| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <string> |
| #include <functional> |
| #include <memory> |
| #include <vector> |
| |
| #include <stdint.h> |
| #include <time.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/bio.h> |
| #include <openssl/digest.h> |
| #include <openssl/obj.h> |
| #include <openssl/rsa.h> |
| |
| #if defined(OPENSSL_WINDOWS) |
| #include <Windows.h> |
| #elif defined(OPENSSL_APPLE) |
| #include <sys/time.h> |
| #endif |
| |
| extern "C" { |
| // These values are DER encoded, RSA private keys. |
| extern const uint8_t kDERRSAPrivate2048[]; |
| extern size_t kDERRSAPrivate2048Len; |
| extern const uint8_t kDERRSAPrivate4096[]; |
| extern size_t kDERRSAPrivate4096Len; |
| } |
| |
| // TimeResults represents the results of benchmarking a function. |
| struct TimeResults { |
| // num_calls is the number of function calls done in the time period. |
| unsigned num_calls; |
| // us is the number of microseconds that elapsed in the time period. |
| unsigned us; |
| |
| void Print(const std::string &description) { |
| printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, |
| description.c_str(), us, |
| (static_cast<double>(num_calls) / us) * 1000000); |
| } |
| |
| void PrintWithBytes(const std::string &description, size_t bytes_per_call) { |
| printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", |
| num_calls, description.c_str(), us, |
| (static_cast<double>(num_calls) / us) * 1000000, |
| static_cast<double>(bytes_per_call * num_calls) / us); |
| } |
| }; |
| |
| #if defined(OPENSSL_WINDOWS) |
| static uint64_t time_now() { return GetTickCount64() * 1000; } |
| #elif defined(OPENSSL_APPLE) |
| static uint64_t time_now() { |
| struct timeval tv; |
| uint64_t ret; |
| |
| gettimeofday(&tv, NULL); |
| ret = tv.tv_sec; |
| ret *= 1000000; |
| ret += tv.tv_usec; |
| return ret; |
| } |
| #else |
| static uint64_t time_now() { |
| struct timespec ts; |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| |
| uint64_t ret = ts.tv_sec; |
| ret *= 1000000; |
| ret += ts.tv_nsec / 1000; |
| return ret; |
| } |
| #endif |
| |
| static bool TimeFunction(TimeResults *results, std::function<bool()> func) { |
| // kTotalMS is the total amount of time that we'll aim to measure a function |
| // for. |
| static const uint64_t kTotalUS = 3000000; |
| uint64_t start = time_now(), now, delta; |
| unsigned done = 0, iterations_between_time_checks; |
| |
| if (!func()) { |
| return false; |
| } |
| now = time_now(); |
| delta = now - start; |
| if (delta == 0) { |
| iterations_between_time_checks = 250; |
| } else { |
| // Aim for about 100ms between time checks. |
| iterations_between_time_checks = |
| static_cast<double>(100000) / static_cast<double>(delta); |
| if (iterations_between_time_checks > 1000) { |
| iterations_between_time_checks = 1000; |
| } else if (iterations_between_time_checks < 1) { |
| iterations_between_time_checks = 1; |
| } |
| } |
| |
| for (;;) { |
| for (unsigned i = 0; i < iterations_between_time_checks; i++) { |
| if (!func()) { |
| return false; |
| } |
| done++; |
| } |
| |
| now = time_now(); |
| if (now - start > kTotalUS) { |
| break; |
| } |
| } |
| |
| results->us = now - start; |
| results->num_calls = done; |
| return true; |
| } |
| |
| static bool SpeedRSA(const std::string& key_name, RSA *key) { |
| TimeResults results; |
| |
| std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]); |
| const uint8_t fake_sha256_hash[32] = {0}; |
| unsigned sig_len; |
| |
| if (!TimeFunction(&results, |
| [key, &sig, &fake_sha256_hash, &sig_len]() -> bool { |
| return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), |
| sig.get(), &sig_len, key); |
| })) { |
| fprintf(stderr, "RSA_sign failed.\n"); |
| BIO_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(key_name + " signing"); |
| |
| if (!TimeFunction(&results, |
| [key, &fake_sha256_hash, &sig, sig_len]() -> bool { |
| return RSA_verify(NID_sha256, fake_sha256_hash, |
| sizeof(fake_sha256_hash), sig.get(), sig_len, key); |
| })) { |
| fprintf(stderr, "RSA_verify failed.\n"); |
| BIO_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(key_name + " verify"); |
| |
| return true; |
| } |
| |
| template<typename T> |
| struct free_functor { |
| void operator()(T* ptr) { |
| free(ptr); |
| } |
| }; |
| |
| #if defined(OPENSSL_WINDOWS) |
| #define AllocAligned malloc |
| #else |
| uint8_t *AllocAligned(size_t size) { |
| void *ptr; |
| if (posix_memalign(&ptr, 64, size)) { |
| abort(); |
| } |
| return static_cast<uint8_t*>(ptr); |
| } |
| #endif |
| |
| static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name, |
| size_t chunk_len, size_t ad_len) { |
| EVP_AEAD_CTX ctx; |
| const size_t key_len = EVP_AEAD_key_length(aead); |
| const size_t nonce_len = EVP_AEAD_nonce_length(aead); |
| const size_t overhead_len = EVP_AEAD_max_overhead(aead); |
| |
| std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); |
| memset(key.get(), 0, key_len); |
| std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); |
| memset(nonce.get(), 0, nonce_len); |
| std::unique_ptr<uint8_t, free_functor<uint8_t>> in(AllocAligned(chunk_len)); |
| memset(in.get(), 0, chunk_len); |
| std::unique_ptr<uint8_t, free_functor<uint8_t>> out( |
| AllocAligned(chunk_len + overhead_len)); |
| memset(out.get(), 0, chunk_len + overhead_len); |
| std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]); |
| memset(ad.get(), 0, ad_len); |
| |
| if (!EVP_AEAD_CTX_init(&ctx, aead, key.get(), key_len, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) { |
| fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); |
| BIO_print_errors_fp(stderr); |
| return false; |
| } |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, &in, |
| &out, &ctx, &nonce, &ad]() -> bool { |
| size_t out_len; |
| |
| return EVP_AEAD_CTX_seal( |
| &ctx, out.get(), &out_len, chunk_len + overhead_len, nonce.get(), |
| nonce_len, in.get(), chunk_len, ad.get(), ad_len); |
| })) { |
| fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); |
| BIO_print_errors_fp(stderr); |
| return false; |
| } |
| |
| results.PrintWithBytes(name + " seal", chunk_len); |
| |
| EVP_AEAD_CTX_cleanup(&ctx); |
| |
| return true; |
| } |
| |
| static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, |
| size_t ad_len) { |
| return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) && |
| SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) && |
| SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len); |
| } |
| |
| static bool SpeedHashChunk(const EVP_MD *md, const std::string &name, |
| size_t chunk_len) { |
| EVP_MD_CTX *ctx = EVP_MD_CTX_create(); |
| uint8_t scratch[8192]; |
| |
| if (chunk_len > sizeof(scratch)) { |
| return false; |
| } |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool { |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned int md_len; |
| |
| return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) && |
| EVP_DigestUpdate(ctx, scratch, chunk_len) && |
| EVP_DigestFinal_ex(ctx, digest, &md_len); |
| })) { |
| fprintf(stderr, "EVP_DigestInit_ex failed.\n"); |
| BIO_print_errors_fp(stderr); |
| return false; |
| } |
| |
| results.PrintWithBytes(name, chunk_len); |
| |
| EVP_MD_CTX_destroy(ctx); |
| |
| return true; |
| } |
| static bool SpeedHash(const EVP_MD *md, const std::string &name) { |
| return SpeedHashChunk(md, name + " (16 bytes)", 16) && |
| SpeedHashChunk(md, name + " (256 bytes)", 256) && |
| SpeedHashChunk(md, name + " (8192 bytes)", 8192); |
| } |
| |
| bool Speed(const std::vector<std::string> &args) { |
| const uint8_t *inp; |
| |
| RSA *key = NULL; |
| inp = kDERRSAPrivate2048; |
| if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) { |
| fprintf(stderr, "Failed to parse RSA key.\n"); |
| BIO_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (!SpeedRSA("RSA 2048", key)) { |
| return false; |
| } |
| |
| RSA_free(key); |
| key = NULL; |
| |
| inp = kDERRSAPrivate4096; |
| if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) { |
| fprintf(stderr, "Failed to parse 4096-bit RSA key.\n"); |
| BIO_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| if (!SpeedRSA("RSA 4096", key)) { |
| return false; |
| } |
| |
| RSA_free(key); |
| |
| // kTLSADLen is the number of bytes of additional data that TLS passes to |
| // AEADs. |
| static const size_t kTLSADLen = 13; |
| // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. |
| // These are AEADs that weren't originally defined as AEADs, but which we use |
| // via the AEAD interface. In order for that to work, they have some TLS |
| // knowledge in them and construct a couple of the AD bytes internally. |
| static const size_t kLegacyADLen = kTLSADLen - 2; |
| |
| if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen) || |
| !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen) || |
| !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen) || |
| !SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen) || |
| !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen) || |
| !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen) || |
| !SpeedHash(EVP_sha1(), "SHA-1") || |
| !SpeedHash(EVP_sha256(), "SHA-256") || |
| !SpeedHash(EVP_sha512(), "SHA-512")) { |
| return false; |
| } |
| |
| return 0; |
| } |