* SSL_clear_chain_certs clears |ssl|'s certificate chain and returns one. */ |
| OPENSSL_EXPORT int SSL_clear_chain_certs(SSL *ssl); |
| |
| /* SSL_CTX_set_cert_cb sets a callback that is called to select a certificate. |
| * The callback returns one on success, zero on internal error, and a negative |
| * number on failure or to pause the handshake. If the handshake is paused, |
| * |SSL_get_error| will return |SSL_ERROR_WANT_X509_LOOKUP|. |
| * |
| * On the client, the callback may call |SSL_get0_certificate_types| and |
| * |SSL_get_client_CA_list| for information on the server's certificate |
| * request. */ |
| OPENSSL_EXPORT void SSL_CTX_set_cert_cb(SSL_CTX *ctx, |
| int (*cb)(SSL *ssl, void *arg), |
| void *arg); |
| |
| /* SSL_set_cert_cb sets a callback that is called to select a certificate. The |
| * callback returns one on success, zero on internal error, and a negative |
| * number on failure or to pause the handshake. If the handshake is paused, |
| * |SSL_get_error| will return |SSL_ERROR_WANT_X509_LOOKUP|. |
| * |
| * On the client, the callback may call |SSL_get0_certificate_types| and |
| * |SSL_get_client_CA_list| for information on the server's certificate |
| * request. */ |
| OPENSSL_EXPORT void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), |
| void *arg); |
| |
| /* SSL_get0_certificate_types, for a client, sets |*out_types| to an array |
| * containing the client certificate types requested by a server. It returns the |
| * length of the array. |
| * |
| * The behavior of this function is undefined except during the callbacks set by |
| * by |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb| or when the |
| * handshake is paused because of them. */ |
| OPENSSL_EXPORT size_t SSL_get0_certificate_types(SSL *ssl, |
| const uint8_t **out_types); |
| |
| /* SSL_certs_clear resets the private key, leaf certificate, and certificate |
| * chain of |ssl|. */ |
| OPENSSL_EXPORT void SSL_certs_clear(SSL *ssl); |
| |
| /* SSL_CTX_check_private_key returns one if the certificate and private key |
| * configured in |ctx| are consistent and zero otherwise. */ |
| OPENSSL_EXPORT int SSL_CTX_check_private_key(const SSL_CTX *ctx); |
| |
| /* SSL_check_private_key returns one if the certificate and private key |
| * configured in |ssl| are consistent and zero otherwise. */ |
| OPENSSL_EXPORT int SSL_check_private_key(const SSL *ssl); |
| |
| /* SSL_CTX_get0_certificate returns |ctx|'s leaf certificate. */ |
| OPENSSL_EXPORT X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx); |
| |
| /* SSL_get_certificate returns |ssl|'s leaf certificate. */ |
| OPENSSL_EXPORT X509 *SSL_get_certificate(const SSL *ssl); |
| |
| /* SSL_CTX_get0_privatekey returns |ctx|'s private key. */ |
| OPENSSL_EXPORT EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx); |
| |
| /* SSL_get_privatekey returns |ssl|'s private key. */ |
| OPENSSL_EXPORT EVP_PKEY *SSL_get_privatekey(const SSL *ssl); |
| |
| /* SSL_CTX_get0_chain_certs sets |*out_chain| to |ctx|'s certificate chain and |
| * returns one. */ |
| OPENSSL_EXPORT int SSL_CTX_get0_chain_certs(const SSL_CTX *ctx, |
| STACK_OF(X509) **out_chain); |
| |
| /* SSL_CTX_get_extra_chain_certs calls |SSL_CTX_get0_chain_certs|. */ |
| OPENSSL_EXPORT int SSL_CTX_get_extra_chain_certs(const SSL_CTX *ctx, |
| STACK_OF(X509) **out_chain); |
| |
| /* SSL_get0_chain_certs sets |*out_chain| to |ssl|'s certificate chain and |
| * returns one. */ |
| OPENSSL_EXPORT int SSL_get0_chain_certs(const SSL *ssl, |
| STACK_OF(X509) **out_chain); |
| |
| /* SSL_CTX_set_signed_cert_timestamp_list sets the list of signed certificate |
| * timestamps that is sent to clients that request it. The |list| argument must |
| * contain one or more SCT structures serialised as a SignedCertificateTimestamp |
| * List (see https://tools.ietf.org/html/rfc6962#section-3.3) – i.e. each SCT |
| * is prefixed by a big-endian, uint16 length and the concatenation of one or |
| * more such prefixed SCTs are themselves also prefixed by a uint16 length. It |
| * returns one on success and zero on error. The caller retains ownership of |
| * |list|. */ |
| OPENSSL_EXPORT int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, |
| const uint8_t *list, |
| size_t list_len); |
| |
| /* SSL_CTX_set_ocsp_response sets the OCSP reponse that is sent to clients |
| * which request it. It returns one on success and zero on error. The caller |
| * retains ownership of |response|. */ |
| OPENSSL_EXPORT int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, |
| const uint8_t *response, |
| size_t response_len); |
| |
| /* SSL_set_private_key_digest_prefs copies |num_digests| NIDs from |digest_nids| |
| * into |ssl|. These digests will be used, in decreasing order of preference, |
| * when signing with |ssl|'s private key. It returns one on success and zero on |
| * error. */ |
| OPENSSL_EXPORT int SSL_set_private_key_digest_prefs(SSL *ssl, |
| const int *digest_nids, |
| size_t num_digests); |
| |
| |
| /* Certificate and private key convenience functions. */ |
| |
| /* SSL_CTX_use_RSAPrivateKey sets |ctx|'s private key to |rsa|. It returns one |
| * on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa); |
| |
| /* SSL_use_RSAPrivateKey sets |ctx|'s private key to |rsa|. It returns one on |
| * success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa); |
| |
| /* The following functions configure certificates or private keys but take as |
| * input DER-encoded structures. They return one on success and zero on |
| * failure. */ |
| |
| OPENSSL_EXPORT int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, |
| const uint8_t *d); |
| OPENSSL_EXPORT int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, |
| int len); |
| |
| OPENSSL_EXPORT int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, |
| const uint8_t *d, long len); |
| OPENSSL_EXPORT int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, |
| const uint8_t *d, long len); |
| |
| OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, |
| const uint8_t *der, |
| size_t der_len); |
| OPENSSL_EXPORT int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, |
| size_t der_len); |
| |
| /* The following functions configure certificates or private keys but take as |
| * input files to read from. They return one on success and zero on failure. The |
| * |type| parameter is one of the |SSL_FILETYPE_*| values and determines whether |
| * the file's contents are read as PEM or DER. */ |
| |
| #define SSL_FILETYPE_ASN1 X509_FILETYPE_ASN1 |
| #define SSL_FILETYPE_PEM X509_FILETYPE_PEM |
| |
| OPENSSL_EXPORT int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, |
| const char *file, |
| int type); |
| OPENSSL_EXPORT int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, |
| int type); |
| |
| OPENSSL_EXPORT int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, |
| int type); |
| OPENSSL_EXPORT int SSL_use_certificate_file(SSL *ssl, const char *file, |
| int type); |
| |
| OPENSSL_EXPORT int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, |
| int type); |
| OPENSSL_EXPORT int SSL_use_PrivateKey_file(SSL *ssl, const char *file, |
| int type); |
| |
| /* SSL_CTX_use_certificate_chain_file configures certificates for |ctx|. It |
| * reads the contents of |file| as a PEM-encoded leaf certificate followed |
| * optionally by the certificate chain to send to the peer. It returns one on |
| * success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, |
| const char *file); |
| |
| /* SSL_CTX_set_default_passwd_cb sets the password callback for PEM-based |
| * convenience functions called on |ctx|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, |
| pem_password_cb *cb); |
| |
| /* SSL_CTX_set_default_passwd_cb_userdata sets the userdata parameter for |
| * |ctx|'s password callback. */ |
| OPENSSL_EXPORT void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, |
| void *data); |
| |
| |
| /* Custom private keys. */ |
| |
| enum ssl_private_key_result_t { |
| ssl_private_key_success, |
| ssl_private_key_retry, |
| ssl_private_key_failure, |
| }; |
| |
| /* SSL_PRIVATE_KEY_METHOD describes private key hooks. This is used to off-load |
| * signing operations to a custom, potentially asynchronous, backend. */ |
| typedef struct ssl_private_key_method_st { |
| /* type returns either |EVP_PKEY_RSA| or |EVP_PKEY_EC| to denote the type of |
| * key used by |ssl|. */ |
| int (*type)(SSL *ssl); |
| |
| /* max_signature_len returns the maximum length of a signature signed by the |
| * key used by |ssl|. This must be a constant value for a given |ssl|. */ |
| size_t (*max_signature_len)(SSL *ssl); |
| |
| /* sign signs |in_len| bytes of digest from |in|. |md| is the hash function |
| * used to calculate |in|. On success, it returns |ssl_private_key_success| |
| * and writes at most |max_out| bytes of signature data to |out|. On failure, |
| * it returns |ssl_private_key_failure|. If the operation has not completed, |
| * it returns |ssl_private_key_retry|. |sign| should arrange for the |
| * high-level operation on |ssl| to be retried when the operation is |
| * completed. This will result in a call to |sign_complete|. |
| * |
| * If the key is an RSA key, implementations must use PKCS#1 padding. |in| is |
| * the digest itself, so the DigestInfo prefix, if any, must be prepended by |
| * |sign|. If |md| is |EVP_md5_sha1|, there is no prefix. |
| * |
| * It is an error to call |sign| while another private key operation is in |
| * progress on |ssl|. */ |
| enum ssl_private_key_result_t (*sign)(SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out, const EVP_MD *md, |
| const uint8_t *in, size_t in_len); |
| |
| /* sign_complete completes a pending |sign| operation. If the operation has |
| * completed, it returns |ssl_private_key_success| and writes the result to |
| * |out| as in |sign|. Otherwise, it returns |ssl_private_key_failure| on |
| * failure and |ssl_private_key_retry| if the operation is still in progress. |
| * |
| * |sign_complete| may be called arbitrarily many times before completion, but |
| * it is an error to call |sign_complete| if there is no pending |sign| |
| * operation in progress on |ssl|. */ |
| enum ssl_private_key_result_t (*sign_complete)(SSL *ssl, uint8_t *out, |
| size_t *out_len, |
| size_t max_out); |
| |
| /* decrypt decrypts |in_len| bytes of encrypted data from |in|. On success it |
| * returns |ssl_private_key_success|, writes at most |max_out| bytes of |
| * decrypted data to |out| and sets |*out_len| to the actual number of bytes |
| * written. On failure it returns |ssl_private_key_failure|. If the operation |
| * has not completed, it returns |ssl_private_key_retry|. The caller should |
| * arrange for the high-level operation on |ssl| to be retried when the |
| * operation is completed, which will result in a call to |decrypt_complete|. |
| * This function only works with RSA keys and should perform a raw RSA |
| * decryption operation with no padding. |
| * |
| * It is an error to call |decrypt| while another private key operation is in |
| * progress on |ssl|. */ |
| enum ssl_private_key_result_t (*decrypt)(SSL *ssl, uint8_t *out, |
| size_t *out_len, size_t max_out, |
| const uint8_t *in, size_t in_len); |
| |
| /* decrypt_complete completes a pending |decrypt| operation. If the operation |
| * has completed, it returns |ssl_private_key_success| and writes the result |
| * to |out| as in |decrypt|. Otherwise, it returns |ssl_private_key_failure| |
| * on failure and |ssl_private_key_retry| if the operation is still in |
| * progress. |
| * |
| * |decrypt_complete| may be called arbitrarily many times before completion, |
| * but it is an error to call |decrypt_complete| if there is no pending |
| * |decrypt| operation in progress on |ssl|. */ |
| enum ssl_private_key_result_t (*decrypt_complete)(SSL *ssl, uint8_t *out, |
| size_t *out_len, |
| size_t max_out); |
| } SSL_PRIVATE_KEY_METHOD; |
| |
| /* SSL_set_private_key_method configures a custom private key on |ssl|. |
| * |key_method| must remain valid for the lifetime of |ssl|. */ |
| OPENSSL_EXPORT void SSL_set_private_key_method( |
| SSL *ssl, const SSL_PRIVATE_KEY_METHOD *key_method); |
| |
| |
| /* Cipher suites. |
| * |
| * |SSL_CIPHER| objects represent cipher suites. */ |
| |
| DECLARE_STACK_OF(SSL_CIPHER) |
| |
| /* SSL_get_cipher_by_value returns the structure representing a TLS cipher |
| * suite based on its assigned number, or NULL if unknown. See |
| * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4. */ |
| OPENSSL_EXPORT const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value); |
| |
| /* SSL_CIPHER_get_id returns |cipher|'s id. It may be cast to a |uint16_t| to |
| * get the cipher suite value. */ |
| OPENSSL_EXPORT uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_is_AES returns one if |cipher| uses AES (either GCM or CBC |
| * mode). */ |
| OPENSSL_EXPORT int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_has_MD5_HMAC returns one if |cipher| uses HMAC-MD5. */ |
| OPENSSL_EXPORT int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_is_AESGCM returns one if |cipher| uses AES-GCM. */ |
| OPENSSL_EXPORT int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_is_CHACHA20POLY1305 returns one if |cipher| uses |
| * CHACHA20_POLY1305. */ |
| OPENSSL_EXPORT int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_is_NULL returns one if |cipher| does not encrypt. */ |
| OPENSSL_EXPORT int SSL_CIPHER_is_NULL(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_is_RC4 returns one if |cipher| uses RC4. */ |
| OPENSSL_EXPORT int SSL_CIPHER_is_RC4(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_is_block_cipher returns one if |cipher| is a block cipher. */ |
| OPENSSL_EXPORT int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_get_name returns the OpenSSL name of |cipher|. */ |
| OPENSSL_EXPORT const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_get_kx_name returns a string that describes the key-exchange |
| * method used by |cipher|. For example, "ECDHE_ECDSA". */ |
| OPENSSL_EXPORT const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_get_rfc_name returns a newly-allocated string with the standard |
| * name for |cipher| or NULL on error. For example, |
| * "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256". The caller is responsible for |
| * calling |OPENSSL_free| on the result. */ |
| OPENSSL_EXPORT char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher); |
| |
| /* SSL_CIPHER_get_bits returns the strength, in bits, of |cipher|. If |
| * |out_alg_bits| is not NULL, it writes the number of bits consumed by the |
| * symmetric algorithm to |*out_alg_bits|. */ |
| OPENSSL_EXPORT int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, |
| int *out_alg_bits); |
| |
| |
| /* Cipher suite configuration. |
| * |
| * OpenSSL uses a mini-language to configure cipher suites. The language |
| * maintains an ordered list of enabled ciphers, along with an ordered list of |
| * disabled but available ciphers. Initially, all ciphers are disabled with a |
| * default ordering. The cipher string is then interpreted as a sequence of |
| * directives, separated by colons, each of which modifies this state. |
| * |
| * Most directives consist of a one character or empty opcode followed by a |
| * selector which matches a subset of available ciphers. |
| * |
| * Available opcodes are: |
| * |
| * The empty opcode enables and appends all matching disabled ciphers to the |
| * end of the enabled list. The newly appended ciphers are ordered relative to |
| * each other matching their order in the disabled list. |
| * |
| * |-| disables all matching enabled ciphers and prepends them to the disabled |
| * list, with relative order from the enabled list preserved. This means the |
| * most recently disabled ciphers get highest preference relative to other |
| * disabled ciphers if re-enabled. |
| * |
| * |+| moves all matching enabled ciphers to the end of the enabled list, with |
| * relative order preserved. |
| * |
| * |!| deletes all matching ciphers, enabled or not, from either list. Deleted |
| * ciphers will not matched by future operations. |
| * |
| * A selector may be a specific cipher (using the OpenSSL name for the cipher) |
| * or one or more rules separated by |+|. The final selector matches the |
| * intersection of each rule. For instance, |AESGCM+aECDSA| matches |
| * ECDSA-authenticated AES-GCM ciphers. |
| * |
| * Available cipher rules are: |
| * |
| * |ALL| matches all ciphers. |
| * |
| * |kRSA|, |kDHE|, |kECDHE|, and |kPSK| match ciphers using plain RSA, DHE, |
| * ECDHE, and plain PSK key exchanges, respectively. Note that ECDHE_PSK is |
| * matched by |kECDHE| and not |kPSK|. |
| * |
| * |aRSA|, |aECDSA|, and |aPSK| match ciphers authenticated by RSA, ECDSA, and |
| * a pre-shared key, respectively. |
| * |
| * |RSA|, |DHE|, |ECDHE|, |PSK|, |ECDSA|, and |PSK| are aliases for the |
| * corresponding |k*| or |a*| cipher rule. |RSA| is an alias for |kRSA|, not |
| * |aRSA|. |
| * |
| * |3DES|, |RC4|, |AES128|, |AES256|, |AES|, |AESGCM|, |CHACHA20| match |
| * ciphers whose bulk cipher use the corresponding encryption scheme. Note |
| * that |AES|, |AES128|, and |AES256| match both CBC and GCM ciphers. |
| * |
| * |MD5|, |SHA1|, |SHA256|, and |SHA384| match legacy cipher suites using the |
| * corresponding hash function in their MAC. AEADs are matched by none of |
| * these. |
| * |
| * |SHA| is an alias for |SHA1|. |
| * |
| * Although implemented, authentication-only ciphers match no rules and must be |
| * explicitly selected by name. |
| * |
| * Deprecated cipher rules: |
| * |
| * |kEDH|, |EDH|, |kEECDH|, and |EECDH| are legacy aliases for |kDHE|, |DHE|, |
| * |kECDHE|, and |ECDHE|, respectively. |
| * |
| * |MEDIUM| and |HIGH| match ciphers historically labeled by OpenSSL as |
| * 'medium' and 'high', respectively. |
| * |
| * |FIPS| matches ciphers historically FIPS-approved in OpenSSL. |
| * |
| * |SSLv3| and |TLSv1| match ciphers available in TLS 1.1 or earlier. |
| * |TLSv1_2| matches ciphers new in TLS 1.2. This is confusing and should not |
| * be used. |
| * |
| * Unknown rules silently match nothing. |
| * |
| * The special |@STRENGTH| directive will sort all enabled ciphers by strength. |
| * |
| * The |DEFAULT| directive, when appearing at the front of the string, expands |
| * to the default ordering of available ciphers. |
| * |
| * If configuring a server, one may also configure equal-preference groups to |
| * partially respect the client's preferences when |
| * |SSL_OP_CIPHER_SERVER_PREFERENCE| is enabled. Ciphers in an equal-preference |
| * group have equal priority and use the client order. This may be used to |
| * enforce that AEADs are preferred but select AES-GCM vs. ChaCha20-Poly1305 |
| * based on client preferences. An equal-preference is specified with square |
| * brackets, combining multiple selectors separated by |. For example: |
| * |
| * [ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256] |
| * |
| * Once an equal-preference group is used, future directives must be |
| * opcode-less. */ |
| |
| /* SSL_DEFAULT_CIPHER_LIST is the default cipher suite configuration. It is |
| * substituted when a cipher string starts with 'DEFAULT'. */ |
| #define SSL_DEFAULT_CIPHER_LIST "ALL" |
| |
| /* SSL_CTX_set_cipher_list configures the cipher list for |ctx|, evaluating |
| * |str| as a cipher string. It returns one on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str); |
| |
| /* SSL_CTX_set_cipher_list configures the TLS 1.0+ cipher list for |ctx|, |
| * evaluating |str| as a cipher string. It returns one on success and zero on |
| * failure. If set, servers will use this cipher suite list for TLS 1.0 or |
| * higher. */ |
| OPENSSL_EXPORT int SSL_CTX_set_cipher_list_tls10(SSL_CTX *ctx, const char *str); |
| |
| /* SSL_CTX_set_cipher_list configures the TLS 1.1+ cipher list for |ctx|, |
| * evaluating |str| as a cipher string. It returns one on success and zero on |
| * failure. If set, servers will use this cipher suite list for TLS 1.1 or |
| * higher. */ |
| OPENSSL_EXPORT int SSL_CTX_set_cipher_list_tls11(SSL_CTX *ctx, const char *str); |
| |
| /* SSL_set_cipher_list configures the cipher list for |ssl|, evaluating |str| as |
| * a cipher string. It returns one on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_set_cipher_list(SSL *ssl, const char *str); |
| |
| /* SSL_get_ciphers returns the cipher list for |ssl|, in order of preference. If |
| * |SSL_CTX_set_cipher_list_tls10| or |SSL_CTX_set_cipher_list_tls11| has been |
| * used, the corresponding list for the current version is returned. */ |
| OPENSSL_EXPORT STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl); |
| |
| |
| /* Connection information. */ |
| |
| /* SSL_is_init_finished returns one if |ssl| has completed its initial handshake |
| * and has no pending handshake. It returns zero otherwise. */ |
| OPENSSL_EXPORT int SSL_is_init_finished(const SSL *ssl); |
| |
| /* SSL_in_init returns one if |ssl| has a pending handshake and zero |
| * otherwise. */ |
| OPENSSL_EXPORT int SSL_in_init(const SSL *ssl); |
| |
| /* SSL_in_false_start returns one if |ssl| has a pending handshake that is in |
| * False Start. |SSL_write| may be called at this point without waiting for the |
| * peer, but |SSL_read| will complete the handshake before accepting application |
| * data. |
| * |
| * See also |SSL_MODE_ENABLE_FALSE_START|. */ |
| OPENSSL_EXPORT int SSL_in_false_start(const SSL *ssl); |
| |
| /* SSL_get_peer_certificate returns the peer's leaf certificate or NULL if the |
| * peer did not use certificates. The caller must call |X509_free| on the |
| * result to release it. */ |
| OPENSSL_EXPORT X509 *SSL_get_peer_certificate(const SSL *ssl); |
| |
| /* SSL_get_peer_cert_chain returns the peer's certificate chain or NULL if |
| * unavailable or the peer did not use certificates. This is the unverified |
| * list of certificates as sent by the peer, not the final chain built during |
| * verification. For historical reasons, this value may not be available if |
| * resuming a serialized |SSL_SESSION|. The caller does not take ownership of |
| * the result. |
| * |
| * WARNING: This function behaves differently between client and server. If |
| * |ssl| is a server, the returned chain does not include the leaf certificate. |
| * If a client, it does. */ |
| OPENSSL_EXPORT STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl); |
| |
| /* SSL_get0_signed_cert_timestamp_list sets |*out| and |*out_len| to point to |
| * |*out_len| bytes of SCT information from the server. This is only valid if |
| * |ssl| is a client. The SCT information is a SignedCertificateTimestampList |
| * (including the two leading length bytes). |
| * See https://tools.ietf.org/html/rfc6962#section-3.3 |
| * If no SCT was received then |*out_len| will be zero on return. |
| * |
| * WARNING: the returned data is not guaranteed to be well formed. */ |
| OPENSSL_EXPORT void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, |
| const uint8_t **out, |
| size_t *out_len); |
| |
| /* SSL_get0_ocsp_response sets |*out| and |*out_len| to point to |*out_len| |
| * bytes of an OCSP response from the server. This is the DER encoding of an |
| * OCSPResponse type as defined in RFC 2560. |
| * |
| * WARNING: the returned data is not guaranteed to be well formed. */ |
| OPENSSL_EXPORT void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, |
| size_t *out_len); |
| |
| /* SSL_get_tls_unique writes at most |max_out| bytes of the tls-unique value |
| * for |ssl| to |out| and sets |*out_len| to the number of bytes written. It |
| * returns one on success or zero on error. In general |max_out| should be at |
| * least 12. |
| * |
| * This function will always fail if the initial handshake has not completed. |
| * The tls-unique value will change after a renegotiation but, since |
| * renegotiations can be initiated by the server at any point, the higher-level |
| * protocol must either leave them disabled or define states in which the |
| * tls-unique value can be read. |
| * |
| * The tls-unique value is defined by |
| * https://tools.ietf.org/html/rfc5929#section-3.1. Due to a weakness in the |
| * TLS protocol, tls-unique is broken for resumed connections unless the |
| * Extended Master Secret extension is negotiated. Thus this function will |
| * return zero if |ssl| performed session resumption unless EMS was used when |
| * negotiating the original session. */ |
| OPENSSL_EXPORT int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, |
| size_t *out_len, size_t max_out); |
| |
| /* SSL_get_extms_support returns one if the Extended Master Secret |
| * extension was negotiated. Otherwise, it returns zero. */ |
| OPENSSL_EXPORT int SSL_get_extms_support(const SSL *ssl); |
| |
| /* SSL_get_current_cipher returns the cipher used in the current outgoing |
| * connection state, or NULL if the null cipher is active. */ |
| OPENSSL_EXPORT const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl); |
| |
| /* SSL_session_reused returns one if |ssl| performed an abbreviated handshake |
| * and zero otherwise. |
| * |
| * TODO(davidben): Hammer down the semantics of this API while a handshake, |
| * initial or renego, is in progress. */ |
| OPENSSL_EXPORT int SSL_session_reused(const SSL *ssl); |
| |
| /* SSL_get_secure_renegotiation_support returns one if the peer supports secure |
| * renegotiation (RFC 5746) and zero otherwise. */ |
| OPENSSL_EXPORT int SSL_get_secure_renegotiation_support(const SSL *ssl); |
| |
| /* SSL_export_keying_material exports a value derived from the master secret, as |
| * specified in RFC 5705. It writes |out_len| bytes to |out| given a label and |
| * optional context. (Since a zero length context is allowed, the |use_context| |
| * flag controls whether a context is included.) |
| * |
| * It returns one on success and zero otherwise. */ |
| OPENSSL_EXPORT int SSL_export_keying_material( |
| SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len, |
| const uint8_t *context, size_t context_len, int use_context); |
| |
| |
| /* Custom extensions. |
| * |
| * The custom extension functions allow TLS extensions to be added to |
| * ClientHello and ServerHello messages. */ |
| |
| /* SSL_custom_ext_add_cb is a callback function that is called when the |
| * ClientHello (for clients) or ServerHello (for servers) is constructed. In |
| * the case of a server, this callback will only be called for a given |
| * extension if the ClientHello contained that extension – it's not possible to |
| * inject extensions into a ServerHello that the client didn't request. |
| * |
| * When called, |extension_value| will contain the extension number that is |
| * being considered for addition (so that a single callback can handle multiple |
| * extensions). If the callback wishes to include the extension, it must set |
| * |*out| to point to |*out_len| bytes of extension contents and return one. In |
| * this case, the corresponding |SSL_custom_ext_free_cb| callback will later be |
| * called with the value of |*out| once that data has been copied. |
| * |
| * If the callback does not wish to add an extension it must return zero. |
| * |
| * Alternatively, the callback can abort the connection by setting |
| * |*out_alert_value| to a TLS alert number and returning -1. */ |
| typedef int (*SSL_custom_ext_add_cb)(SSL *ssl, unsigned extension_value, |
| const uint8_t **out, size_t *out_len, |
| int *out_alert_value, void *add_arg); |
| |
| /* SSL_custom_ext_free_cb is a callback function that is called by OpenSSL iff |
| * an |SSL_custom_ext_add_cb| callback previously returned one. In that case, |
| * this callback is called and passed the |out| pointer that was returned by |
| * the add callback. This is to free any dynamically allocated data created by |
| * the add callback. */ |
| typedef void (*SSL_custom_ext_free_cb)(SSL *ssl, unsigned extension_value, |
| const uint8_t *out, void *add_arg); |
| |
| /* SSL_custom_ext_parse_cb is a callback function that is called by OpenSSL to |
| * parse an extension from the peer: that is from the ServerHello for a client |
| * and from the ClientHello for a server. |
| * |
| * When called, |extension_value| will contain the extension number and the |
| * contents of the extension are |contents_len| bytes at |contents|. |
| * |
| * The callback must return one to continue the handshake. Otherwise, if it |
| * returns zero, a fatal alert with value |*out_alert_value| is sent and the |
| * handshake is aborted. */ |
| typedef int (*SSL_custom_ext_parse_cb)(SSL *ssl, unsigned extension_value, |
| const uint8_t *contents, |
| size_t contents_len, |
| int *out_alert_value, void *parse_arg); |
| |
| /* SSL_extension_supported returns one iff OpenSSL internally handles |
| * extensions of type |extension_value|. This can be used to avoid registering |
| * custom extension handlers for extensions that a future version of OpenSSL |
| * may handle internally. */ |
| OPENSSL_EXPORT int SSL_extension_supported(unsigned extension_value); |
| |
| /* SSL_CTX_add_client_custom_ext registers callback functions for handling |
| * custom TLS extensions for client connections. |
| * |
| * If |add_cb| is NULL then an empty extension will be added in each |
| * ClientHello. Otherwise, see the comment for |SSL_custom_ext_add_cb| about |
| * this callback. |
| * |
| * The |free_cb| may be NULL if |add_cb| doesn't dynamically allocate data that |
| * needs to be freed. |
| * |
| * It returns one on success or zero on error. It's always an error to register |
| * callbacks for the same extension twice, or to register callbacks for an |
| * extension that OpenSSL handles internally. See |SSL_extension_supported| to |
| * discover, at runtime, which extensions OpenSSL handles internally. */ |
| OPENSSL_EXPORT int SSL_CTX_add_client_custom_ext( |
| SSL_CTX *ctx, unsigned extension_value, SSL_custom_ext_add_cb add_cb, |
| SSL_custom_ext_free_cb free_cb, void *add_arg, |
| SSL_custom_ext_parse_cb parse_cb, void *parse_arg); |
| |
| /* SSL_CTX_add_server_custom_ext is the same as |
| * |SSL_CTX_add_client_custom_ext|, but for server connections. |
| * |
| * Unlike on the client side, if |add_cb| is NULL no extension will be added. |
| * The |add_cb|, if any, will only be called if the ClientHello contained a |
| * matching extension. */ |
| OPENSSL_EXPORT int SSL_CTX_add_server_custom_ext( |
| SSL_CTX *ctx, unsigned extension_value, SSL_custom_ext_add_cb add_cb, |
| SSL_custom_ext_free_cb free_cb, void *add_arg, |
| SSL_custom_ext_parse_cb parse_cb, void *parse_arg); |
| |
| |
| /* Sessions. |
| * |
| * An |SSL_SESSION| represents an SSL session that may be resumed in an |
| * abbreviated handshake. It is reference-counted and immutable. Once |
| * established, an |SSL_SESSION| may be shared by multiple |SSL| objects on |
| * different threads and must not be modified. */ |
| |
| DECLARE_LHASH_OF(SSL_SESSION) |
| DECLARE_PEM_rw(SSL_SESSION, SSL_SESSION) |
| |
| /* SSL_SESSION_new returns a newly-allocated blank |SSL_SESSION| or NULL on |
| * error. This may be useful in writing tests but otherwise should not be |
| * used outside the library. */ |
| OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_new(void); |
| |
| /* SSL_SESSION_up_ref, if |session| is not NULL, increments the reference count |
| * of |session|. It then returns |session|. */ |
| OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_up_ref(SSL_SESSION *session); |
| |
| /* SSL_SESSION_free decrements the reference count of |session|. If it reaches |
| * zero, all data referenced by |session| and |session| itself are released. */ |
| OPENSSL_EXPORT void SSL_SESSION_free(SSL_SESSION *session); |
| |
| /* SSL_SESSION_to_bytes serializes |in| into a newly allocated buffer and sets |
| * |*out_data| to that buffer and |*out_len| to its length. The caller takes |
| * ownership of the buffer and must call |OPENSSL_free| when done. It returns |
| * one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_SESSION_to_bytes(const SSL_SESSION *in, |
| uint8_t **out_data, size_t *out_len); |
| |
| /* SSL_SESSION_to_bytes_for_ticket serializes |in|, but excludes the session |
| * identification information, namely the session ID and ticket. */ |
| OPENSSL_EXPORT int SSL_SESSION_to_bytes_for_ticket(const SSL_SESSION *in, |
| uint8_t **out_data, |
| size_t *out_len); |
| |
| /* SSL_SESSION_from_bytes parses |in_len| bytes from |in| as an SSL_SESSION. It |
| * returns a newly-allocated |SSL_SESSION| on success or NULL on error. */ |
| OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_from_bytes(const uint8_t *in, |
| size_t in_len); |
| |
| /* SSL_SESSION_get_version returns a string describing the TLS version |session| |
| * was established at. For example, "TLSv1.2" or "SSLv3". */ |
| OPENSSL_EXPORT const char *SSL_SESSION_get_version(const SSL_SESSION *session); |
| |
| /* SSL_SESSION_get_id returns a pointer to a buffer containg |session|'s session |
| * ID and sets |*out_len| to its length. */ |
| OPENSSL_EXPORT const uint8_t *SSL_SESSION_get_id(const SSL_SESSION *session, |
| unsigned *out_len); |
| |
| /* SSL_SESSION_get_time returns the time at which |session| was established in |
| * seconds since the UNIX epoch. */ |
| OPENSSL_EXPORT long SSL_SESSION_get_time(const SSL_SESSION *session); |
| |
| /* SSL_SESSION_get_timeout returns the lifetime of |session| in seconds. */ |
| OPENSSL_EXPORT long SSL_SESSION_get_timeout(const SSL_SESSION *session); |
| |
| /* SSL_SESSION_get_key_exchange_info returns a value that describes the |
| * strength of the asymmetric operation that provides confidentiality to |
| * |session|. Its interpretation depends on the operation used. See the |
| * documentation for this value in the |SSL_SESSION| structure. */ |
| OPENSSL_EXPORT uint32_t SSL_SESSION_get_key_exchange_info( |
| const SSL_SESSION *session); |
| |
| /* SSL_SESSION_get0_peer return's the peer leaf certificate stored in |
| * |session|. |
| * |
| * TODO(davidben): This should return a const X509 *. */ |
| OPENSSL_EXPORT X509 *SSL_SESSION_get0_peer(const SSL_SESSION *session); |
| |
| /* SSL_SESSION_set_time sets |session|'s creation time to |time| and returns |
| * |time|. This function may be useful in writing tests but otherwise should not |
| * be used. */ |
| OPENSSL_EXPORT long SSL_SESSION_set_time(SSL_SESSION *session, long time); |
| |
| /* SSL_SESSION_set_timeout sets |session|'s timeout to |timeout| and returns |
| * one. This function may be useful in writing tests but otherwise should not |
| * be used. */ |
| OPENSSL_EXPORT long SSL_SESSION_set_timeout(SSL_SESSION *session, long timeout); |
| |
| /* SSL_SESSION_set1_id_context sets |session|'s session ID context (see |
| * |SSL_CTX_set_session_id_context|) to |sid_ctx|. It returns one on success and |
| * zero on error. This function may be useful in writing tests but otherwise |
| * should not be used. */ |
| OPENSSL_EXPORT int SSL_SESSION_set1_id_context(SSL_SESSION *session, |
| const uint8_t *sid_ctx, |
| unsigned sid_ctx_len); |
| |
| |
| /* Session caching. |
| * |
| * Session caching allows clients to reconnect to a server based on saved |
| * parameters from a previous connection. |
| * |
| * For a server, the library implements a built-in internal session cache as an |
| * in-memory hash table. One may also register callbacks to implement a custom |
| * external session cache. An external cache may be used in addition to or |
| * instead of the internal one. Use |SSL_CTX_set_session_cache_mode| to toggle |
| * the internal cache. |
| * |
| * For a client, the only option is an external session cache. Prior to |
| * handshaking, the consumer should look up a session externally (keyed, for |
| * instance, by hostname) and use |SSL_set_session| to configure which session |
| * to offer. The callbacks may be used to determine when new sessions are |
| * available. |
| * |
| * Note that offering or accepting a session short-circuits most parameter |
| * negotiation. Resuming sessions across different configurations may result in |
| * surprising behavor. So, for instance, a client implementing a version |
| * fallback should shard its session cache by maximum protocol version. */ |
| |
| /* SSL_SESS_CACHE_OFF disables all session caching. */ |
| #define SSL_SESS_CACHE_OFF 0x0000 |
| |
| /* SSL_SESS_CACHE_CLIENT enables session caching for a client. The internal |
| * cache is never used on a client, so this only enables the callbacks. */ |
| #define SSL_SESS_CACHE_CLIENT 0x0001 |
| |
| /* SSL_SESS_CACHE_SERVER enables session caching for a server. */ |
| #define SSL_SESS_CACHE_SERVER 0x0002 |
| |
| /* SSL_SESS_CACHE_SERVER enables session caching for both client and server. */ |
| #define SSL_SESS_CACHE_BOTH (SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_SERVER) |
| |
| /* SSL_SESS_CACHE_NO_AUTO_CLEAR disables automatically calling |
| * |SSL_CTX_flush_sessions| every 255 connections. */ |
| #define SSL_SESS_CACHE_NO_AUTO_CLEAR 0x0080 |
| |
| /* SSL_SESS_CACHE_NO_INTERNAL_LOOKUP, on a server, disables looking up a session |
| * from the internal session cache. */ |
| #define SSL_SESS_CACHE_NO_INTERNAL_LOOKUP 0x0100 |
| |
| /* SSL_SESS_CACHE_NO_INTERNAL_STORE, on a server, disables storing sessions in |
| * the internal session cache. */ |
| #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0x0200 |
| |
| /* SSL_SESS_CACHE_NO_INTERNAL, on a server, disables the internal session |
| * cache. */ |
| #define SSL_SESS_CACHE_NO_INTERNAL \ |
| (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP | SSL_SESS_CACHE_NO_INTERNAL_STORE) |
| |
| /* SSL_CTX_set_session_cache_mode sets the session cache mode bits for |ctx| to |
| * |mode|. It returns the previous value. */ |
| OPENSSL_EXPORT int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode); |
| |
| /* SSL_CTX_get_session_cache_mode returns the session cache mode bits for |
| * |ctx| */ |
| OPENSSL_EXPORT int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx); |
| |
| /* SSL_set_session, for a client, configures |ssl| to offer to resume |session| |
| * in the initial handshake and returns one. The caller retains ownership of |
| * |session|. */ |
| OPENSSL_EXPORT int SSL_set_session(SSL *ssl, SSL_SESSION *session); |
| |
| /* SSL_get_session returns a non-owning pointer to |ssl|'s session. Prior to the |
| * initial handshake beginning, this is the session to be offered, set by |
| * |SSL_set_session|. After a handshake has finished, this is the currently |
| * active session. Its behavior is undefined while a handshake is progress. */ |
| OPENSSL_EXPORT SSL_SESSION *SSL_get_session(const SSL *ssl); |
| |
| /* SSL_get0_session is an alias for |SSL_get_session|. */ |
| #define SSL_get0_session SSL_get_session |
| |
| /* SSL_get1_session acts like |SSL_get_session| but returns a new reference to |
| * the session. */ |
| OPENSSL_EXPORT SSL_SESSION *SSL_get1_session(SSL *ssl); |
| |
| /* SSL_DEFAULT_SESSION_TIMEOUT is the default lifetime, in seconds, of a |
| * session. */ |
| #define SSL_DEFAULT_SESSION_TIMEOUT (2 * 60 * 60) |
| |
| /* SSL_CTX_set_timeout sets the lifetime, in seconds, of sessions created in |
| * |ctx| to |timeout|. */ |
| OPENSSL_EXPORT long SSL_CTX_set_timeout(SSL_CTX *ctx, long timeout); |
| |
| /* SSL_CTX_get_timeout returns the lifetime, in seconds, of sessions created in |
| * |ctx|. */ |
| OPENSSL_EXPORT long SSL_CTX_get_timeout(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_set_session_id_context sets |ctx|'s session ID context to |sid_ctx|. |
| * It returns one on success and zero on error. The session ID context is an |
| * application-defined opaque byte string. A session will not be used in a |
| * connection without a matching session ID context. |
| * |
| * For a server, if |SSL_VERIFY_PEER| is enabled, it is an error to not set a |
| * session ID context. |
| * |
| * TODO(davidben): Is that check needed? That seems a special case of taking |
| * care not to cross-resume across configuration changes, and this is only |
| * relevant if a server requires client auth. */ |
| OPENSSL_EXPORT int SSL_CTX_set_session_id_context(SSL_CTX *ctx, |
| const uint8_t *sid_ctx, |
| unsigned sid_ctx_len); |
| |
| /* SSL_set_session_id_context sets |ssl|'s session ID context to |sid_ctx|. It |
| * returns one on success and zero on error. See also |
| * |SSL_CTX_set_session_id_context|. */ |
| OPENSSL_EXPORT int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, |
| unsigned sid_ctx_len); |
| |
| /* SSL_SESSION_CACHE_MAX_SIZE_DEFAULT is the default maximum size of a session |
| * cache. */ |
| #define SSL_SESSION_CACHE_MAX_SIZE_DEFAULT (1024 * 20) |
| |
| /* SSL_CTX_sess_set_cache_size sets the maximum size of |ctx|'s internal session |
| * cache to |size|. It returns the previous value. */ |
| OPENSSL_EXPORT unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, |
| unsigned long size); |
| |
| /* SSL_CTX_sess_get_cache_size returns the maximum size of |ctx|'s internal |
| * session cache. */ |
| OPENSSL_EXPORT unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sessions returns |ctx|'s internal session cache. */ |
| OPENSSL_EXPORT LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_number returns the number of sessions in |ctx|'s internal |
| * session cache. */ |
| OPENSSL_EXPORT size_t SSL_CTX_sess_number(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_add_session inserts |session| into |ctx|'s internal session cache. It |
| * returns one on success and zero on error or if |session| is already in the |
| * cache. The caller retains its reference to |session|. */ |
| OPENSSL_EXPORT int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *session); |
| |
| /* SSL_CTX_remove_session removes |session| from |ctx|'s internal session cache. |
| * It returns one on success and zero if |session| was not in the cache. */ |
| OPENSSL_EXPORT int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *session); |
| |
| /* SSL_CTX_flush_sessions removes all sessions from |ctx| which have expired as |
| * of time |time|. If |time| is zero, all sessions are removed. */ |
| OPENSSL_EXPORT void SSL_CTX_flush_sessions(SSL_CTX *ctx, long time); |
| |
| /* SSL_CTX_sess_set_new_cb sets the callback to be called when a new session is |
| * established and ready to be cached. If the session cache is disabled (the |
| * appropriate one of |SSL_SESS_CACHE_CLIENT| or |SSL_SESS_CACHE_SERVER| is |
| * unset), the callback is not called. |
| * |
| * The callback is passed a reference to |session|. It returns one if it takes |
| * ownership and zero otherwise. |
| * |
| * Note: For a client, the callback may be called on abbreviated handshakes if a |
| * ticket is renewed. Further, it may not be called until some time after |
| * |SSL_do_handshake| or |SSL_connect| completes if False Start is enabled. Thus |
| * it's recommended to use this callback over checking |SSL_session_reused| on |
| * handshake completion. |
| * |
| * TODO(davidben): Conditioning callbacks on |SSL_SESS_CACHE_CLIENT| or |
| * |SSL_SESS_CACHE_SERVER| doesn't make any sense when one could just as easily |
| * not supply the callbacks. Removing that condition and the client internal |
| * cache would simplify things. */ |
| OPENSSL_EXPORT void SSL_CTX_sess_set_new_cb( |
| SSL_CTX *ctx, int (*new_session_cb)(SSL *ssl, SSL_SESSION *session)); |
| |
| /* SSL_CTX_sess_get_new_cb returns the callback set by |
| * |SSL_CTX_sess_set_new_cb|. */ |
| OPENSSL_EXPORT int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))( |
| SSL *ssl, SSL_SESSION *session); |
| |
| /* SSL_CTX_sess_set_remove_cb sets a callback which is called when a session is |
| * removed from the internal session cache. |
| * |
| * TODO(davidben): What is the point of this callback? It seems useless since it |
| * only fires on sessions in the internal cache. */ |
| OPENSSL_EXPORT void SSL_CTX_sess_set_remove_cb( |
| SSL_CTX *ctx, |
| void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *session)); |
| |
| /* SSL_CTX_sess_get_remove_cb returns the callback set by |
| * |SSL_CTX_sess_set_remove_cb|. */ |
| OPENSSL_EXPORT void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))( |
| SSL_CTX *ctx, SSL_SESSION *session); |
| |
| /* SSL_CTX_sess_set_get_cb sets a callback to look up a session by ID for a |
| * server. The callback is passed the session ID and should return a matching |
| * |SSL_SESSION| or NULL if not found. It should set |*out_copy| to zero and |
| * return a new reference to the session. This callback is not used for a |
| * client. |
| * |
| * For historical reasons, if |*out_copy| is set to one (default), the SSL |
| * library will take a new reference to the returned |SSL_SESSION|, expecting |
| * the callback to return a non-owning pointer. This is not recommended. If |
| * |ctx| and thus the callback is used on multiple threads, the session may be |
| * removed and invalidated before the SSL library calls |SSL_SESSION_up_ref|, |
| * whereas the callback may synchronize internally. |
| * |
| * To look up a session asynchronously, the callback may return |
| * |SSL_magic_pending_session_ptr|. See the documentation for that function and |
| * |SSL_ERROR_PENDING_SESSION|. |
| * |
| * If the internal session cache is enabled, the callback is only consulted if |
| * the internal cache does not return a match. |
| * |
| * The callback's |id| parameter is not const for historical reasons, but the |
| * contents may not be modified. */ |
| OPENSSL_EXPORT void SSL_CTX_sess_set_get_cb( |
| SSL_CTX *ctx, |
| SSL_SESSION *(*get_session_cb)(SSL *ssl, uint8_t *id, int id_len, |
| int *out_copy)); |
| |
| /* SSL_CTX_sess_get_get_cb returns the callback set by |
| * |SSL_CTX_sess_set_get_cb|. */ |
| OPENSSL_EXPORT SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))( |
| SSL *ssl, uint8_t *id, int id_len, int *out_copy); |
| |
| /* SSL_magic_pending_session_ptr returns a magic |SSL_SESSION|* which indicates |
| * that the session isn't currently unavailable. |SSL_get_error| will then |
| * return |SSL_ERROR_PENDING_SESSION| and the handshake can be retried later |
| * when the lookup has completed. */ |
| OPENSSL_EXPORT SSL_SESSION *SSL_magic_pending_session_ptr(void); |
| |
| |
| /* Session tickets. |
| * |
| * Session tickets, from RFC 5077, allow session resumption without server-side |
| * state. Session tickets are supported in by default but may be disabled with |
| * |SSL_OP_NO_TICKET|. |
| * |
| * On the client, ticket-based sessions use the same APIs as ID-based tickets. |
| * Callers do not need to handle them differently. |
| * |
| * On the server, tickets are encrypted and authenticated with a secret key. By |
| * default, an |SSL_CTX| generates a key on creation. Tickets are minted and |
| * processed transparently. The following functions may be used to configure a |
| * persistent key or implement more custom behavior. */ |
| |
| /* SSL_CTX_get_tlsext_ticket_keys writes |ctx|'s session ticket key material to |
| * |len| bytes of |out|. It returns one on success and zero if |len| is not |
| * 48. If |out| is NULL, it returns 48 instead. */ |
| OPENSSL_EXPORT int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, |
| size_t len); |
| |
| /* SSL_CTX_set_tlsext_ticket_keys sets |ctx|'s session ticket key material to |
| * |len| bytes of |in|. It returns one on success and zero if |len| is not |
| * 48. If |in| is NULL, it returns 48 instead. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, |
| size_t len); |
| |
| /* SSL_TICKET_KEY_NAME_LEN is the length of the key name prefix of a session |
| * ticket. */ |
| #define SSL_TICKET_KEY_NAME_LEN 16 |
| |
| /* SSL_CTX_set_tlsext_ticket_key_cb sets the ticket callback to |callback| and |
| * returns one. |callback| will be called when encrypting a new ticket and when |
| * decrypting a ticket from the client. |
| * |
| * In both modes, |ctx| and |hmac_ctx| will already have been initialized with |
| * |EVP_CIPHER_CTX_init| and |HMAC_CTX_init|, respectively. |callback| |
| * configures |hmac_ctx| with an HMAC digest and key, and configures |ctx| |
| * for encryption or decryption, based on the mode. |
| * |
| * When encrypting a new ticket, |encrypt| will be one. It writes a public |
| * 16-byte key name to |key_name| and a fresh IV to |iv|. The output IV length |
| * must match |EVP_CIPHER_CTX_iv_length| of the cipher selected. In this mode, |
| * |callback| returns 1 on success and -1 on error. |
| * |
| * When decrypting a ticket, |encrypt| will be zero. |key_name| will point to a |
| * 16-byte key name and |iv| points to an IV. The length of the IV consumed must |
| * match |EVP_CIPHER_CTX_iv_length| of the cipher selected. In this mode, |
| * |callback| returns -1 to abort the handshake, 0 if decrypting the ticket |
| * failed, and 1 or 2 on success. If it returns 2, the ticket will be renewed. |
| * This may be used to re-key the ticket. |
| * |
| * WARNING: |callback| wildly breaks the usual return value convention and is |
| * called in two different modes. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tlsext_ticket_key_cb( |
| SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv, |
| EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, |
| int encrypt)); |
| |
| |
| /* Elliptic curve Diffie-Hellman. |
| * |
| * Cipher suites using an ECDHE key exchange perform Diffie-Hellman over an |
| * elliptic curve negotiated by both endpoints. See RFC 4492. Only named curves |
| * are supported. ECDHE is always enabled, but the curve preferences may be |
| * configured with these functions. |
| * |
| * A client may use |SSL_SESSION_get_key_exchange_info| to determine the curve |
| * selected. */ |
| |
| /* SSL_CTX_set1_curves sets the preferred curves for |ctx| to be |curves|. Each |
| * element of |curves| should be a curve nid. It returns one on success and |
| * zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, |
| size_t curves_len); |
| |
| /* SSL_set1_curves sets the preferred curves for |ssl| to be |curves|. Each |
| * element of |curves| should be a curve nid. It returns one on success and |
| * zero on failure. */ |
| OPENSSL_EXPORT int SSL_set1_curves(SSL *ssl, const int *curves, |
| size_t curves_len); |
| |
| /* SSL_CTX_set_tmp_ecdh configures |ctx| to use the curve from |ecdh| as the |
| * curve for ephemeral ECDH keys. For historical reasons, this API expects an |
| * |EC_KEY|, but only the curve is used. It returns one on success and zero on |
| * error. If unset, an appropriate curve will be chosen based on curve |
| * preferences. (This is recommended.) */ |
| OPENSSL_EXPORT int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key); |
| |
| /* SSL_set_tmp_ecdh configures |ssl| to use the curve from |ecdh| as the curve |
| * for ephemeral ECDH keys. For historical reasons, this API expects an |
| * |EC_KEY|, but only the curve is used. It returns one on success and zero on |
| * error. If unset, an appropriate curve will be chosen based on curve |
| * preferences. (This is recommended.) */ |
| OPENSSL_EXPORT int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key); |
| |
| /* SSL_CTX_set_tmp_ecdh_callback configures |ctx| to use |callback| to determine |
| * the curve for ephemeral ECDH keys. |callback| should ignore |is_export| and |
| * |keylength| and return an |EC_KEY| of the selected curve or NULL on |
| * error. Only the curve is used, so the |EC_KEY| needn't have a generated |
| * keypair. |
| * |
| * If the callback is unset, an appropriate curve will be chosen based on curve |
| * preferences. (This is recommended.) |
| * |
| * WARNING: The caller does not take ownership of the resulting |EC_KEY|, so |
| * |callback| must save and release the object elsewhere. */ |
| OPENSSL_EXPORT void SSL_CTX_set_tmp_ecdh_callback( |
| SSL_CTX *ctx, EC_KEY *(*callback)(SSL *ssl, int is_export, int keylength)); |
| |
| /* SSL_set_tmp_ecdh_callback configures |ssl| to use |callback| to determine the |
| * curve for ephemeral ECDH keys. |callback| should ignore |is_export| and |
| * |keylength| and return an |EC_KEY| of the selected curve or NULL on |
| * error. Only the curve is used, so the |EC_KEY| needn't have a generated |
| * keypair. |
| * |
| * If the callback is unset, an appropriate curve will be chosen based on curve |
| * preferences. (This is recommended.) |
| * |
| * WARNING: The caller does not take ownership of the resulting |EC_KEY|, so |
| * |callback| must save and release the object elsewhere. */ |
| OPENSSL_EXPORT void SSL_set_tmp_ecdh_callback( |
| SSL *ssl, EC_KEY *(*callback)(SSL *ssl, int is_export, int keylength)); |
| |
| /* SSL_get_curve_name returns a human-readable name for the elliptic curve |
| * specified by the given TLS curve id, or NULL if the curve if unknown. */ |
| OPENSSL_EXPORT const char *SSL_get_curve_name(uint16_t curve_id); |
| |
| |
| /* Multiplicative Diffie-Hellman. |
| * |
| * Cipher suites using a DHE key exchange perform Diffie-Hellman over a |
| * multiplicative group selected by the server. These ciphers are disabled for a |
| * server unless a group is chosen with one of these functions. |
| * |
| * A client may use |SSL_SESSION_get_key_exchange_info| to determine the size of |
| * the selected group's prime, but note that servers may select degenerate |
| * groups. */ |
| |
| /* SSL_CTX_set_tmp_dh configures |ctx| to use the group from |dh| as the group |
| * for DHE. Only the group is used, so |dh| needn't have a keypair. It returns |
| * one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh); |
| |
| /* SSL_set_tmp_dh configures |ssl| to use the group from |dh| as the group for |
| * DHE. Only the group is used, so |dh| needn't have a keypair. It returns one |
| * on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_set_tmp_dh(SSL *ssl, const DH *dh); |
| |
| /* SSL_CTX_set_tmp_dh_callback configures |ctx| to use |callback| to determine |
| * the group for DHE ciphers. |callback| should ignore |is_export| and |
| * |keylength| and return a |DH| of the selected group or NULL on error. Only |
| * the parameters are used, so the |DH| needn't have a generated keypair. |
| * |
| * WARNING: The caller does not take ownership of the resulting |DH|, so |
| * |callback| must save and release the object elsewhere. */ |
| OPENSSL_EXPORT void SSL_CTX_set_tmp_dh_callback( |
| SSL_CTX *ctx, DH *(*callback)(SSL *ssl, int is_export, int keylength)); |
| |
| /* SSL_set_tmp_dh_callback configures |ssl| to use |callback| to determine the |
| * group for DHE ciphers. |callback| should ignore |is_export| and |keylength| |
| * and return a |DH| of the selected group or NULL on error. Only the |
| * parameters are used, so the |DH| needn't have a generated keypair. |
| * |
| * WARNING: The caller does not take ownership of the resulting |DH|, so |
| * |callback| must save and release the object elsewhere. */ |
| OPENSSL_EXPORT void SSL_set_tmp_dh_callback(SSL *ssl, |
| DH *(*dh)(SSL *ssl, int is_export, |
| int keylength)); |
| |
| |
| /* Certificate verification. |
| * |
| * SSL may authenticate either endpoint with an X.509 certificate. Typically |
| * this is used to authenticate the server to the client. These functions |
| * configure certificate verification. |
| * |
| * WARNING: By default, certificate verification errors on a client are not |
| * fatal. See |SSL_VERIFY_NONE| This may be configured with |
| * |SSL_CTX_set_verify|. |
| * |
| * By default clients are anonymous but a server may request a certificate from |
| * the client by setting |SSL_VERIFY_PEER|. |
| * |
| * Many of these functions use OpenSSL's legacy X.509 stack which is |
| * underdocumented and deprecated, but the replacement isn't ready yet. For |
| * now, consumers may use the existing stack or bypass it by performing |
| * certificate verification externally. This may be done with |
| * |SSL_CTX_set_cert_verify_callback| or by extracting the chain with |
| * |SSL_get_peer_cert_chain| after the handshake. In the future, functions will |
| * be added to use the SSL stack without dependency on any part of the legacy |
| * X.509 and ASN.1 stack. |
| * |
| * To augment certificate verification, a client may also enable OCSP stapling |
| * (RFC 6066) and Certificate Transparency (RFC 6962) extensions. */ |
| |
| /* SSL_VERIFY_NONE, on a client, verifies the server certificate but does not |
| * make errors fatal. The result may be checked with |SSL_get_verify_result|. On |
| * a server it does not request a client certificate. This is the default. */ |
| #define SSL_VERIFY_NONE 0x00 |
| |
| /* SSL_VERIFY_PEER, on a client, makes server certificate errors fatal. On a |
| * server it requests a client certificate and makes errors fatal. However, |
| * anonymous clients are still allowed. See |
| * |SSL_VERIFY_FAIL_IF_NO_PEER_CERT|. */ |
| #define SSL_VERIFY_PEER 0x01 |
| |
| /* SSL_VERIFY_FAIL_IF_NO_PEER_CERT configures a server to reject connections if |
| * the client declines to send a certificate. Otherwise |SSL_VERIFY_PEER| still |
| * allows anonymous clients. */ |
| #define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02 |
| |
| /* SSL_VERIFY_PEER_IF_NO_OBC configures a server to request a client certificate |
| * if and only if Channel ID is not negotiated. */ |
| #define SSL_VERIFY_PEER_IF_NO_OBC 0x04 |
| |
| /* SSL_CTX_set_verify configures certificate verification behavior. |mode| is |
| * one of the |SSL_VERIFY_*| values defined above. |callback|, if not NULL, is |
| * used to customize certificate verification. See the behavior of |
| * |X509_STORE_CTX_set_verify_cb|. |
| * |
| * The callback may use |SSL_get_ex_data_X509_STORE_CTX_idx| with |
| * |X509_STORE_CTX_get_ex_data| to look up the |SSL| from |store_ctx|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_verify( |
| SSL_CTX *ctx, int mode, int (*callback)(int ok, X509_STORE_CTX *store_ctx)); |
| |
| /* SSL_set_verify configures certificate verification behavior. |mode| is one of |
| * the |SSL_VERIFY_*| values defined above. |callback|, if not NULL, is used to |
| * customize certificate verification. See the behavior of |
| * |X509_STORE_CTX_set_verify_cb|. |
| * |
| * The callback may use |SSL_get_ex_data_X509_STORE_CTX_idx| with |
| * |X509_STORE_CTX_get_ex_data| to look up the |SSL| from |store_ctx|. */ |
| OPENSSL_EXPORT void SSL_set_verify(SSL *ssl, int mode, |
| int (*callback)(int ok, |
| X509_STORE_CTX *store_ctx)); |
| |
| /* SSL_CTX_get_verify_mode returns |ctx|'s verify mode, set by |
| * |SSL_CTX_set_verify|. */ |
| OPENSSL_EXPORT int SSL_CTX_get_verify_mode(const SSL_CTX *ctx); |
| |
| /* SSL_get_verify_mode returns |ssl|'s verify mode, set by |SSL_CTX_set_verify| |
| * or |SSL_set_verify|. */ |
| OPENSSL_EXPORT int SSL_get_verify_mode(const SSL *ssl); |
| |
| /* SSL_CTX_get_verify_callback returns the callback set by |
| * |SSL_CTX_set_verify|. */ |
| OPENSSL_EXPORT int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))( |
| int ok, X509_STORE_CTX *store_ctx); |
| |
| /* SSL_get_verify_callback returns the callback set by |SSL_CTX_set_verify| or |
| * |SSL_set_verify|. */ |
| OPENSSL_EXPORT int (*SSL_get_verify_callback(const SSL *ssl))( |
| int ok, X509_STORE_CTX *store_ctx); |
| |
| /* SSL_CTX_set_verify_depth sets the maximum depth of a certificate chain |
| * accepted in verification. This number does not include the leaf, so a depth |
| * of 1 allows the leaf and one CA certificate. */ |
| OPENSSL_EXPORT void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth); |
| |
| /* SSL_set_verify_depth sets the maximum depth of a certificate chain accepted |
| * in verification. This number does not include the leaf, so a depth of 1 |
| * allows the leaf and one CA certificate. */ |
| OPENSSL_EXPORT void SSL_set_verify_depth(SSL *ssl, int depth); |
| |
| /* SSL_CTX_get_verify_depth returns the maximum depth of a certificate accepted |
| * in verification. */ |
| OPENSSL_EXPORT int SSL_CTX_get_verify_depth(const SSL_CTX *ctx); |
| |
| /* SSL_get_verify_depth returns the maximum depth of a certificate accepted in |
| * verification. */ |
| OPENSSL_EXPORT int SSL_get_verify_depth(const SSL *ssl); |
| |
| /* SSL_CTX_set1_param sets verification parameters from |param|. It returns one |
| * on success and zero on failure. The caller retains ownership of |param|. */ |
| OPENSSL_EXPORT int SSL_CTX_set1_param(SSL_CTX *ctx, |
| const X509_VERIFY_PARAM *param); |
| |
| /* SSL_set1_param sets verification parameters from |param|. It returns one on |
| * success and zero on failure. The caller retains ownership of |param|. */ |
| OPENSSL_EXPORT int SSL_set1_param(SSL *ssl, |
| const X509_VERIFY_PARAM *param); |
| |
| /* SSL_CTX_get0_param returns |ctx|'s |X509_VERIFY_PARAM| for certificate |
| * verification. The caller must not release the returned pointer but may call |
| * functions on it to configure it. */ |
| OPENSSL_EXPORT X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx); |
| |
| /* SSL_get0_param returns |ssl|'s |X509_VERIFY_PARAM| for certificate |
| * verification. The caller must not release the returned pointer but may call |
| * functions on it to configure it. */ |
| OPENSSL_EXPORT X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl); |
| |
| /* SSL_CTX_set_purpose sets |ctx|'s |X509_VERIFY_PARAM|'s 'purpose' parameter to |
| * |purpose|. It returns one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose); |
| |
| /* SSL_set_purpose sets |ssl|'s |X509_VERIFY_PARAM|'s 'purpose' parameter to |
| * |purpose|. It returns one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_set_purpose(SSL *ssl, int purpose); |
| |
| /* SSL_CTX_set_trust sets |ctx|'s |X509_VERIFY_PARAM|'s 'trust' parameter to |
| * |trust|. It returns one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_CTX_set_trust(SSL_CTX *ctx, int trust); |
| |
| /* SSL_set_trust sets |ssl|'s |X509_VERIFY_PARAM|'s 'trust' parameter to |
| * |trust|. It returns one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_set_trust(SSL *ssl, int trust); |
| |
| /* SSL_CTX_set_cert_store sets |ctx|'s certificate store to |store|. It takes |
| * ownership of |store|. The store is used for certificate verification. |
| * |
| * The store is also used for the auto-chaining feature, but this is deprecated. |
| * See also |SSL_MODE_NO_AUTO_CHAIN|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store); |
| |
| /* SSL_CTX_get_cert_store returns |ctx|'s certificate store. */ |
| OPENSSL_EXPORT X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_set_default_verify_paths loads the OpenSSL system-default trust |
| * anchors into |ctx|'s store. It returns one on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx); |
| |
| /* SSL_CTX_load_verify_locations loads trust anchors into |ctx|'s store from |
| * |ca_file| and |ca_dir|, either of which may be NULL. If |ca_file| is passed, |
| * it is opened and PEM-encoded CA certificates are read. If |ca_dir| is passed, |
| * it is treated as a directory in OpenSSL's hashed directory format. It returns |
| * one on success and zero on failure. |
| * |
| * See |
| * https://www.openssl.org/docs/manmaster/ssl/SSL_CTX_load_verify_locations.html |
| * for documentation on the directory format. */ |
| OPENSSL_EXPORT int SSL_CTX_load_verify_locations(SSL_CTX *ctx, |
| const char *ca_file, |
| const char *ca_dir); |
| |
| /* SSL_get_verify_result returns the result of certificate verification. It is |
| * either |X509_V_OK| or a |X509_V_ERR_*| value. */ |
| OPENSSL_EXPORT long SSL_get_verify_result(const SSL *ssl); |
| |
| /* SSL_set_verify_result overrides the result of certificate verification. */ |
| OPENSSL_EXPORT void SSL_set_verify_result(SSL *ssl, long result); |
| |
| /* SSL_get_ex_data_X509_STORE_CTX_idx returns the ex_data index used to look up |
| * the |SSL| associated with an |X509_STORE_CTX| in the verify callback. */ |
| OPENSSL_EXPORT int SSL_get_ex_data_X509_STORE_CTX_idx(void); |
| |
| /* SSL_CTX_set_cert_verify_callback sets a custom callback to be called on |
| * certificate verification rather than |X509_verify_cert|. |store_ctx| contains |
| * the verification parameters. The callback should return one on success and |
| * zero on fatal error. It may use |X509_STORE_CTX_set_error| to set a |
| * verification result. |
| * |
| * The callback may use either the |arg| parameter or |
| * |SSL_get_ex_data_X509_STORE_CTX_idx| to recover the associated |SSL| |
| * object. */ |
| OPENSSL_EXPORT void SSL_CTX_set_cert_verify_callback( |
| SSL_CTX *ctx, int (*callback)(X509_STORE_CTX *store_ctx, void *arg), |
| void *arg); |
| |
| /* SSL_enable_signed_cert_timestamps causes |ssl| (which must be the client end |
| * of a connection) to request SCTs from the server. See |
| * https://tools.ietf.org/html/rfc6962. It returns one. |
| * |
| * Call |SSL_get0_signed_cert_timestamp_list| to recover the SCT after the |
| * handshake. */ |
| OPENSSL_EXPORT int SSL_enable_signed_cert_timestamps(SSL *ssl); |
| |
| /* SSL_CTX_enable_signed_cert_timestamps enables SCT requests on all client SSL |
| * objects created from |ctx|. |
| * |
| * Call |SSL_get0_signed_cert_timestamp_list| to recover the SCT after the |
| * handshake. */ |
| OPENSSL_EXPORT void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx); |
| |
| /* SSL_enable_ocsp_stapling causes |ssl| (which must be the client end of a |
| * connection) to request a stapled OCSP response from the server. It returns |
| * one. |
| * |
| * Call |SSL_get0_ocsp_response| to recover the OCSP response after the |
| * handshake. */ |
| OPENSSL_EXPORT int SSL_enable_ocsp_stapling(SSL *ssl); |
| |
| /* SSL_CTX_enable_ocsp_stapling enables OCSP stapling on all client SSL objects |
| * created from |ctx|. |
| * |
| * Call |SSL_get0_ocsp_response| to recover the OCSP response after the |
| * handshake. */ |
| OPENSSL_EXPORT void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx); |
| |
| |
| /* Client certificate CA list. |
| * |
| * When requesting a client certificate, a server may advertise a list of |
| * certificate authorities which are accepted. These functions may be used to |
| * configure this list. */ |
| |
| /* SSL_set_client_CA_list sets |ssl|'s client certificate CA list to |
| * |name_list|. It takes ownership of |name_list|. */ |
| OPENSSL_EXPORT void SSL_set_client_CA_list(SSL *ssl, |
| STACK_OF(X509_NAME) *name_list); |
| |
| /* SSL_CTX_set_client_CA_list sets |ctx|'s client certificate CA list to |
| * |name_list|. It takes ownership of |name_list|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, |
| STACK_OF(X509_NAME) *name_list); |
| |
| /* SSL_get_client_CA_list returns |ssl|'s client certificate CA list. If |ssl| |
| * has not been configured as a client, this is the list configured by |
| * |SSL_CTX_set_client_CA_list|. |
| * |
| * If configured as a client, it returns the client certificate CA list sent by |
| * the server. In this mode, the behavior is undefined except during the |
| * callbacks set by |SSL_CTX_set_cert_cb| and |SSL_CTX_set_client_cert_cb| or |
| * when the handshake is paused because of them. */ |
| OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *ssl); |
| |
| /* SSL_CTX_get_client_CA_list returns |ctx|'s client certificate CA list. */ |
| OPENSSL_EXPORT STACK_OF(X509_NAME) * |
| SSL_CTX_get_client_CA_list(const SSL_CTX *ctx); |
| |
| /* SSL_add_client_CA appends |x509|'s subject to the client certificate CA list. |
| * It returns one on success or zero on error. The caller retains ownership of |
| * |x509|. */ |
| OPENSSL_EXPORT int SSL_add_client_CA(SSL *ssl, X509 *x509); |
| |
| /* SSL_CTX_add_client_CA appends |x509|'s subject to the client certificate CA |
| * list. It returns one on success or zero on error. The caller retains |
| * ownership of |x509|. */ |
| OPENSSL_EXPORT int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x509); |
| |
| /* SSL_load_client_CA_file opens |file| and reads PEM-encoded certificates from |
| * it. It returns a newly-allocated stack of the certificate subjects or NULL |
| * on error. */ |
| OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file); |
| |
| /* SSL_dup_CA_list makes a deep copy of |list|. It returns the new list on |
| * success or NULL on allocation error. */ |
| OPENSSL_EXPORT STACK_OF(X509_NAME) *SSL_dup_CA_list(STACK_OF(X509_NAME) *list); |
| |
| /* SSL_add_file_cert_subjects_to_stack behaves like |SSL_load_client_CA_file| |
| * but appends the result to |out|. It returns one on success or zero on |
| * error. */ |
| OPENSSL_EXPORT int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *out, |
| const char *file); |
| |
| /* SSL_add_dir_cert_subjects_to_stack lists files in directory |dir|. It calls |
| * |SSL_add_file_cert_subjects_to_stack| on each file and returns one on success |
| * or zero on error. */ |
| OPENSSL_EXPORT int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *out, |
| const char *dir); |
| |
| |
| /* Server name indication. |
| * |
| * The server_name extension (RFC 3546) allows the client to advertise the name |
| * of the server it is connecting to. This is used in virtual hosting |
| * deployments to select one of a several certificates on a single IP. Only the |
| * host_name name type is supported. */ |
| |
| #define TLSEXT_NAMETYPE_host_name 0 |
| |
| /* SSL_set_tlsext_host_name, for a client, configures |ssl| to advertise |name| |
| * in the server_name extension. It returns one on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_set_tlsext_host_name(SSL *ssl, const char *name); |
| |
| /* SSL_get_servername, for a server, returns the hostname supplied by the |
| * client or NULL if there was none. The |type| argument must be |
| * |TLSEXT_NAMETYPE_host_name|. */ |
| OPENSSL_EXPORT const char *SSL_get_servername(const SSL *ssl, const int type); |
| |
| /* SSL_get_servername_type, for a server, returns |TLSEXT_NAMETYPE_host_name| |
| * if the client sent a hostname and -1 otherwise. */ |
| OPENSSL_EXPORT int SSL_get_servername_type(const SSL *ssl); |
| |
| /* SSL_CTX_set_tlsext_servername_callback configures |callback| to be called on |
| * the server after ClientHello extensions have been parsed and returns one. |
| * The callback may use |SSL_get_servername| to examine the server_name extension |
| * and returns a |SSL_TLSEXT_ERR_*| value. The value of |arg| may be set by |
| * calling |SSL_CTX_set_tlsext_servername_arg|. |
| * |
| * If the callback returns |SSL_TLSEXT_ERR_NOACK|, the server_name extension is |
| * not acknowledged in the ServerHello. If the return value is |
| * |SSL_TLSEXT_ERR_ALERT_FATAL| or |SSL_TLSEXT_ERR_ALERT_WARNING| then |
| * |*out_alert| must be set to the alert value to send. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tlsext_servername_callback( |
| SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)); |
| |
| /* SSL_CTX_set_tlsext_servername_arg sets the argument to the servername |
| * callback and returns one. See |SSL_CTX_set_tlsext_servername_callback|. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg); |
| |
| /* SSL_TLSEXT_ERR_* are values returned by some extension-related callbacks. */ |
| #define SSL_TLSEXT_ERR_OK 0 |
| #define SSL_TLSEXT_ERR_ALERT_WARNING 1 |
| #define SSL_TLSEXT_ERR_ALERT_FATAL 2 |
| #define SSL_TLSEXT_ERR_NOACK 3 |
| |
| |
| /* Application-layer protocol negotation. |
| * |
| * The ALPN extension (RFC 7301) allows negotiating different application-layer |
| * protocols over a single port. This is used, for example, to negotiate |
| * HTTP/2. */ |
| |
| /* SSL_CTX_set_alpn_protos sets the client ALPN protocol list on |ctx| to |
| * |protos|. |protos| must be in wire-format (i.e. a series of non-empty, 8-bit |
| * length-prefixed strings). It returns zero on success and one on failure. |
| * Configuring this list enables ALPN on a client. |
| * |
| * WARNING: this function is dangerous because it breaks the usual return value |
| * convention. */ |
| OPENSSL_EXPORT int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, |
| unsigned protos_len); |
| |
| /* SSL_set_alpn_protos sets the client ALPN protocol list on |ssl| to |protos|. |
| * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit |
| * length-prefixed strings). It returns zero on success and one on failure. |
| * Configuring this list enables ALPN on a client. |
| * |
| * WARNING: this function is dangerous because it breaks the usual return value |
| * convention. */ |
| OPENSSL_EXPORT int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, |
| unsigned protos_len); |
| |
| /* SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is called |
| * during ClientHello processing in order to select an ALPN protocol from the |
| * client's list of offered protocols. Configuring this callback enables ALPN on |
| * a server. |
| * |
| * The callback is passed a wire-format (i.e. a series of non-empty, 8-bit |
| * length-prefixed strings) ALPN protocol list in |in|. It should set |*out| and |
| * |*out_len| to the selected protocol and return |SSL_TLSEXT_ERR_OK| on |
| * success. It does not pass ownership of the buffer. Otherwise, it should |
| * return |SSL_TLSEXT_ERR_NOACK|. Other |SSL_TLSEXT_ERR_*| values are |
| * unimplemented and will be treated as |SSL_TLSEXT_ERR_NOACK|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_alpn_select_cb( |
| SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, |
| const uint8_t *in, unsigned in_len, void *arg), |
| void *arg); |
| |
| /* SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. |
| * On return it sets |*out_data| to point to |*out_len| bytes of protocol name |
| * (not including the leading length-prefix byte). If the server didn't respond |
| * with a negotiated protocol then |*out_len| will be zero. */ |
| OPENSSL_EXPORT void SSL_get0_alpn_selected(const SSL *ssl, |
| const uint8_t **out_data, |
| unsigned *out_len); |
| |
| |
| /* Next protocol negotiation. |
| * |
| * The NPN extension (draft-agl-tls-nextprotoneg-03) is the predecessor to ALPN |
| * and deprecated in favor of it. */ |
| |
| /* SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when a |
| * TLS server needs a list of supported protocols for Next Protocol |
| * Negotiation. The returned list must be in wire format. The list is returned |
| * by setting |*out| to point to it and |*out_len| to its length. This memory |
| * will not be modified, but one should assume that |ssl| keeps a reference to |
| * it. |
| * |
| * The callback should return |SSL_TLSEXT_ERR_OK| if it wishes to advertise. |
| * Otherwise, no such extension will be included in the ServerHello. */ |
| OPENSSL_EXPORT void SSL_CTX_set_next_protos_advertised_cb( |
| SSL_CTX *ctx, |
| int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), |
| void *arg); |
| |
| /* SSL_CTX_set_next_proto_select_cb sets a callback that is called when a client |
| * needs to select a protocol from the server's provided list. |*out| must be |
| * set to point to the selected protocol (which may be within |in|). The length |
| * of the protocol name must be written into |*out_len|. The server's advertised |
| * protocols are provided in |in| and |in_len|. The callback can assume that |
| * |in| is syntactically valid. |
| * |
| * The client must select a protocol. It is fatal to the connection if this |
| * callback returns a value other than |SSL_TLSEXT_ERR_OK|. |
| * |
| * Configuring this callback enables NPN on a client. */ |
| OPENSSL_EXPORT void SSL_CTX_set_next_proto_select_cb( |
| SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, |
| const uint8_t *in, unsigned in_len, void *arg), |
| void *arg); |
| |
| /* SSL_get0_next_proto_negotiated sets |*out_data| and |*out_len| to point to |
| * the client's requested protocol for this connection. If the client didn't |
| * request any protocol, then |*out_data| is set to NULL. |
| * |
| * Note that the client can request any protocol it chooses. The value returned |
| * from this function need not be a member of the list of supported protocols |
| * provided by the server. */ |
| OPENSSL_EXPORT void SSL_get0_next_proto_negotiated(const SSL *ssl, |
| const uint8_t **out_data, |
| unsigned *out_len); |
| |
| /* SSL_select_next_proto implements the standard protocol selection. It is |
| * expected that this function is called from the callback set by |
| * |SSL_CTX_set_next_proto_select_cb|. |
| * |
| * The protocol data is assumed to be a vector of 8-bit, length prefixed byte |
| * strings. The length byte itself is not included in the length. A byte |
| * string of length 0 is invalid. No byte string may be truncated. |
| * |
| * The current, but experimental algorithm for selecting the protocol is: |
| * |
| * 1) If the server doesn't support NPN then this is indicated to the |
| * callback. In this case, the client application has to abort the connection |
| * or have a default application level protocol. |
| * |
| * 2) If the server supports NPN, but advertises an empty list then the |
| * client selects the first protcol in its list, but indicates via the |
| * API that this fallback case was enacted. |
| * |
| * 3) Otherwise, the client finds the first protocol in the server's list |
| * that it supports and selects this protocol. This is because it's |
| * assumed that the server has better information about which protocol |
| * a client should use. |
| * |
| * 4) If the client doesn't support any of the server's advertised |
| * protocols, then this is treated the same as case 2. |
| * |
| * It returns either |OPENSSL_NPN_NEGOTIATED| if a common protocol was found, or |
| * |OPENSSL_NPN_NO_OVERLAP| if the fallback case was reached. */ |
| OPENSSL_EXPORT int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, |
| const uint8_t *server, |
| unsigned server_len, |
| const uint8_t *client, |
| unsigned client_len); |
| |
| #define OPENSSL_NPN_UNSUPPORTED 0 |
| #define OPENSSL_NPN_NEGOTIATED 1 |
| #define OPENSSL_NPN_NO_OVERLAP 2 |
| |
| |
| /* Channel ID. |
| * |
| * See draft-balfanz-tls-channelid-01. */ |
| |
| /* SSL_CTX_enable_tls_channel_id either configures a TLS server to accept TLS |
| * Channel IDs from clients, or configures a client to send TLS Channel IDs to |
| * a server. It returns one. */ |
| OPENSSL_EXPORT int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx); |
| |
| /* SSL_enable_tls_channel_id either configures a TLS server to accept TLS |
| * Channel IDs from clients, or configures a client to send TLS Channel IDs to |
| * server. It returns one. */ |
| OPENSSL_EXPORT int SSL_enable_tls_channel_id(SSL *ssl); |
| |
| /* SSL_CTX_set1_tls_channel_id configures a TLS client to send a TLS Channel ID |
| * to compatible servers. |private_key| must be a P-256 EC key. It returns one |
| * on success and zero on error. */ |
| OPENSSL_EXPORT int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, |
| EVP_PKEY *private_key); |
| |
| /* SSL_set1_tls_channel_id configures a TLS client to send a TLS Channel ID to |
| * compatible servers. |private_key| must be a P-256 EC key. It returns one on |
| * success and zero on error. */ |
| OPENSSL_EXPORT int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key); |
| |
| /* SSL_get_tls_channel_id gets the client's TLS Channel ID from a server |SSL*| |
| * and copies up to the first |max_out| bytes into |out|. The Channel ID |
| * consists of the client's P-256 public key as an (x,y) pair where each is a |
| * 32-byte, big-endian field element. It returns 0 if the client didn't offer a |
| * Channel ID and the length of the complete Channel ID otherwise. */ |
| OPENSSL_EXPORT size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, |
| size_t max_out); |
| |
| /* SSL_CTX_set_channel_id_cb sets a callback to be called when a TLS Channel ID |
| * is requested. The callback may set |*out_pkey| to a key, passing a reference |
| * to the caller. If none is returned, the handshake will pause and |
| * |SSL_get_error| will return |SSL_ERROR_WANT_CHANNEL_ID_LOOKUP|. |
| * |
| * See also |SSL_ERROR_WANT_CHANNEL_ID_LOOKUP|. */ |
| OPENSSL_EXPORT void SSL_CTX_set_channel_id_cb( |
| SSL_CTX *ctx, void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey)); |
| |
| /* SSL_CTX_get_channel_id_cb returns the callback set by |
| * |SSL_CTX_set_channel_id_cb|. */ |
| OPENSSL_EXPORT void (*SSL_CTX_get_channel_id_cb(SSL_CTX *ctx))( |
| SSL *ssl, EVP_PKEY **out_pkey); |
| |
| |
| /* DTLS-SRTP. |
| * |
| * See RFC 5764. */ |
| |
| /* An SRTP_PROTECTION_PROFILE is an SRTP profile for use with the use_srtp |
| * extension. */ |
| struct srtp_protection_profile_st { |
| const char *name; |
| unsigned long id; |
| } /* SRTP_PROTECTION_PROFILE */; |
| |
| DECLARE_STACK_OF(SRTP_PROTECTION_PROFILE) |
| |
| /* SRTP_* define constants for SRTP profiles. */ |
| #define SRTP_AES128_CM_SHA1_80 0x0001 |
| #define SRTP_AES128_CM_SHA1_32 0x0002 |
| #define SRTP_AES128_F8_SHA1_80 0x0003 |
| #define SRTP_AES128_F8_SHA1_32 0x0004 |
| #define SRTP_NULL_SHA1_80 0x0005 |
| #define SRTP_NULL_SHA1_32 0x0006 |
| |
| /* SSL_CTX_set_srtp_profiles enables SRTP for all SSL objects created from |
| * |ctx|. |profile| contains a colon-separated list of profile names. It returns |
| * one on success and zero on failure. */ |
| OPENSSL_EXPORT int SSL_CTX_set_srtp_profiles(SSL_CTX *ctx, |
| const char *profiles); |
| |
| /* SSL_set_srtp_profiles enables SRTP for |ssl|. |profile| contains a |
| * colon-separated list of profile names. It returns one on success and zero on |
| * failure. */ |
| OPENSSL_EXPORT int SSL_set_srtp_profiles(SSL *ssl, const char *profiles); |
| |
| /* SSL_get_srtp_profiles returns the SRTP profiles supported by |ssl|. */ |
| OPENSSL_EXPORT STACK_OF(SRTP_PROTECTION_PROFILE) *SSL_get_srtp_profiles( |
| SSL *ssl); |
| |
| /* SSL_get_selected_srtp_profile returns the selected SRTP profile, or NULL if |
| * SRTP was not negotiated. */ |
| OPENSSL_EXPORT const SRTP_PROTECTION_PROFILE *SSL_get_selected_srtp_profile( |
| SSL *ssl); |
| |
| |
| /* Pre-shared keys. |
| * |
| * Connections may be configured with PSK (Pre-Shared Key) cipher suites. These |
| * authenticate using out-of-band pre-shared keys rather than certificates. See |
| * RFC 4279. |
| * |
| * This implementation uses NUL-terminated C strings for identities and identity |
| * hints, so values with a NUL character are not supported. (RFC 4279 does not |
| * specify the format of an identity.) */ |
| |
| /* PSK_MAX_IDENTITY_LEN is the maximum supported length of a PSK identity, |
| * excluding the NUL terminator. */ |
| #define PSK_MAX_IDENTITY_LEN 128 |
| |
| /* PSK_MAX_PSK_LEN is the maximum supported length of a pre-shared key. */ |
| #define PSK_MAX_PSK_LEN 256 |
| |
| /* SSL_CTX_set_psk_client_callback sets the callback to be called when PSK is |
| * negotiated on the client. This callback must be set to enable PSK cipher |
| * suites on the client. |
| * |
| * The callback is passed the identity hint in |hint| or NULL if none was |
| * provided. It should select a PSK identity and write the identity and the |
| * corresponding PSK to |identity| and |psk|, respectively. The identity is |
| * written as a NUL-terminated C string of length (excluding the NUL terminator) |
| * at most |max_identity_len|. The PSK's length must be at most |max_psk_len|. |
| * The callback returns the length of the PSK or 0 if no suitable identity was |
| * found. */ |
| OPENSSL_EXPORT void SSL_CTX_set_psk_client_callback( |
| SSL_CTX *ctx, |
| unsigned (*psk_client_callback)( |
| SSL *ssl, const char *hint, char *identity, |
| unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)); |
| |
| /* SSL_set_psk_client_callback sets the callback to be called when PSK is |
| * negotiated on the client. This callback must be set to enable PSK cipher |
| * suites on the client. See also |SSL_CTX_set_psk_client_callback|. */ |
| OPENSSL_EXPORT void SSL_set_psk_client_callback( |
| SSL *ssl, unsigned (*psk_client_callback)(SSL *ssl, const char *hint, |
| char *identity, |
| unsigned max_identity_len, |
| uint8_t *psk, |
| unsigned max_psk_len)); |
| |
| /* SSL_CTX_set_psk_server_callback sets the callback to be called when PSK is |
| * negotiated on the server. This callback must be set to enable PSK cipher |
| * suites on the server. |
| * |
| * The callback is passed the identity in |identity|. It should write a PSK of |
| * length at most |max_psk_len| to |psk| and return the number of bytes written |
| * or zero if the PSK identity is unknown. */ |
| OPENSSL_EXPORT void SSL_CTX_set_psk_server_callback( |
| SSL_CTX *ctx, |
| unsigned (*psk_server_callback)(SSL *ssl, const char *identity, |
| uint8_t *psk, |
| unsigned max_psk_len)); |
| |
| /* SSL_set_psk_server_callback sets the callback to be called when PSK is |
| * negotiated on the server. This callback must be set to enable PSK cipher |
| * suites on the server. See also |SSL_CTX_set_psk_server_callback|. */ |
| OPENSSL_EXPORT void SSL_set_psk_server_callback( |
| SSL *ssl, |
| unsigned (*psk_server_callback)(SSL *ssl, const char *identity, |
| uint8_t *psk, |
| unsigned max_psk_len)); |
| |
| /* SSL_CTX_use_psk_identity_hint configures server connections to advertise an |
| * identity hint of |identity_hint|. It returns one on success and zero on |
| * error. */ |
| OPENSSL_EXPORT int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, |
| const char *identity_hint); |
| |
| /* SSL_use_psk_identity_hint configures server connections to advertise an |
| * identity hint of |identity_hint|. It returns one on success and zero on |
| * error. */ |
| OPENSSL_EXPORT int SSL_use_psk_identity_hint(SSL *ssl, |
| const char *identity_hint); |
| |
| /* SSL_get_psk_identity_hint returns the PSK identity hint advertised for |ssl| |
| * or NULL if there is none. */ |
| OPENSSL_EXPORT const char *SSL_get_psk_identity_hint(const SSL *ssl); |
| |
| /* SSL_get_psk_identity, after the handshake completes, returns the PSK identity |
| * that was negotiated by |ssl| or NULL if PSK was not used. */ |
| OPENSSL_EXPORT const char *SSL_get_psk_identity(const SSL *ssl); |
| |
| |
| /* Alerts. |
| * |
| * TLS and SSL 3.0 use alerts to signal error conditions. Alerts have a type |
| * (warning or fatal) and description. OpenSSL internally handles fatal alerts |
| * with dedicated error codes (see |SSL_AD_REASON_OFFSET|). Except for |
| * close_notify, warning alerts are silently ignored and may only be surfaced |
| * with |SSL_CTX_set_info_callback|. */ |
| |
| /* SSL_AD_REASON_OFFSET is the offset between error reasons and |SSL_AD_*| |
| * values. Any error code under |ERR_LIB_SSL| with an error reason above this |
| * value corresponds to an alert description. Consumers may add or subtract |
| * |SSL_AD_REASON_OFFSET| to convert between them. |
| * |
| * make_errors.go reserves error codes above 1000 for manually-assigned errors. |
| * This value must be kept in sync with reservedReasonCode in make_errors.h */ |
| #define SSL_AD_REASON_OFFSET 1000 |
| |
| /* SSL_AD_* are alert descriptions for SSL 3.0 and TLS. */ |
| #define SSL_AD_CLOSE_NOTIFY SSL3_AD_CLOSE_NOTIFY |
| #define SSL_AD_UNEXPECTED_MESSAGE SSL3_AD_UNEXPECTED_MESSAGE |
| #define SSL_AD_BAD_RECORD_MAC SSL3_AD_BAD_RECORD_MAC |
| #define SSL_AD_DECRYPTION_FAILED TLS1_AD_DECRYPTION_FAILED |
| #define SSL_AD_RECORD_OVERFLOW TLS1_AD_RECORD_OVERFLOW |
| #define SSL_AD_DECOMPRESSION_FAILURE SSL3_AD_DECOMPRESSION_FAILURE |
| #define SSL_AD_HANDSHAKE_FAILURE SSL3_AD_HANDSHAKE_FAILURE |
| #define SSL_AD_NO_CERTIFICATE SSL3_AD_NO_CERTIFICATE /* Not used in TLS */ |
| #define SSL_AD_BAD_CERTIFICATE SSL3_AD_BAD_CERTIFICATE |
| #define SSL_AD_UNSUPPORTED_CERTIFICATE SSL3_AD_UNSUPPORTED_CERTIFICATE |
| #define SSL_AD_CERTIFICATE_REVOKED SSL3_AD_CERTIFICATE_REVOKED |
| #define SSL_AD_CERTIFICATE_EXPIRED SSL3_AD_CERTIFICATE_EXPIRED |
| #define SSL_AD_CERTIFICATE_UNKNOWN SSL3_AD_CERTIFICATE_UNKNOWN |
| #define SSL_AD_ILLEGAL_PARAMETER SSL3_AD_ILLEGAL_PARAMETER |
| #define SSL_AD_UNKNOWN_CA TLS1_AD_UNKNOWN_CA |
| #define SSL_AD_ACCESS_DENIED TLS1_AD_ACCESS_DENIED |
| #define SSL_AD_DECODE_ERROR TLS1_AD_DECODE_ERROR |
| #define SSL_AD_DECRYPT_ERROR TLS1_AD_DECRYPT_ERROR |
| #define SSL_AD_EXPORT_RESTRICTION TLS1_AD_EXPORT_RESTRICTION |
| #define SSL_AD_PROTOCOL_VERSION TLS1_AD_PROTOCOL_VERSION |
| #define SSL_AD_INSUFFICIENT_SECURITY TLS1_AD_INSUFFICIENT_SECURITY |
| #define SSL_AD_INTERNAL_ERROR TLS1_AD_INTERNAL_ERROR |
| #define SSL_AD_USER_CANCELLED TLS1_AD_USER_CANCELLED |
| #define SSL_AD_NO_RENEGOTIATION TLS1_AD_NO_RENEGOTIATION |
| #define SSL_AD_UNSUPPORTED_EXTENSION TLS1_AD_UNSUPPORTED_EXTENSION |
| #define SSL_AD_CERTIFICATE_UNOBTAINABLE TLS1_AD_CERTIFICATE_UNOBTAINABLE |
| #define SSL_AD_UNRECOGNIZED_NAME TLS1_AD_UNRECOGNIZED_NAME |
| #define SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE \ |
| TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE |
| #define SSL_AD_BAD_CERTIFICATE_HASH_VALUE TLS1_AD_BAD_CERTIFICATE_HASH_VALUE |
| #define SSL_AD_UNKNOWN_PSK_IDENTITY TLS1_AD_UNKNOWN_PSK_IDENTITY |
| #define SSL_AD_INAPPROPRIATE_FALLBACK SSL3_AD_INAPPROPRIATE_FALLBACK |
| |
| /* SSL_alert_type_string_long returns a string description of |value| as an |
| * alert type (warning or fatal). */ |
| OPENSSL_EXPORT const char *SSL_alert_type_string_long(int value); |
| |
| /* SSL_alert_desc_string_long returns a string description of |value| as an |
| * alert description or "unknown" if unknown. */ |
| OPENSSL_EXPORT const char *SSL_alert_desc_string_long(int value); |
| |
| |
| /* ex_data functions. |
| * |
| * See |ex_data.h| for details. */ |
| |
| OPENSSL_EXPORT int SSL_set_ex_data(SSL *ssl, int idx, void *data); |
| OPENSSL_EXPORT void *SSL_get_ex_data(const SSL *ssl, int idx); |
| OPENSSL_EXPORT int SSL_get_ex_new_index(long argl, void *argp, |
| CRYPTO_EX_new *new_func, |
| CRYPTO_EX_dup *dup_func, |
| CRYPTO_EX_free *free_func); |
| |
| OPENSSL_EXPORT int SSL_SESSION_set_ex_data(SSL_SESSION *session, int idx, |
| void *data); |
| OPENSSL_EXPORT void *SSL_SESSION_get_ex_data(const SSL_SESSION *session, |
| int idx); |
| OPENSSL_EXPORT int SSL_SESSION_get_ex_new_index(long argl, void *argp, |
| CRYPTO_EX_new *new_func, |
| CRYPTO_EX_dup *dup_func, |
| CRYPTO_EX_free *free_func); |
| |
| OPENSSL_EXPORT int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *data); |
| OPENSSL_EXPORT void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx); |
| OPENSSL_EXPORT int SSL_CTX_get_ex_new_index(long argl, void *argp, |
| CRYPTO_EX_new *new_func, |
| CRYPTO_EX_dup *dup_func, |
| CRYPTO_EX_free *free_func); |
| |
| |
| /* Obscure functions. */ |
| |
| /* SSL_get_rc4_state sets |*read_key| and |*write_key| to the RC4 states for |
| * the read and write directions. It returns one on success or zero if |ssl| |
| * isn't using an RC4-based cipher suite. */ |
| OPENSSL_EXPORT int SSL_get_rc4_state(const SSL *ssl, const RC4_KEY **read_key, |
| const RC4_KEY **write_key); |
| |
| /* SSL_get_structure_sizes returns the sizes of the SSL, SSL_CTX and |
| * SSL_SESSION structures so that a test can ensure that outside code agrees on |
| * these values. */ |
| OPENSSL_EXPORT void SSL_get_structure_sizes(size_t *ssl_size, |
| size_t *ssl_ctx_size, |
| size_t *ssl_session_size); |
| |
| /* SSL_CTX_set_msg_callback installs |cb| as the message callback for |ctx|. |
| * This callback will be called when sending or receiving low-level record |
| * headers, complete handshake messages, ChangeCipherSpec, and alerts. |
| * |write_p| is one for outgoing messages and zero for incoming messages. |
| * |
| * For each record header, |cb| is called with |version| = 0 and |content_type| |
| * = |SSL3_RT_HEADER|. The |len| bytes from |buf| contain the header. Note that |
| * this does not include the record body. If the record is sealed, the length |
| * in the header is the length of the ciphertext. |
| * |
| * For each handshake message, ChangeCipherSpec, and alert, |version| is the |
| * protocol version and |content_type| is the corresponding record type. The |
| * |len| bytes from |buf| contain the handshake message, one-byte |
| * ChangeCipherSpec body, and two-byte alert, respectively. */ |
| OPENSSL_EXPORT void SSL_CTX_set_msg_callback( |
| SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, |
| const void *buf, size_t len, SSL *ssl, void *arg)); |
| |
| /* SSL_CTX_set_msg_callback_arg sets the |arg| parameter of the message |
| * callback. */ |
| OPENSSL_EXPORT void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg); |
| |
| /* SSL_set_msg_callback installs |cb| as the message callback of |ssl|. See |
| * |SSL_CTX_set_msg_callback| for when this callback is called. */ |
| OPENSSL_EXPORT void SSL_set_msg_callback( |
| SSL *ssl, void (*cb)(int write_p, int version, int content_type, |
| const void *buf, size_t len, SSL *ssl, void *arg)); |
| |
| /* SSL_set_msg_callback_arg sets the |arg| parameter of the message callback. */ |
| OPENSSL_EXPORT void SSL_set_msg_callback_arg(SSL *ssl, void *arg); |
| |
| /* SSL_CTX_set_keylog_bio sets configures all SSL objects attached to |ctx| to |
| * log session material to |keylog_bio|. This is intended for debugging use |
| * with tools like Wireshark. |ctx| takes ownership of |keylog_bio|. |
| * |
| * The format is described in |
| * https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format. */ |
| OPENSSL_EXPORT void SSL_CTX_set_keylog_bio(SSL_CTX *ctx, BIO *keylog_bio); |
| |
| enum ssl_renegotiate_mode_t { |
| ssl_renegotiate_never = 0, |
| ssl_renegotiate_once, |
| ssl_renegotiate_freely, |
| ssl_renegotiate_ignore, |
| }; |
| |
| /* SSL_set_renegotiate_mode configures how |ssl|, a client, reacts to |
| * renegotiation attempts by a server. If |ssl| is a server, peer-initiated |
| * renegotiations are *always* rejected and this function does nothing. |
| * |
| * The renegotiation mode defaults to |ssl_renegotiate_never|, but may be set |
| * at any point in a connection's lifetime. Set it to |ssl_renegotiate_once| to |
| * allow one renegotiation, |ssl_renegotiate_freely| to allow all |
| * renegotiations or |ssl_renegotiate_ignore| to ignore HelloRequest messages. |
| * Note that ignoring HelloRequest messages may cause the connection to stall |
| * if the server waits for the renegotiation to complete. |
| * |
| * There is no support in BoringSSL for initiating renegotiations as a client |
| * or server. */ |
| OPENSSL_EXPORT void SSL_set_renegotiate_mode(SSL *ssl, |
| enum ssl_renegotiate_mode_t mode); |
| |
| /* SSL_renegotiate_pending returns one if |ssl| is in the middle of a |
| * renegotiation. */ |
| OPENSSL_EXPORT int SSL_renegotiate_pending(SSL *ssl); |
| |
| /* SSL_total_renegotiations returns the total number of renegotiation handshakes |
| * peformed by |ssl|. This includes the pending renegotiation, if any. */ |
| OPENSSL_EXPORT int SSL_total_renegotiations(const SSL *ssl); |
| |
| /* SSL_MAX_CERT_LIST_DEFAULT is the default maximum length, in bytes, of a peer |
| * certificate chain. */ |
| #define SSL_MAX_CERT_LIST_DEFAULT 1024 * 100 |
| |
| /* SSL_CTX_get_max_cert_list returns the maximum length, in bytes, of a peer |
| * certificate chain accepted by |ctx|. */ |
| OPENSSL_EXPORT size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_set_max_cert_list sets the maximum length, in bytes, of a peer |
| * certificate chain to |max_cert_list|. This affects how much memory may be |
| * consumed during the handshake. */ |
| OPENSSL_EXPORT void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, |
| size_t max_cert_list); |
| |
| /* SSL_get_max_cert_list returns the maximum length, in bytes, of a peer |
| * certificate chain accepted by |ssl|. */ |
| OPENSSL_EXPORT size_t SSL_get_max_cert_list(const SSL *ssl); |
| |
| /* SSL_set_max_cert_list sets the maximum length, in bytes, of a peer |
| * certificate chain to |max_cert_list|. This affects how much memory may be |
| * consumed during the handshake. */ |
| OPENSSL_EXPORT void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list); |
| |
| /* SSL_CTX_set_max_send_fragment sets the maximum length, in bytes, of records |
| * sent by |ctx|. Beyond this length, handshake messages and application data |
| * will be split into multiple records. */ |
| OPENSSL_EXPORT void SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, |
| size_t max_send_fragment); |
| |
| /* SSL_set_max_send_fragment sets the maximum length, in bytes, of records |
| * sent by |ssl|. Beyond this length, handshake messages and application data |
| * will be split into multiple records. */ |
| OPENSSL_EXPORT void SSL_set_max_send_fragment(SSL *ssl, |
| size_t max_send_fragment); |
| |
| /* OPENSSL_get_big_buffer_use_count returns the total number of invalid TLS |
| * records that were accepted because of |SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER|. |
| * |
| * TODO(davidben): Remove this when (hopefully!) the quirk is demonstrated to be |
| * unnecessary. */ |
| OPENSSL_EXPORT uint64_t OPENSSL_get_big_buffer_use_count(void); |
| |
| /* OPENSSL_get_d5_bug_use_count returns the total number of invalid RSA |
| * ClientKeyExchanges that were accepted because of |SSL_OP_TLS_D5_BUG|. |
| * |
| * TODO(davidben): Remove this when (hopefully!) the quirk is demonstrated to be |
| * unnecessary. */ |
| OPENSSL_EXPORT uint64_t OPENSSL_get_d5_bug_use_count(void); |
| |
| /* ssl_early_callback_ctx is passed to certain callbacks that are called very |
| * early on during the server handshake. At this point, much of the SSL* hasn't |
| * been filled out and only the ClientHello can be depended on. */ |
| struct ssl_early_callback_ctx { |
| SSL *ssl; |
| const uint8_t *client_hello; |
| size_t client_hello_len; |
| const uint8_t *session_id; |
| size_t session_id_len; |
| const uint8_t *cipher_suites; |
| size_t cipher_suites_len; |
| const uint8_t *compression_methods; |
| size_t compression_methods_len; |
| const uint8_t *extensions; |
| size_t extensions_len; |
| }; |
| |
| /* SSL_early_callback_ctx_extension_get searches the extensions in |ctx| for an |
| * extension of the given type. If not found, it returns zero. Otherwise it |
| * sets |out_data| to point to the extension contents (not including the type |
| * and length bytes), sets |out_len| to the length of the extension contents |
| * and returns one. */ |
| OPENSSL_EXPORT int SSL_early_callback_ctx_extension_get( |
| const struct ssl_early_callback_ctx *ctx, uint16_t extension_type, |
| const uint8_t **out_data, size_t *out_len); |
| |
| /* SSL_CTX_set_select_certificate_cb sets a callback that is called before most |
| * ClientHello processing and before the decision whether to resume a session |
| * is made. The callback may inspect the ClientHello and configure the |
| * connection. It may then return one to continue the handshake or zero to |
| * pause the handshake to perform an asynchronous operation. If paused, |
| * |SSL_get_error| will return |SSL_ERROR_PENDING_CERTIFICATE|. |
| * |
| * Note: The |ssl_early_callback_ctx| is only valid for the duration of the |
| * callback and is not valid while the handshake is paused. Further, unlike with |
| * most callbacks, when the handshake loop is resumed, it will not call the |
| * callback a second time. The caller must finish reconfiguring the connection |
| * before resuming the handshake. */ |
| OPENSSL_EXPORT void SSL_CTX_set_select_certificate_cb( |
| SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)); |
| |
| /* SSL_CTX_set_dos_protection_cb sets a callback that is called once the |
| * resumption decision for a ClientHello has been made. It can return one to |
| * allow the handshake to continue or zero to cause the handshake to abort. */ |
| OPENSSL_EXPORT void SSL_CTX_set_dos_protection_cb( |
| SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)); |
| |
| /* SSL_ST_* are possible values for |SSL_state| and the bitmasks that make them |
| * up. */ |
| #define SSL_ST_CONNECT 0x1000 |
| #define SSL_ST_ACCEPT 0x2000 |
| #define SSL_ST_MASK 0x0FFF |
| #define SSL_ST_INIT (SSL_ST_CONNECT | SSL_ST_ACCEPT) |
| #define SSL_ST_OK 0x03 |
| #define SSL_ST_RENEGOTIATE (0x04 | SSL_ST_INIT) |
| |
| /* SSL_CB_* are possible values for the |type| parameter in the info |
| * callback and the bitmasks that make them up. */ |
| #define SSL_CB_LOOP 0x01 |
| #define SSL_CB_EXIT 0x02 |
| #define SSL_CB_READ 0x04 |
| #define SSL_CB_WRITE 0x08 |
| #define SSL_CB_ALERT 0x4000 |
| #define SSL_CB_READ_ALERT (SSL_CB_ALERT | SSL_CB_READ) |
| #define SSL_CB_WRITE_ALERT (SSL_CB_ALERT | SSL_CB_WRITE) |
| #define SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPT | SSL_CB_LOOP) |
| #define SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPT | SSL_CB_EXIT) |
| #define SSL_CB_CONNECT_LOOP (SSL_ST_CONNECT | SSL_CB_LOOP) |
| #define SSL_CB_CONNECT_EXIT (SSL_ST_CONNECT | SSL_CB_EXIT) |
| #define SSL_CB_HANDSHAKE_START 0x10 |
| #define SSL_CB_HANDSHAKE_DONE 0x20 |
| |
| /* SSL_set_info_callback configures a callback to be run when various events |
| * occur during a connection's lifetime. The |type| argumentj determines the |
| * type of event and the meaning of the |value| argument. Callbacks must ignore |
| * unexpected |type| values. |
| * |
| * |SSL_CB_READ_ALERT| is signaled for each alert received, warning or fatal. |
| * The |value| argument is a 16-bit value where the alert level (either |
| * |SSL3_AL_WARNING| or |SSL3_AL_FATAL|) is in the most-significant eight bits and |
| * the alert type (one of |SSL_AD_*|) is in the least-significant eight. |
| * |
| * |SSL_CB_WRITE_ALERT| is signaled for each alert sent. The |value| argument |
| * is constructed as with |SSL_CB_READ_ALERT|. |
| * |
| * |SSL_CB_HANDSHAKE_START| is signaled when a handshake begins. The |value| |
| * argument is always one. |
| * |
| * |SSL_CB_HANDSHAKE_DONE| is signaled when a handshake completes successfully. |
| * The |value| argument is always one. If a handshake False Starts, this event |
| * may be used to determine when the Finished message is received. |
| * |
| * The following event types expose implementation details of the handshake |
| * state machine. Consuming them is deprecated. |
| * |
| * |SSL_CB_ACCEPT_LOOP| (respectively, |SSL_CB_CONNECT_LOOP|) is signaled when |
| * a server (respectively, client) handshake progresses. The |value| argument |
| * is always one. For the duration of the callback, |SSL_state| will return the |
| * previous state. |
| * |
| * |SSL_CB_ACCEPT_EXIT| (respectively, |SSL_CB_CONNECT_EXIT|) is signaled when |
| * a server (respectively, client) handshake completes, fails, or is paused. |
| * The |value| argument is one if the handshake succeeded and <= 0 |
| * otherwise. */ |
| OPENSSL_EXPORT void SSL_CTX_set_info_callback( |
| SSL_CTX *ctx, void (*cb)(const SSL *ssl, int type, int value)); |
| |
| /* SSL_CTX_get_info_callback returns the callback set by |
| * |SSL_CTX_set_info_callback|. */ |
| OPENSSL_EXPORT void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))(const SSL *ssl, |
| int type, |
| int value); |
| |
| /* SSL_set_info_callback configures a callback to be run at various events |
| * during a connection's lifetime. See |SSL_CTX_set_info_callback|. */ |
| OPENSSL_EXPORT void SSL_set_info_callback( |
| SSL *ssl, void (*cb)(const SSL *ssl, int type, int value)); |
| |
| /* SSL_get_info_callback returns the callback set by |SSL_set_info_callback|. */ |
| OPENSSL_EXPORT void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, |
| int type, |
| int value); |
| |
| /* SSL_state_string_long returns the current state of the handshake state |
| * machine as a string. This may be useful for debugging and logging. */ |
| OPENSSL_EXPORT const char *SSL_state_string_long(const SSL *ssl); |
| |
| /* SSL_set_SSL_CTX partially changes |ssl|'s |SSL_CTX|. |ssl| will use the |
| * certificate and session_id_context from |ctx|, and |SSL_get_SSL_CTX| will |
| * report |ctx|. However most settings and the session cache itself will |
| * continue to use the initial |SSL_CTX|. It is often used as part of SNI. |
| * |
| * TODO(davidben): Make a better story here and get rid of this API. Also |
| * determine if there's anything else affected by |SSL_set_SSL_CTX| that |
| * matters. Not as many values are affected as one might initially think. The |
| * session cache explicitly selects the initial |SSL_CTX|. Most settings are |
| * copied at |SSL_new| so |ctx|'s versions don't apply. This, notably, has some |
| * consequences for any plans to make |SSL| copy-on-write most of its |
| * configuration. */ |
| OPENSSL_EXPORT SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx); |
| |
| #define SSL_SENT_SHUTDOWN 1 |
| #define SSL_RECEIVED_SHUTDOWN 2 |
| |
| /* SSL_get_shutdown returns a bitmask with a subset of |SSL_SENT_SHUTDOWN| and |
| * |SSL_RECEIVED_SHUTDOWN| to query whether close_notify was sent or received, |
| * respectively. */ |
| OPENSSL_EXPORT int SSL_get_shutdown(const SSL *ssl); |
| |
| |
| /* Deprecated functions. */ |
| |
| /* SSL_library_init calls |CRYPTO_library_init| and returns one. */ |
| OPENSSL_EXPORT int SSL_library_init(void); |
| |
| /* SSL_set_reject_peer_renegotiations calls |SSL_set_renegotiate_mode| with |
| * |ssl_never_renegotiate| if |reject| is one and |ssl_renegotiate_freely| if |
| * zero. */ |
| OPENSSL_EXPORT void SSL_set_reject_peer_renegotiations(SSL *ssl, int reject); |
| |
| /* SSL_CIPHER_description writes a description of |cipher| into |buf| and |
| * returns |buf|. If |buf| is NULL, it returns a newly allocated string, to be |
| * freed with |OPENSSL_free|, or NULL on error. |
| * |
| * The description includes a trailing newline and has the form: |
| * AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 |
| * |
| * Consider |SSL_CIPHER_get_name| or |SSL_CIPHER_get_rfc_name| instead. */ |
| OPENSSL_EXPORT const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, |
| char *buf, int len); |
| |
| /* SSL_CIPHER_get_version returns the string "TLSv1/SSLv3". */ |
| OPENSSL_EXPORT const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher); |
| |
| typedef void COMP_METHOD; |
| |
| /* SSL_COMP_get_compression_methods returns NULL. */ |
| OPENSSL_EXPORT COMP_METHOD *SSL_COMP_get_compression_methods(void); |
| |
| /* SSL_COMP_add_compression_method returns one. */ |
| OPENSSL_EXPORT int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm); |
| |
| /* SSL_COMP_get_name returns NULL. */ |
| OPENSSL_EXPORT const char *SSL_COMP_get_name(const COMP_METHOD *comp); |
| |
| /* SSLv23_method calls |TLS_method|. */ |
| OPENSSL_EXPORT const SSL_METHOD *SSLv23_method(void); |
| |
| /* Version-specific methods behave exactly like |TLS_method| and |DTLS_method| |
| * except they also call |SSL_CTX_set_min_version| and |SSL_CTX_set_max_version| |
| * to lock connections to that protocol version. */ |
| OPENSSL_EXPORT const SSL_METHOD *SSLv3_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_1_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_2_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLSv1_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLSv1_2_method(void); |
| |
| /* Client- and server-specific methods call their corresponding generic |
| * methods. */ |
| OPENSSL_EXPORT const SSL_METHOD *SSLv23_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *SSLv23_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *SSLv3_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *SSLv3_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_1_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_1_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_2_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *TLSv1_2_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLS_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLS_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLSv1_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLSv1_client_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLSv1_2_server_method(void); |
| OPENSSL_EXPORT const SSL_METHOD *DTLSv1_2_client_method(void); |
| |
| /* SSL_clear resets |ssl| to allow another connection and returns one on success |
| * or zero on failure. It returns most configuration state but releases memory |
| * associated with the current connection. |
| * |
| * Free |ssl| and create a new one instead. */ |
| OPENSSL_EXPORT int SSL_clear(SSL *ssl); |
| |
| /* SSL_CTX_set_tmp_rsa_callback does nothing. */ |
| OPENSSL_EXPORT void SSL_CTX_set_tmp_rsa_callback( |
| SSL_CTX *ctx, RSA *(*cb)(SSL *ssl, int is_export, int keylength)); |
| |
| /* SSL_set_tmp_rsa_callback does nothing. */ |
| OPENSSL_EXPORT void SSL_set_tmp_rsa_callback(SSL *ssl, |
| RSA *(*cb)(SSL *ssl, int is_export, |
| int keylength)); |
| |
| /* SSL_CTX_sess_connect returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_connect(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_connect_good returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_connect_good(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_connect_renegotiate returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_accept returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_accept(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_accept_renegotiate returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_accept_good returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_accept_good(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_hits returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_hits(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_cb_hits returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_misses returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_misses(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_timeouts returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_timeouts(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_sess_cache_full returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_sess_cache_full(const SSL_CTX *ctx); |
| |
| /* SSL_cutthrough_complete calls |SSL_in_false_start|. */ |
| OPENSSL_EXPORT int SSL_cutthrough_complete(const SSL *s); |
| |
| /* SSL_num_renegotiations calls |SSL_total_renegotiations|. */ |
| OPENSSL_EXPORT int SSL_num_renegotiations(const SSL *ssl); |
| |
| /* SSL_CTX_need_tmp_RSA returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx); |
| |
| /* SSL_need_tmp_RSA returns zero. */ |
| OPENSSL_EXPORT int SSL_need_tmp_RSA(const SSL *ssl); |
| |
| /* SSL_CTX_set_tmp_rsa returns one. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa); |
| |
| /* SSL_set_tmp_rsa returns one. */ |
| OPENSSL_EXPORT int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa); |
| |
| /* SSL_CTX_get_read_ahead returns zero. */ |
| OPENSSL_EXPORT int SSL_CTX_get_read_ahead(const SSL_CTX *ctx); |
| |
| /* SSL_CTX_set_read_ahead does nothing. */ |
| OPENSSL_EXPORT void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes); |
| |
| /* SSL_get_read_ahead returns zero. */ |
| OPENSSL_EXPORT int SSL_get_read_ahead(const SSL *s); |
| |
| /* SSL_set_read_ahead does nothing. */ |
| OPENSSL_EXPORT void SSL_set_read_ahead(SSL *s, int yes); |
| |
| /* SSL_renegotiate put an error on the error queue and returns zero. */ |
| OPENSSL_EXPORT int SSL_renegotiate(SSL *ssl); |
| |
| /* SSL_set_state does nothing. */ |
| OPENSSL_EXPORT void SSL_set_state(SSL *ssl, int state); |
| |
| /* SSL_MODE_HANDSHAKE_CUTTHROUGH is the same as SSL_MODE_ENABLE_FALSE_START. */ |
| #define SSL_MODE_HANDSHAKE_CUTTHROUGH SSL_MODE_ENABLE_FALSE_START |
| |
| /* i2d_SSL_SESSION serializes |in| to the bytes pointed to by |*pp|. On success, |
| * it returns the number of bytes written and advances |*pp| by that many bytes. |
| * On failure, it returns -1. If |pp| is NULL, no bytes are written and only the |
| * length is returned. |
| * |
| * Use |SSL_SESSION_to_bytes| instead. */ |
| OPENSSL_EXPORT int i2d_SSL_SESSION(SSL_SESSION *in, uint8_t **pp); |
| |
| /* d2i_SSL_SESSION parses a serialized session from the |length| bytes pointed |
| * to by |*pp|. It returns the new |SSL_SESSION| and advances |*pp| by the |
| * number of bytes consumed on success and NULL on failure. The caller takes |
| * ownership of the new session and must call |SSL_SESSION_free| when done. |
| * |
| * If |a| is non-NULL, |*a| is released and set the new |SSL_SESSION|. |
| * |
| * Use |SSL_SESSION_from_bytes| instead. */ |
| OPENSSL_EXPORT SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const uint8_t **pp, |
| long length); |
| |
| /* i2d_SSL_SESSION_bio serializes |session| and writes the result to |bio|. It |
| * returns the number of bytes written on success and <= 0 on error. */ |
| OPENSSL_EXPORT int i2d_SSL_SESSION_bio(BIO *bio, const SSL_SESSION *session); |
| |
| /* d2i_SSL_SESSION_bio reads a serialized |SSL_SESSION| from |bio| and returns a |
| * newly-allocated |SSL_SESSION| or NULL on error. If |out| is not NULL, it also |
| * frees |*out| and sets |*out| to the new |SSL_SESSION|. */ |
| OPENSSL_EXPORT SSL_SESSION *d2i_SSL_SESSION_bio(BIO *bio, SSL_SESSION **out); |
| |
| /* ERR_load_SSL_strings does nothing. */ |
| OPENSSL_EXPORT void ERR_load_SSL_strings(void); |
| |
| /* SSL_load_error_strings does nothing. */ |
| OPENSSL_EXPORT void SSL_load_error_strings(void); |
| |
| /* SSL_CTX_set_tlsext_use_srtp calls |SSL_CTX_set_srtp_profiles|. It returns |
| * zero on success and one on failure. |
| * |
| * WARNING: this function is dangerous because it breaks the usual return value |
| * convention. Use |SSL_CTX_set_srtp_profiles| instead. */ |
| OPENSSL_EXPORT int SSL_CTX_set_tlsext_use_srtp(SSL_CTX *ctx, |
| const char *profiles); |
| |
| /* SSL_set_tlsext_use_srtp calls |SSL_set_srtp_profiles|. It returns zero on |
| * success and one on failure. |
| * |
| * WARNING: this function is dangerous because it breaks the usual return value |
| * convention. Use |SSL_set_srtp_profiles| instead. */ |
| OPENSSL_EXPORT int SSL_set_tlsext_use_srtp(SSL *ssl, const char *profiles); |
| |
| /* SSL_get_current_compression returns NULL. */ |
| OPENSSL_EXPORT const COMP_METHOD *SSL_get_current_compression(SSL *s); |
| |
| /* SSL_get_current_expansion returns NULL. */ |
| OPENSSL_EXPORT const COMP_METHOD *SSL_get_current_expansion(SSL *s); |
| |
| #define SSL_set_app_data(s, arg) (SSL_set_ex_data(s, 0, (char *)arg)) |
| #define SSL_get_app_data(s) (SSL_get_ex_data(s, 0)) |
| #define SSL_SESSION_set_app_data(s, a) \ |
| (SSL_SESSION_set_ex_data(s, 0, (char *)a)) |
| #define SSL_SESSION_get_app_data(s) (SSL_SESSION_get_ex_data(s, 0)) |
| #define SSL_CTX_get_app_data(ctx) (SSL_CTX_get_ex_data(ctx, 0)) |
| #define SSL_CTX_set_app_data(ctx, arg) \ |
| (SSL_CTX_set_ex_data(ctx, 0, (char *)arg)) |
| |
| #define OpenSSL_add_ssl_algorithms() SSL_library_init() |
| #define SSLeay_add_ssl_algorithms() SSL_library_init() |
| |
| #define SSL_get_cipher(ssl) SSL_CIPHER_get_name(SSL_get_current_cipher(ssl)) |
| #define SSL_get_cipher_bits(ssl, out_alg_bits) \ |
| SSL_CIPHER_get_bits(SSL_get_current_cipher(ssl), out_alg_bits) |
| #define SSL_get_cipher_version(ssl) \ |
| SSL_CIPHER_get_version(SSL_get_current_cipher(ssl)) |
| #define SSL_get_cipher_name(ssl) \ |
| SSL_CIPHER_get_name(SSL_get_current_cipher(ssl)) |
| #define SSL_get_time(session) SSL_SESSION_get_time(session) |
| #define SSL_set_time(session, time) SSL_SESSION_set_time((session), (time)) |
| #define SSL_get_timeout(session) SSL_SESSION_get_timeout(session) |
| #define SSL_set_timeout(session, timeout) \ |
| SSL_SESSION_set_timeout((session), (timeout)) |
| |
| typedef struct ssl_comp_st SSL_COMP; |
| |
| struct ssl_comp_st { |
| int id; |
| const char *name; |
| char *method; |
| }; |
| |
| DECLARE_STACK_OF(SSL_COMP) |
| |
| /* The following flags toggle individual protocol versions. This is deprecated. |
| * Use |SSL_CTX_set_min_version| and |SSL_CTX_set_max_version| instead. */ |
| #define SSL_OP_NO_SSLv3 0x02000000L |
| #define SSL_OP_NO_TLSv1 0x04000000L |
| #define SSL_OP_NO_TLSv1_2 0x08000000L |
| #define SSL_OP_NO_TLSv1_1 0x10000000L |
| #define SSL_OP_NO_DTLSv1 SSL_OP_NO_TLSv1 |
| #define SSL_OP_NO_DTLSv1_2 SSL_OP_NO_TLSv1_2 |
| |
| /* The following flags do nothing and are included only to make it easier to |
| * compile code with BoringSSL. */ |
| #define SSL_MODE_AUTO_RETRY 0 |
| #define SSL_MODE_RELEASE_BUFFERS 0 |
| #define SSL_MODE_SEND_CLIENTHELLO_TIME 0 |
| #define SSL_MODE_SEND_SERVERHELLO_TIME 0 |
| #define SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0 |
| #define SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS 0 |
| #define SSL_OP_EPHEMERAL_RSA 0 |
| #define SSL_OP_MICROSOFT_SESS_ID_BUG 0 |
| #define SSL_OP_MSIE_SSLV2_RSA_PADDING 0 |
| #define SSL_OP_NETSCAPE_CA_DN_BUG 0 |
| #define SSL_OP_NETSCAPE_CHALLENGE_BUG 0 |
| #define SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG 0 |
| #define SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG 0 |
| #define SSL_OP_NO_COMPRESSION 0 |
| #define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0 |
| #define SSL_OP_NO_SSLv2 0 |
| #define SSL_OP_PKCS1_CHECK_1 0 |
| #define SSL_OP_PKCS1_CHECK_2 0 |
| #define SSL_OP_SINGLE_DH_USE 0 |
| #define SSL_OP_SINGLE_ECDH_USE 0 |
| #define SSL_OP_SSLEAY_080_CLIENT_DH_BUG 0 |
| #define SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG 0 |
| #define SSL_OP_TLS_BLOCK_PADDING_BUG 0 |
| #define SSL_OP_TLS_ROLLBACK_BUG 0 |
| #define SSL_VERIFY_CLIENT_ONCE 0 |
| |
| /* SSL_cache_hit calls |SSL_session_resumed|. */ |
| OPENSSL_EXPORT int SSL_cache_hit(SSL *ssl); |
| |
| /* SSL_get_default_timeout returns |SSL_DEFAULT_SESSION_TIMEOUT|. */ |
| OPENSSL_EXPORT long SSL_get_default_timeout(const SSL *ssl); |
| |
| /* SSL_get_version returns a string describing the TLS version used by |ssl|. |
| * For example, "TLSv1.2" or "SSLv3". */ |
| OPENSSL_EXPORT const char *SSL_get_version(const SSL *ssl); |
| |
| /* SSL_get_cipher_list returns the name of the |n|th cipher in the output of |
| * |SSL_get_ciphers| or NULL if out of range. Use |SSL_get_ciphers| insteads. */ |
| OPENSSL_EXPORT const char *SSL_get_cipher_list(const SSL *ssl, int n); |
| |
| /* SSL_CTX_set_client_cert_cb sets a callback which is called on the client if |
| * the server requests a client certificate and none is configured. On success, |
| * the callback should return one and set |*out_x509| to |*out_pkey| to a leaf |
| * certificate and private key, respectively, passing ownership. It should |
| * return zero to send no certificate and -1 to fail or pause the handshake. If |
| * the handshake is paused, |SSL_get_error| will return |
| * |SSL_ERROR_WANT_X509_LOOKUP|. |
| * |
| * The callback may call |SSL_get0_certificate_types| and |
| * |SSL_get_client_CA_list| for information on the server's certificate request. |
| * |
| * Use |SSL_CTX_set_cert_cb| instead. Configuring intermediate certificates with |
| * this function is confusing. */ |
| OPENSSL_EXPORT void SSL_CTX_set_client_cert_cb( |
| SSL_CTX *ctx, |
| int (*client_cert_cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey)); |
| |
| /* SSL_CTX_get_client_cert_cb returns the callback set by |
| * |SSL_CTX_set_client_cert_cb|. */ |
| OPENSSL_EXPORT int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))( |
| SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey); |
| |
| #define SSL_NOTHING 1 |
| #define SSL_WRITING 2 |
| #define SSL_READING 3 |
| #define SSL_X509_LOOKUP 4 |
| #define SSL_CHANNEL_ID_LOOKUP 5 |
| #define SSL_PENDING_SESSION 7 |
| #define SSL_CERTIFICATE_SELECTION_PENDING 8 |
| #define SSL_PRIVATE_KEY_OPERATION 9 |
| |
| /* SSL_want returns one of the above values to determine what the most recent |
| * operation on |ssl| was blocked on. Use |SSL_get_error| instead. */ |
| OPENSSL_EXPORT int SSL_want(const SSL *ssl); |
| |
| #define SSL_want_nothing(ssl) (SSL_want(ssl) == SSL_NOTHING) |
| #define SSL_want_read(ssl) (SSL_want(ssl) == SSL_READING) |
| #define SSL_want_write(ssl) (SSL_want(ssl) == SSL_WRITING) |
| #define SSL_want_x509_lookup(ssl) (SSL_want(ssl) == SSL_X509_LOOKUP) |
| #define SSL_want_channel_id_lookup(ssl) (SSL_want(ssl) == SSL_CHANNEL_ID_LOOKUP) |
| #define SSL_want_session(ssl) (SSL_want(ssl) == SSL_PENDING_SESSION) |
| #define SSL_want_certificate(ssl) \ |
| (SSL_want(ssl) == SSL_CERTIFICATE_SELECTION_PENDING) |
| #define SSL_want_private_key_operation(ssl) \ |
| (SSL_want(ssl) == SSL_PRIVATE_KEY_OPERATION) |
| |
| /* SSL_get_finished writes up to |count| bytes of the Finished message sent by |
| * |ssl| to |buf|. It returns the total untruncated length or zero if none has |
| * been sent yet. |
| * |
| * Use |SSL_get_tls_unique| instead. */ |
| OPENSSL_EXPORT size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count); |
| |
| /* SSL_get_peer_finished writes up to |count| bytes of the Finished message |
| * received from |ssl|'s peer to |buf|. It returns the total untruncated length |
| * or zero if none has been received yet. |
| * |
| * Use |SSL_get_tls_unique| instead. */ |
| OPENSSL_EXPORT size_t SSL_get_peer_finished(const SSL *ssl, void *buf, |
| size_t count); |
| |
| /* SSL_alert_type_string returns "!". Use |SSL_alert_type_string_long| |
| * instead. */ |
| OPENSSL_EXPORT const char *SSL_alert_type_string(int value); |
| |
| /* SSL_alert_desc_string returns "!!". Use |SSL_alert_desc_string_long| |
| * instead. */ |
| OPENSSL_EXPORT const char *SSL_alert_desc_string(int value); |
| |
| /* SSL_TXT_* expand to strings. */ |
| #define SSL_TXT_MEDIUM "MEDIUM" |
| #define SSL_TXT_HIGH "HIGH" |
| #define SSL_TXT_FIPS "FIPS" |
| #define SSL_TXT_kRSA "kRSA" |
| #define SSL_TXT_kDHE "kDHE" |
| #define SSL_TXT_kEDH "kEDH" |
| #define SSL_TXT_kECDHE "kECDHE" |
| #define SSL_TXT_kEECDH "kEECDH" |
| #define SSL_TXT_kPSK "kPSK" |
| #define SSL_TXT_aRSA "aRSA" |
| #define SSL_TXT_aECDSA "aECDSA" |
| #define SSL_TXT_aPSK "aPSK" |
| #define SSL_TXT_DH "DH" |
| #define SSL_TXT_DHE "DHE" |
| #define SSL_TXT_EDH "EDH" |
| #define SSL_TXT_RSA "RSA" |
| #define SSL_TXT_ECDH "ECDH" |
| #define SSL_TXT_ECDHE "ECDHE" |
| #define SSL_TXT_EECDH "EECDH" |
| #define SSL_TXT_ECDSA "ECDSA" |
| #define SSL_TXT_PSK "PSK" |
| #define SSL_TXT_3DES "3DES" |
| #define SSL_TXT_RC4 "RC4" |
| #define SSL_TXT_AES128 "AES128" |
| #define SSL_TXT_AES256 "AES256" |
| #define SSL_TXT_AES "AES" |
| #define SSL_TXT_AES_GCM "AESGCM" |
| #define SSL_TXT_CHACHA20 "CHACHA20" |
| #define SSL_TXT_MD5 "MD5" |
| #define SSL_TXT_SHA1 "SHA1" |
| #define SSL_TXT_SHA "SHA" |
| #define SSL_TXT_SHA256 "SHA256" |
| #define SSL_TXT_SHA384 "SHA384" |
| #define SSL_TXT_SSLV3 "SSLv3" |
| #define SSL_TXT_TLSV1 "TLSv1" |
| #define SSL_TXT_TLSV1_1 "TLSv1.1" |
| #define SSL_TXT_TLSV1_2 "TLSv1.2" |
| #define SSL_TXT_ALL "ALL" |
| #define SSL_TXT_CMPDEF "COMPLEMENTOFDEFAULT" |
| |
| typedef struct ssl_conf_ctx_st SSL_CONF_CTX; |
| |
| /* SSL_state returns the current state of the handshake state machine. */ |
| OPENSSL_EXPORT int SSL_state(const SSL *ssl); |
| |
| #define SSL_get_state(ssl) SSL_state(ssl) |
| |
| /* SSL_state_string returns the current state of the handshake state machine as |
| * a six-letter string. Use |SSL_state_string */ |
| OPENSSL_EXPORT const char *SSL_state_string(const SSL *ssl); |
| |
| /* SSL_set_shutdown causes |ssl| to behave as if the shutdown bitmask (see |
| * |SSL_get_shutdown|) were |mode|. This may be used to skip sending or |
| * receiving close_notify in |SSL_shutdown| by causing the implementation to |
| * believe the events already happened. |
| * |
| * It is an error to use |SSL_set_shutdown| to unset a bit that has already been |
| * set. Doing so will trigger an |assert| in debug builds and otherwise be |
| * ignored. |
| * |
| * Use |SSL_CTX_set_quiet_shutdown| instead. */ |
| OPENSSL_EXPORT void SSL_set_shutdown(SSL *ssl, int mode); |
| |
| |
| /* Private structures. |
| * |
| * This structures are exposed for historical reasons, but access to them is |
| * deprecated. */ |
| |
| typedef struct ssl_protocol_method_st SSL_PROTOCOL_METHOD; |
| typedef struct ssl3_enc_method SSL3_ENC_METHOD; |
| typedef struct ssl_aead_ctx_st SSL_AEAD_CTX; |
| |
| struct ssl_cipher_st { |
| /* name is the OpenSSL name for the cipher. */ |
| const char *name; |
| /* id is the cipher suite value bitwise OR-d with 0x03000000. */ |
| uint32_t id; |
| |
| /* The following are internal fields. See ssl/internal.h for their values. */ |
| |
| uint32_t algorithm_mkey; |
| uint32_t algorithm_auth; |
| uint32_t algorithm_enc; |
| uint32_t algorithm_mac; |
| uint32_t algorithm_ssl; |
| uint32_t algo_strength; |
| uint32_t algorithm_prf; |
| |
| /* strength_bits is the strength of the cipher in bits. */ |
| int strength_bits; |
| /* alg_bits is the number of bits of key material used by the algorithm. */ |
| int alg_bits; |
| }; |
| |
| #define SSL_MAX_SSL_SESSION_ID_LENGTH 32 |
| #define SSL_MAX_SID_CTX_LENGTH 32 |
| #define SSL_MAX_MASTER_KEY_LENGTH 48 |
| |
| struct ssl_session_st { |
| CRYPTO_refcount_t references; |
| int ssl_version; /* what ssl version session info is being kept in here? */ |
| |
| /* key_exchange_info contains an indication of the size of the asymmetric |
| * primitive used in the handshake that created this session. In the event |
| * that two asymmetric operations are used, this value applies to the one |
| * that controls the confidentiality of the connection. Its interpretation |
| * depends on the primitive that was used; as specified by the cipher suite: |
| * DHE: the size, in bits, of the multiplicative group. |
| * RSA: the size, in bits, of the modulus. |
| * ECDHE: the TLS id for the curve. |
| * |
| * A zero indicates that the value is unknown. */ |
| uint32_t key_exchange_info; |
| |
| int master_key_length; |
| uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH]; |
| |
| /* session_id - valid? */ |
| unsigned int session_id_length; |
| uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH]; |
| /* this is used to determine whether the session is being reused in |
| * the appropriate context. It is up to the application to set this, |
| * via SSL_new */ |
| unsigned int sid_ctx_length; |
| uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH]; |
| |
| char *psk_identity; |
| /* peer is the peer's certificate. */ |
| X509 *peer; |
| |
| /* cert_chain is the certificate chain sent by the peer. NOTE: for historical |
| * reasons, when a client (so the peer is a server), the chain includes |
| * |peer|, but when a server it does not. */ |
| STACK_OF(X509) *cert_chain; |
| |
| /* when app_verify_callback accepts a session where the peer's certificate is |
| * not ok, we must remember the error for session reuse: */ |
| long verify_result; /* only for servers */ |
| |
| long timeout; |
| long time; |
| |
| const SSL_CIPHER *cipher; |
| |
| CRYPTO_EX_DATA ex_data; /* application specific data */ |
| |
| /* These are used to make removal of session-ids more efficient and to |
| * implement a maximum cache size. */ |
| SSL_SESSION *prev, *next; |
| char *tlsext_hostname; |
| |
| /* RFC4507 info */ |
| uint8_t *tlsext_tick; /* Session ticket */ |
| size_t tlsext_ticklen; /* Session ticket length */ |
| |
| size_t tlsext_signed_cert_timestamp_list_length; |
| uint8_t *tlsext_signed_cert_timestamp_list; /* Server's list. */ |
| |
| /* The OCSP response that came with the session. */ |
| size_t ocsp_response_length; |
| uint8_t *ocsp_response; |
| |
| /* peer_sha256 contains the SHA-256 hash of the peer's certificate if |
| * |peer_sha256_valid| is true. */ |
| uint8_t peer_sha256[SHA256_DIGEST_LENGTH]; |
| |
| /* original_handshake_hash contains the handshake hash (either SHA-1+MD5 or |
| * SHA-2, depending on TLS version) for the original, full handshake that |
| * created a session. This is used by Channel IDs during resumption. */ |
| uint8_t original_handshake_hash[EVP_MAX_MD_SIZE]; |
| unsigned original_handshake_hash_len; |
| |
| uint32_t tlsext_tick_lifetime_hint; /* Session lifetime hint in seconds */ |
| |
| /* extended_master_secret is true if the master secret in this session was |
| * generated using EMS and thus isn't vulnerable to the Triple Handshake |
| * attack. */ |
| unsigned extended_master_secret:1; |
| |
| /* peer_sha256_valid is non-zero if |peer_sha256| is valid. */ |
| unsigned peer_sha256_valid:1; /* Non-zero if peer_sha256 is valid */ |
| |
| /* not_resumable is used to indicate that session resumption is not allowed. |
| * Applications can also set this bit for a new session via |
| * not_resumable_session_cb to disable session caching and tickets. */ |
| unsigned not_resumable:1; |
| }; |
| |
| /* ssl_cipher_preference_list_st contains a list of SSL_CIPHERs with |
| * equal-preference groups. For TLS clients, the groups are moot because the |
| * server picks the cipher and groups cannot be expressed on the wire. However, |
| * for servers, the equal-preference groups allow the client's preferences to |
| * be partially respected. (This only has an effect with |
| * SSL_OP_CIPHER_SERVER_PREFERENCE). |
| * |
| * The equal-preference groups are expressed by grouping SSL_CIPHERs together. |
| * All elements of a group have the same priority: no ordering is expressed |
| * within a group. |
| * |
| * The values in |ciphers| are in one-to-one correspondence with |
| * |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of |
| * bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to |
| * indicate that the corresponding SSL_CIPHER is not the last element of a |
| * group, or 0 to indicate that it is. |
| * |
| * For example, if |in_group_flags| contains all zeros then that indicates a |
| * traditional, fully-ordered preference. Every SSL_CIPHER is the last element |
| * of the group (i.e. they are all in a one-element group). |
| * |
| * For a more complex example, consider: |
| * ciphers: A B C D E F |
| * in_group_flags: 1 1 0 0 1 0 |
| * |
| * That would express the following, order: |
|