| #!/usr/bin/env perl |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # Version 4.3. |
| # |
| # You might fail to appreciate this module performance from the first |
| # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered |
| # to be *the* best Intel C compiler without -KPIC, performance appears |
| # to be virtually identical... But try to re-configure with shared |
| # library support... Aha! Intel compiler "suddenly" lags behind by 30% |
| # [on P4, more on others]:-) And if compared to position-independent |
| # code generated by GNU C, this code performs *more* than *twice* as |
| # fast! Yes, all this buzz about PIC means that unlike other hand- |
| # coded implementations, this one was explicitly designed to be safe |
| # to use even in shared library context... This also means that this |
| # code isn't necessarily absolutely fastest "ever," because in order |
| # to achieve position independence an extra register has to be |
| # off-loaded to stack, which affects the benchmark result. |
| # |
| # Special note about instruction choice. Do you recall RC4_INT code |
| # performing poorly on P4? It might be the time to figure out why. |
| # RC4_INT code implies effective address calculations in base+offset*4 |
| # form. Trouble is that it seems that offset scaling turned to be |
| # critical path... At least eliminating scaling resulted in 2.8x RC4 |
| # performance improvement [as you might recall]. As AES code is hungry |
| # for scaling too, I [try to] avoid the latter by favoring off-by-2 |
| # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF. |
| # |
| # As was shown by Dean Gaudet <dean@arctic.org>, the above note turned |
| # void. Performance improvement with off-by-2 shifts was observed on |
| # intermediate implementation, which was spilling yet another register |
| # to stack... Final offset*4 code below runs just a tad faster on P4, |
| # but exhibits up to 10% improvement on other cores. |
| # |
| # Second version is "monolithic" replacement for aes_core.c, which in |
| # addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key. |
| # This made it possible to implement little-endian variant of the |
| # algorithm without modifying the base C code. Motivating factor for |
| # the undertaken effort was that it appeared that in tight IA-32 |
| # register window little-endian flavor could achieve slightly higher |
| # Instruction Level Parallelism, and it indeed resulted in up to 15% |
| # better performance on most recent ยต-archs... |
| # |
| # Third version adds AES_cbc_encrypt implementation, which resulted in |
| # up to 40% performance imrovement of CBC benchmark results. 40% was |
| # observed on P4 core, where "overall" imrovement coefficient, i.e. if |
| # compared to PIC generated by GCC and in CBC mode, was observed to be |
| # as large as 4x:-) CBC performance is virtually identical to ECB now |
| # and on some platforms even better, e.g. 17.6 "small" cycles/byte on |
| # Opteron, because certain function prologues and epilogues are |
| # effectively taken out of the loop... |
| # |
| # Version 3.2 implements compressed tables and prefetch of these tables |
| # in CBC[!] mode. Former means that 3/4 of table references are now |
| # misaligned, which unfortunately has negative impact on elder IA-32 |
| # implementations, Pentium suffered 30% penalty, PIII - 10%. |
| # |
| # Version 3.3 avoids L1 cache aliasing between stack frame and |
| # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The |
| # latter is achieved by copying the key schedule to controlled place in |
| # stack. This unfortunately has rather strong impact on small block CBC |
| # performance, ~2x deterioration on 16-byte block if compared to 3.3. |
| # |
| # Version 3.5 checks if there is L1 cache aliasing between user-supplied |
| # key schedule and S-boxes and abstains from copying the former if |
| # there is no. This allows end-user to consciously retain small block |
| # performance by aligning key schedule in specific manner. |
| # |
| # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB. |
| # |
| # Current ECB performance numbers for 128-bit key in CPU cycles per |
| # processed byte [measure commonly used by AES benchmarkers] are: |
| # |
| # small footprint fully unrolled |
| # P4 24 22 |
| # AMD K8 20 19 |
| # PIII 25 23 |
| # Pentium 81 78 |
| # |
| # Version 3.7 reimplements outer rounds as "compact." Meaning that |
| # first and last rounds reference compact 256 bytes S-box. This means |
| # that first round consumes a lot more CPU cycles and that encrypt |
| # and decrypt performance becomes asymmetric. Encrypt performance |
| # drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is |
| # aggressively pre-fetched. |
| # |
| # Version 4.0 effectively rolls back to 3.6 and instead implements |
| # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact, |
| # which use exclusively 256 byte S-box. These functions are to be |
| # called in modes not concealing plain text, such as ECB, or when |
| # we're asked to process smaller amount of data [or unconditionally |
| # on hyper-threading CPU]. Currently it's called unconditionally from |
| # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine |
| # still needs to be modified to switch between slower and faster |
| # mode when appropriate... But in either case benchmark landscape |
| # changes dramatically and below numbers are CPU cycles per processed |
| # byte for 128-bit key. |
| # |
| # ECB encrypt ECB decrypt CBC large chunk |
| # P4 52[54] 83[95] 23 |
| # AMD K8 46[41] 66[70] 18 |
| # PIII 41[50] 60[77] 24 |
| # Core 2 31[36] 45[64] 18.5 |
| # Atom 76[100] 96[138] 60 |
| # Pentium 115 150 77 |
| # |
| # Version 4.1 switches to compact S-box even in key schedule setup. |
| # |
| # Version 4.2 prefetches compact S-box in every SSE round or in other |
| # words every cache-line is *guaranteed* to be accessed within ~50 |
| # cycles window. Why just SSE? Because it's needed on hyper-threading |
| # CPU! Which is also why it's prefetched with 64 byte stride. Best |
| # part is that it has no negative effect on performance:-) |
| # |
| # Version 4.3 implements switch between compact and non-compact block |
| # functions in AES_cbc_encrypt depending on how much data was asked |
| # to be processed in one stroke. |
| # |
| ###################################################################### |
| # Timing attacks are classified in two classes: synchronous when |
| # attacker consciously initiates cryptographic operation and collects |
| # timing data of various character afterwards, and asynchronous when |
| # malicious code is executed on same CPU simultaneously with AES, |
| # instruments itself and performs statistical analysis of this data. |
| # |
| # As far as synchronous attacks go the root to the AES timing |
| # vulnerability is twofold. Firstly, of 256 S-box elements at most 160 |
| # are referred to in single 128-bit block operation. Well, in C |
| # implementation with 4 distinct tables it's actually as little as 40 |
| # references per 256 elements table, but anyway... Secondly, even |
| # though S-box elements are clustered into smaller amount of cache- |
| # lines, smaller than 160 and even 40, it turned out that for certain |
| # plain-text pattern[s] or simply put chosen plain-text and given key |
| # few cache-lines remain unaccessed during block operation. Now, if |
| # attacker can figure out this access pattern, he can deduct the key |
| # [or at least part of it]. The natural way to mitigate this kind of |
| # attacks is to minimize the amount of cache-lines in S-box and/or |
| # prefetch them to ensure that every one is accessed for more uniform |
| # timing. But note that *if* plain-text was concealed in such way that |
| # input to block function is distributed *uniformly*, then attack |
| # wouldn't apply. Now note that some encryption modes, most notably |
| # CBC, do mask the plain-text in this exact way [secure cipher output |
| # is distributed uniformly]. Yes, one still might find input that |
| # would reveal the information about given key, but if amount of |
| # candidate inputs to be tried is larger than amount of possible key |
| # combinations then attack becomes infeasible. This is why revised |
| # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk |
| # of data is to be processed in one stroke. The current size limit of |
| # 512 bytes is chosen to provide same [diminishigly low] probability |
| # for cache-line to remain untouched in large chunk operation with |
| # large S-box as for single block operation with compact S-box and |
| # surely needs more careful consideration... |
| # |
| # As for asynchronous attacks. There are two flavours: attacker code |
| # being interleaved with AES on hyper-threading CPU at *instruction* |
| # level, and two processes time sharing single core. As for latter. |
| # Two vectors. 1. Given that attacker process has higher priority, |
| # yield execution to process performing AES just before timer fires |
| # off the scheduler, immediately regain control of CPU and analyze the |
| # cache state. For this attack to be efficient attacker would have to |
| # effectively slow down the operation by several *orders* of magnitute, |
| # by ratio of time slice to duration of handful of AES rounds, which |
| # unlikely to remain unnoticed. Not to mention that this also means |
| # that he would spend correspondigly more time to collect enough |
| # statistical data to mount the attack. It's probably appropriate to |
| # say that if adeversary reckons that this attack is beneficial and |
| # risks to be noticed, you probably have larger problems having him |
| # mere opportunity. In other words suggested code design expects you |
| # to preclude/mitigate this attack by overall system security design. |
| # 2. Attacker manages to make his code interrupt driven. In order for |
| # this kind of attack to be feasible, interrupt rate has to be high |
| # enough, again comparable to duration of handful of AES rounds. But |
| # is there interrupt source of such rate? Hardly, not even 1Gbps NIC |
| # generates interrupts at such raging rate... |
| # |
| # And now back to the former, hyper-threading CPU or more specifically |
| # Intel P4. Recall that asynchronous attack implies that malicious |
| # code instruments itself. And naturally instrumentation granularity |
| # has be noticeably lower than duration of codepath accessing S-box. |
| # Given that all cache-lines are accessed during that time that is. |
| # Current implementation accesses *all* cache-lines within ~50 cycles |
| # window, which is actually *less* than RDTSC latency on Intel P4! |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| push(@INC,"${dir}","${dir}../../perlasm"); |
| require "x86asm.pl"; |
| |
| $output = pop; |
| open OUT,">$output"; |
| *STDOUT=*OUT; |
| |
| &asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386"); |
| &static_label("AES_Te"); |
| &static_label("AES_Td"); |
| |
| $s0="eax"; |
| $s1="ebx"; |
| $s2="ecx"; |
| $s3="edx"; |
| $key="edi"; |
| $acc="esi"; |
| $tbl="ebp"; |
| |
| # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated |
| # by caller |
| $__ra=&DWP(0,"esp"); # return address |
| $__s0=&DWP(4,"esp"); # s0 backing store |
| $__s1=&DWP(8,"esp"); # s1 backing store |
| $__s2=&DWP(12,"esp"); # s2 backing store |
| $__s3=&DWP(16,"esp"); # s3 backing store |
| $__key=&DWP(20,"esp"); # pointer to key schedule |
| $__end=&DWP(24,"esp"); # pointer to end of key schedule |
| $__tbl=&DWP(28,"esp"); # %ebp backing store |
| |
| # stack frame layout in AES_[en|crypt] routines, which differs from |
| # above by 4 and overlaps by %ebp backing store |
| $_tbl=&DWP(24,"esp"); |
| $_esp=&DWP(28,"esp"); |
| |
| sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } } |
| |
| $speed_limit=512; # chunks smaller than $speed_limit are |
| # processed with compact routine in CBC mode |
| $small_footprint=1; # $small_footprint=1 code is ~5% slower [on |
| # recent ยต-archs], but ~5 times smaller! |
| # I favor compact code to minimize cache |
| # contention and in hope to "collect" 5% back |
| # in real-life applications... |
| |
| $vertical_spin=0; # shift "verticaly" defaults to 0, because of |
| # its proof-of-concept status... |
| # Note that there is no decvert(), as well as last encryption round is |
| # performed with "horizontal" shifts. This is because this "vertical" |
| # implementation [one which groups shifts on a given $s[i] to form a |
| # "column," unlike "horizontal" one, which groups shifts on different |
| # $s[i] to form a "row"] is work in progress. It was observed to run |
| # few percents faster on Intel cores, but not AMD. On AMD K8 core it's |
| # whole 12% slower:-( So we face a trade-off... Shall it be resolved |
| # some day? Till then the code is considered experimental and by |
| # default remains dormant... |
| |
| sub encvert() |
| { my ($te,@s) = @_; |
| my ($v0,$v1) = ($acc,$key); |
| |
| &mov ($v0,$s[3]); # copy s3 |
| &mov (&DWP(4,"esp"),$s[2]); # save s2 |
| &mov ($v1,$s[0]); # copy s0 |
| &mov (&DWP(8,"esp"),$s[1]); # save s1 |
| |
| &movz ($s[2],&HB($s[0])); |
| &and ($s[0],0xFF); |
| &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0 |
| &shr ($v1,16); |
| &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8 |
| &movz ($s[1],&HB($v1)); |
| &and ($v1,0xFF); |
| &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16 |
| &mov ($v1,$v0); |
| &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24 |
| |
| &and ($v0,0xFF); |
| &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0 |
| &movz ($v0,&HB($v1)); |
| &shr ($v1,16); |
| &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8 |
| &movz ($v0,&HB($v1)); |
| &and ($v1,0xFF); |
| &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16 |
| &mov ($v1,&DWP(4,"esp")); # restore s2 |
| &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24 |
| |
| &mov ($v0,$v1); |
| &and ($v1,0xFF); |
| &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0 |
| &movz ($v1,&HB($v0)); |
| &shr ($v0,16); |
| &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8 |
| &movz ($v1,&HB($v0)); |
| &and ($v0,0xFF); |
| &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16 |
| &mov ($v0,&DWP(8,"esp")); # restore s1 |
| &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24 |
| |
| &mov ($v1,$v0); |
| &and ($v0,0xFF); |
| &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0 |
| &movz ($v0,&HB($v1)); |
| &shr ($v1,16); |
| &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8 |
| &movz ($v0,&HB($v1)); |
| &and ($v1,0xFF); |
| &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16 |
| &mov ($key,$__key); # reincarnate v1 as key |
| &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24 |
| } |
| |
| # Another experimental routine, which features "horizontal spin," but |
| # eliminates one reference to stack. Strangely enough runs slower... |
| sub enchoriz() |
| { my ($v0,$v1) = ($key,$acc); |
| |
| &movz ($v0,&LB($s0)); # 3, 2, 1, 0* |
| &rotr ($s2,8); # 8,11,10, 9 |
| &mov ($v1,&DWP(0,$te,$v0,8)); # 0 |
| &movz ($v0,&HB($s1)); # 7, 6, 5*, 4 |
| &rotr ($s3,16); # 13,12,15,14 |
| &xor ($v1,&DWP(3,$te,$v0,8)); # 5 |
| &movz ($v0,&HB($s2)); # 8,11,10*, 9 |
| &rotr ($s0,16); # 1, 0, 3, 2 |
| &xor ($v1,&DWP(2,$te,$v0,8)); # 10 |
| &movz ($v0,&HB($s3)); # 13,12,15*,14 |
| &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected |
| &mov ($__s0,$v1); # t[0] saved |
| |
| &movz ($v0,&LB($s1)); # 7, 6, 5, 4* |
| &shr ($s1,16); # -, -, 7, 6 |
| &mov ($v1,&DWP(0,$te,$v0,8)); # 4 |
| &movz ($v0,&LB($s3)); # 13,12,15,14* |
| &xor ($v1,&DWP(2,$te,$v0,8)); # 14 |
| &movz ($v0,&HB($s0)); # 1, 0, 3*, 2 |
| &and ($s3,0xffff0000); # 13,12, -, - |
| &xor ($v1,&DWP(1,$te,$v0,8)); # 3 |
| &movz ($v0,&LB($s2)); # 8,11,10, 9* |
| &or ($s3,$s1); # 13,12, 7, 6 |
| &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected |
| &mov ($s1,$v1); # s[1]=t[1] |
| |
| &movz ($v0,&LB($s0)); # 1, 0, 3, 2* |
| &shr ($s2,16); # -, -, 8,11 |
| &mov ($v1,&DWP(2,$te,$v0,8)); # 2 |
| &movz ($v0,&HB($s3)); # 13,12, 7*, 6 |
| &xor ($v1,&DWP(1,$te,$v0,8)); # 7 |
| &movz ($v0,&HB($s2)); # -, -, 8*,11 |
| &xor ($v1,&DWP(0,$te,$v0,8)); # 8 |
| &mov ($v0,$s3); |
| &shr ($v0,24); # 13 |
| &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected |
| |
| &movz ($v0,&LB($s2)); # -, -, 8,11* |
| &shr ($s0,24); # 1* |
| &mov ($s2,&DWP(1,$te,$v0,8)); # 11 |
| &xor ($s2,&DWP(3,$te,$s0,8)); # 1 |
| &mov ($s0,$__s0); # s[0]=t[0] |
| &movz ($v0,&LB($s3)); # 13,12, 7, 6* |
| &shr ($s3,16); # , ,13,12 |
| &xor ($s2,&DWP(2,$te,$v0,8)); # 6 |
| &mov ($key,$__key); # reincarnate v0 as key |
| &and ($s3,0xff); # , ,13,12* |
| &mov ($s3,&DWP(0,$te,$s3,8)); # 12 |
| &xor ($s3,$s2); # s[2]=t[3] collected |
| &mov ($s2,$v1); # s[2]=t[2] |
| } |
| |
| # More experimental code... SSE one... Even though this one eliminates |
| # *all* references to stack, it's not faster... |
| sub sse_encbody() |
| { |
| &movz ($acc,&LB("eax")); # 0 |
| &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0 |
| &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 |
| &movz ("edx",&HB("eax")); # 1 |
| &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1 |
| &shr ("eax",16); # 5, 4 |
| |
| &movz ($acc,&LB("ebx")); # 10 |
| &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10 |
| &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 |
| &movz ($acc,&HB("ebx")); # 11 |
| &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11 |
| &shr ("ebx",16); # 15,14 |
| |
| &movz ($acc,&HB("eax")); # 5 |
| &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5 |
| &movq ("mm3",QWP(16,$key)); |
| &movz ($acc,&HB("ebx")); # 15 |
| &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15 |
| &movd ("mm0","ecx"); # t[0] collected |
| |
| &movz ($acc,&LB("eax")); # 4 |
| &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4 |
| &movd ("eax","mm2"); # 7, 6, 3, 2 |
| &movz ($acc,&LB("ebx")); # 14 |
| &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14 |
| &movd ("ebx","mm6"); # 13,12, 9, 8 |
| |
| &movz ($acc,&HB("eax")); # 3 |
| &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3 |
| &movz ($acc,&HB("ebx")); # 9 |
| &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9 |
| &movd ("mm1","ecx"); # t[1] collected |
| |
| &movz ($acc,&LB("eax")); # 2 |
| &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2 |
| &shr ("eax",16); # 7, 6 |
| &punpckldq ("mm0","mm1"); # t[0,1] collected |
| &movz ($acc,&LB("ebx")); # 8 |
| &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8 |
| &shr ("ebx",16); # 13,12 |
| |
| &movz ($acc,&HB("eax")); # 7 |
| &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7 |
| &pxor ("mm0","mm3"); |
| &movz ("eax",&LB("eax")); # 6 |
| &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6 |
| &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 |
| &movz ($acc,&HB("ebx")); # 13 |
| &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13 |
| &xor ("ecx",&DWP(24,$key)); # t[2] |
| &movd ("mm4","ecx"); # t[2] collected |
| &movz ("ebx",&LB("ebx")); # 12 |
| &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12 |
| &shr ("ecx",16); |
| &movd ("eax","mm1"); # 5, 4, 1, 0 |
| &mov ("ebx",&DWP(28,$key)); # t[3] |
| &xor ("ebx","edx"); |
| &movd ("mm5","ebx"); # t[3] collected |
| &and ("ebx",0xffff0000); |
| &or ("ebx","ecx"); |
| |
| &punpckldq ("mm4","mm5"); # t[2,3] collected |
| } |
| |
| ###################################################################### |
| # "Compact" block function |
| ###################################################################### |
| |
| sub enccompact() |
| { my $Fn = \&mov; |
| while ($#_>5) { pop(@_); $Fn=sub{}; } |
| my ($i,$te,@s)=@_; |
| my $tmp = $key; |
| my $out = $i==3?$s[0]:$acc; |
| |
| # $Fn is used in first compact round and its purpose is to |
| # void restoration of some values from stack, so that after |
| # 4xenccompact with extra argument $key value is left there... |
| if ($i==3) { &$Fn ($key,$__key); }##%edx |
| else { &mov ($out,$s[0]); } |
| &and ($out,0xFF); |
| if ($i==1) { &shr ($s[0],16); }#%ebx[1] |
| if ($i==2) { &shr ($s[0],24); }#%ecx[2] |
| &movz ($out,&BP(-128,$te,$out,1)); |
| |
| if ($i==3) { $tmp=$s[1]; }##%eax |
| &movz ($tmp,&HB($s[1])); |
| &movz ($tmp,&BP(-128,$te,$tmp,1)); |
| &shl ($tmp,8); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx |
| else { &mov ($tmp,$s[2]); |
| &shr ($tmp,16); } |
| if ($i==2) { &and ($s[1],0xFF); }#%edx[2] |
| &and ($tmp,0xFF); |
| &movz ($tmp,&BP(-128,$te,$tmp,1)); |
| &shl ($tmp,16); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx |
| elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] |
| else { &mov ($tmp,$s[3]); |
| &shr ($tmp,24); } |
| &movz ($tmp,&BP(-128,$te,$tmp,1)); |
| &shl ($tmp,24); |
| &xor ($out,$tmp); |
| if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } |
| if ($i==3) { &mov ($s[3],$acc); } |
| &comment(); |
| } |
| |
| sub enctransform() |
| { my @s = ($s0,$s1,$s2,$s3); |
| my $i = shift; |
| my $tmp = $tbl; |
| my $r2 = $key ; |
| |
| &and ($tmp,$s[$i]); |
| &lea ($r2,&DWP(0,$s[$i],$s[$i])); |
| &mov ($acc,$tmp); |
| &shr ($tmp,7); |
| &and ($r2,0xfefefefe); |
| &sub ($acc,$tmp); |
| &mov ($tmp,$s[$i]); |
| &and ($acc,0x1b1b1b1b); |
| &rotr ($tmp,16); |
| &xor ($acc,$r2); # r2 |
| &mov ($r2,$s[$i]); |
| |
| &xor ($s[$i],$acc); # r0 ^ r2 |
| &rotr ($r2,16+8); |
| &xor ($acc,$tmp); |
| &rotl ($s[$i],24); |
| &xor ($acc,$r2); |
| &mov ($tmp,0x80808080) if ($i!=1); |
| &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2 |
| } |
| |
| &function_begin_B("_x86_AES_encrypt_compact"); |
| # note that caller is expected to allocate stack frame for me! |
| &mov ($__key,$key); # save key |
| |
| &xor ($s0,&DWP(0,$key)); # xor with key |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &mov ($acc,&DWP(240,$key)); # load key->rounds |
| &lea ($acc,&DWP(-2,$acc,$acc)); |
| &lea ($acc,&DWP(0,$key,$acc,8)); |
| &mov ($__end,$acc); # end of key schedule |
| |
| # prefetch Te4 |
| &mov ($key,&DWP(0-128,$tbl)); |
| &mov ($acc,&DWP(32-128,$tbl)); |
| &mov ($key,&DWP(64-128,$tbl)); |
| &mov ($acc,&DWP(96-128,$tbl)); |
| &mov ($key,&DWP(128-128,$tbl)); |
| &mov ($acc,&DWP(160-128,$tbl)); |
| &mov ($key,&DWP(192-128,$tbl)); |
| &mov ($acc,&DWP(224-128,$tbl)); |
| |
| &set_label("loop",16); |
| |
| &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1); |
| &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1); |
| &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1); |
| &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1); |
| &mov ($tbl,0x80808080); |
| &enctransform(2); |
| &enctransform(3); |
| &enctransform(0); |
| &enctransform(1); |
| &mov ($key,$__key); |
| &mov ($tbl,$__tbl); |
| &add ($key,16); # advance rd_key |
| &xor ($s0,&DWP(0,$key)); |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &cmp ($key,$__end); |
| &mov ($__key,$key); |
| &jb (&label("loop")); |
| |
| &enccompact(0,$tbl,$s0,$s1,$s2,$s3); |
| &enccompact(1,$tbl,$s1,$s2,$s3,$s0); |
| &enccompact(2,$tbl,$s2,$s3,$s0,$s1); |
| &enccompact(3,$tbl,$s3,$s0,$s1,$s2); |
| |
| &xor ($s0,&DWP(16,$key)); |
| &xor ($s1,&DWP(20,$key)); |
| &xor ($s2,&DWP(24,$key)); |
| &xor ($s3,&DWP(28,$key)); |
| |
| &ret (); |
| &function_end_B("_x86_AES_encrypt_compact"); |
| |
| ###################################################################### |
| # "Compact" SSE block function. |
| ###################################################################### |
| # |
| # Performance is not actually extraordinary in comparison to pure |
| # x86 code. In particular encrypt performance is virtually the same. |
| # Decrypt performance on the other hand is 15-20% better on newer |
| # ยต-archs [but we're thankful for *any* improvement here], and ~50% |
| # better on PIII:-) And additionally on the pros side this code |
| # eliminates redundant references to stack and thus relieves/ |
| # minimizes the pressure on the memory bus. |
| # |
| # MMX register layout lsb |
| # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
| # | mm4 | mm0 | |
| # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
| # | s3 | s2 | s1 | s0 | |
| # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
| # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0| |
| # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ |
| # |
| # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8. |
| # In this terms encryption and decryption "compact" permutation |
| # matrices can be depicted as following: |
| # |
| # encryption lsb # decryption lsb |
| # +----++----+----+----+----+ # +----++----+----+----+----+ |
| # | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 | |
| # +----++----+----+----+----+ # +----++----+----+----+----+ |
| # | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 | |
| # +----++----+----+----+----+ # +----++----+----+----+----+ |
| # | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 | |
| # +----++----+----+----+----+ # +----++----+----+----+----+ |
| # | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 | |
| # +----++----+----+----+----+ # +----++----+----+----+----+ |
| # |
| ###################################################################### |
| # Why not xmm registers? Short answer. It was actually tested and |
| # was not any faster, but *contrary*, most notably on Intel CPUs. |
| # Longer answer. Main advantage of using mm registers is that movd |
| # latency is lower, especially on Intel P4. While arithmetic |
| # instructions are twice as many, they can be scheduled every cycle |
| # and not every second one when they are operating on xmm register, |
| # so that "arithmetic throughput" remains virtually the same. And |
| # finally the code can be executed even on elder SSE-only CPUs:-) |
| |
| sub sse_enccompact() |
| { |
| &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0 |
| &pshufw ("mm5","mm4",0x0d); # 15,14,11,10 |
| &movd ("eax","mm1"); # 5, 4, 1, 0 |
| &movd ("ebx","mm5"); # 15,14,11,10 |
| &mov ($__key,$key); |
| |
| &movz ($acc,&LB("eax")); # 0 |
| &movz ("edx",&HB("eax")); # 1 |
| &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2 |
| &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 |
| &movz ($key,&LB("ebx")); # 10 |
| &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 |
| &shr ("eax",16); # 5, 4 |
| &shl ("edx",8); # 1 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 |
| &movz ($key,&HB("ebx")); # 11 |
| &shl ($acc,16); # 10 |
| &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8 |
| &or ("ecx",$acc); # 10 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 |
| &movz ($key,&HB("eax")); # 5 |
| &shl ($acc,24); # 11 |
| &shr ("ebx",16); # 15,14 |
| &or ("edx",$acc); # 11 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 |
| &movz ($key,&HB("ebx")); # 15 |
| &shl ($acc,8); # 5 |
| &or ("ecx",$acc); # 5 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 15 |
| &movz ($key,&LB("eax")); # 4 |
| &shl ($acc,24); # 15 |
| &or ("ecx",$acc); # 15 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 |
| &movz ($key,&LB("ebx")); # 14 |
| &movd ("eax","mm2"); # 7, 6, 3, 2 |
| &movd ("mm0","ecx"); # t[0] collected |
| &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14 |
| &movz ($key,&HB("eax")); # 3 |
| &shl ("ecx",16); # 14 |
| &movd ("ebx","mm6"); # 13,12, 9, 8 |
| &or ("ecx",$acc); # 14 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 3 |
| &movz ($key,&HB("ebx")); # 9 |
| &shl ($acc,24); # 3 |
| &or ("ecx",$acc); # 3 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 |
| &movz ($key,&LB("ebx")); # 8 |
| &shl ($acc,8); # 9 |
| &shr ("ebx",16); # 13,12 |
| &or ("ecx",$acc); # 9 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 8 |
| &movz ($key,&LB("eax")); # 2 |
| &shr ("eax",16); # 7, 6 |
| &movd ("mm1","ecx"); # t[1] collected |
| &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2 |
| &movz ($key,&HB("eax")); # 7 |
| &shl ("ecx",16); # 2 |
| &and ("eax",0xff); # 6 |
| &or ("ecx",$acc); # 2 |
| |
| &punpckldq ("mm0","mm1"); # t[0,1] collected |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 |
| &movz ($key,&HB("ebx")); # 13 |
| &shl ($acc,24); # 7 |
| &and ("ebx",0xff); # 12 |
| &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6 |
| &or ("ecx",$acc); # 7 |
| &shl ("eax",16); # 6 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 |
| &or ("edx","eax"); # 6 |
| &shl ($acc,8); # 13 |
| &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12 |
| &or ("ecx",$acc); # 13 |
| &or ("edx","ebx"); # 12 |
| &mov ($key,$__key); |
| &movd ("mm4","ecx"); # t[2] collected |
| &movd ("mm5","edx"); # t[3] collected |
| |
| &punpckldq ("mm4","mm5"); # t[2,3] collected |
| } |
| |
| if (!$x86only) { |
| &function_begin_B("_sse_AES_encrypt_compact"); |
| &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 |
| &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 |
| |
| # note that caller is expected to allocate stack frame for me! |
| &mov ($acc,&DWP(240,$key)); # load key->rounds |
| &lea ($acc,&DWP(-2,$acc,$acc)); |
| &lea ($acc,&DWP(0,$key,$acc,8)); |
| &mov ($__end,$acc); # end of key schedule |
| |
| &mov ($s0,0x1b1b1b1b); # magic constant |
| &mov (&DWP(8,"esp"),$s0); |
| &mov (&DWP(12,"esp"),$s0); |
| |
| # prefetch Te4 |
| &mov ($s0,&DWP(0-128,$tbl)); |
| &mov ($s1,&DWP(32-128,$tbl)); |
| &mov ($s2,&DWP(64-128,$tbl)); |
| &mov ($s3,&DWP(96-128,$tbl)); |
| &mov ($s0,&DWP(128-128,$tbl)); |
| &mov ($s1,&DWP(160-128,$tbl)); |
| &mov ($s2,&DWP(192-128,$tbl)); |
| &mov ($s3,&DWP(224-128,$tbl)); |
| |
| &set_label("loop",16); |
| &sse_enccompact(); |
| &add ($key,16); |
| &cmp ($key,$__end); |
| &ja (&label("out")); |
| |
| &movq ("mm2",&QWP(8,"esp")); |
| &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); |
| &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0 |
| &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4"); |
| &pand ("mm3","mm2"); &pand ("mm7","mm2"); |
| &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16) |
| &paddb ("mm0","mm0"); &paddb ("mm4","mm4"); |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2 |
| &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0 |
| &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2 |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16) |
| |
| &movq ("mm2","mm3"); &movq ("mm6","mm7"); |
| &pslld ("mm3",8); &pslld ("mm7",8); |
| &psrld ("mm2",24); &psrld ("mm6",24); |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8 |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24 |
| |
| &movq ("mm3","mm1"); &movq ("mm7","mm5"); |
| &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); |
| &psrld ("mm1",8); &psrld ("mm5",8); |
| &mov ($s0,&DWP(0-128,$tbl)); |
| &pslld ("mm3",24); &pslld ("mm7",24); |
| &mov ($s1,&DWP(64-128,$tbl)); |
| &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8 |
| &mov ($s2,&DWP(128-128,$tbl)); |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24 |
| &mov ($s3,&DWP(192-128,$tbl)); |
| |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); |
| &jmp (&label("loop")); |
| |
| &set_label("out",16); |
| &pxor ("mm0",&QWP(0,$key)); |
| &pxor ("mm4",&QWP(8,$key)); |
| |
| &ret (); |
| &function_end_B("_sse_AES_encrypt_compact"); |
| } |
| |
| ###################################################################### |
| # Vanilla block function. |
| ###################################################################### |
| |
| sub encstep() |
| { my ($i,$te,@s) = @_; |
| my $tmp = $key; |
| my $out = $i==3?$s[0]:$acc; |
| |
| # lines marked with #%e?x[i] denote "reordered" instructions... |
| if ($i==3) { &mov ($key,$__key); }##%edx |
| else { &mov ($out,$s[0]); |
| &and ($out,0xFF); } |
| if ($i==1) { &shr ($s[0],16); }#%ebx[1] |
| if ($i==2) { &shr ($s[0],24); }#%ecx[2] |
| &mov ($out,&DWP(0,$te,$out,8)); |
| |
| if ($i==3) { $tmp=$s[1]; }##%eax |
| &movz ($tmp,&HB($s[1])); |
| &xor ($out,&DWP(3,$te,$tmp,8)); |
| |
| if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx |
| else { &mov ($tmp,$s[2]); |
| &shr ($tmp,16); } |
| if ($i==2) { &and ($s[1],0xFF); }#%edx[2] |
| &and ($tmp,0xFF); |
| &xor ($out,&DWP(2,$te,$tmp,8)); |
| |
| if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx |
| elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] |
| else { &mov ($tmp,$s[3]); |
| &shr ($tmp,24) } |
| &xor ($out,&DWP(1,$te,$tmp,8)); |
| if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } |
| if ($i==3) { &mov ($s[3],$acc); } |
| &comment(); |
| } |
| |
| sub enclast() |
| { my ($i,$te,@s)=@_; |
| my $tmp = $key; |
| my $out = $i==3?$s[0]:$acc; |
| |
| if ($i==3) { &mov ($key,$__key); }##%edx |
| else { &mov ($out,$s[0]); } |
| &and ($out,0xFF); |
| if ($i==1) { &shr ($s[0],16); }#%ebx[1] |
| if ($i==2) { &shr ($s[0],24); }#%ecx[2] |
| &mov ($out,&DWP(2,$te,$out,8)); |
| &and ($out,0x000000ff); |
| |
| if ($i==3) { $tmp=$s[1]; }##%eax |
| &movz ($tmp,&HB($s[1])); |
| &mov ($tmp,&DWP(0,$te,$tmp,8)); |
| &and ($tmp,0x0000ff00); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx |
| else { &mov ($tmp,$s[2]); |
| &shr ($tmp,16); } |
| if ($i==2) { &and ($s[1],0xFF); }#%edx[2] |
| &and ($tmp,0xFF); |
| &mov ($tmp,&DWP(0,$te,$tmp,8)); |
| &and ($tmp,0x00ff0000); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx |
| elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2] |
| else { &mov ($tmp,$s[3]); |
| &shr ($tmp,24); } |
| &mov ($tmp,&DWP(2,$te,$tmp,8)); |
| &and ($tmp,0xff000000); |
| &xor ($out,$tmp); |
| if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } |
| if ($i==3) { &mov ($s[3],$acc); } |
| } |
| |
| &function_begin_B("_x86_AES_encrypt"); |
| if ($vertical_spin) { |
| # I need high parts of volatile registers to be accessible... |
| &exch ($s1="edi",$key="ebx"); |
| &mov ($s2="esi",$acc="ecx"); |
| } |
| |
| # note that caller is expected to allocate stack frame for me! |
| &mov ($__key,$key); # save key |
| |
| &xor ($s0,&DWP(0,$key)); # xor with key |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &mov ($acc,&DWP(240,$key)); # load key->rounds |
| |
| if ($small_footprint) { |
| &lea ($acc,&DWP(-2,$acc,$acc)); |
| &lea ($acc,&DWP(0,$key,$acc,8)); |
| &mov ($__end,$acc); # end of key schedule |
| |
| &set_label("loop",16); |
| if ($vertical_spin) { |
| &encvert($tbl,$s0,$s1,$s2,$s3); |
| } else { |
| &encstep(0,$tbl,$s0,$s1,$s2,$s3); |
| &encstep(1,$tbl,$s1,$s2,$s3,$s0); |
| &encstep(2,$tbl,$s2,$s3,$s0,$s1); |
| &encstep(3,$tbl,$s3,$s0,$s1,$s2); |
| } |
| &add ($key,16); # advance rd_key |
| &xor ($s0,&DWP(0,$key)); |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| &cmp ($key,$__end); |
| &mov ($__key,$key); |
| &jb (&label("loop")); |
| } |
| else { |
| &cmp ($acc,10); |
| &jle (&label("10rounds")); |
| &cmp ($acc,12); |
| &jle (&label("12rounds")); |
| |
| &set_label("14rounds",4); |
| for ($i=1;$i<3;$i++) { |
| if ($vertical_spin) { |
| &encvert($tbl,$s0,$s1,$s2,$s3); |
| } else { |
| &encstep(0,$tbl,$s0,$s1,$s2,$s3); |
| &encstep(1,$tbl,$s1,$s2,$s3,$s0); |
| &encstep(2,$tbl,$s2,$s3,$s0,$s1); |
| &encstep(3,$tbl,$s3,$s0,$s1,$s2); |
| } |
| &xor ($s0,&DWP(16*$i+0,$key)); |
| &xor ($s1,&DWP(16*$i+4,$key)); |
| &xor ($s2,&DWP(16*$i+8,$key)); |
| &xor ($s3,&DWP(16*$i+12,$key)); |
| } |
| &add ($key,32); |
| &mov ($__key,$key); # advance rd_key |
| &set_label("12rounds",4); |
| for ($i=1;$i<3;$i++) { |
| if ($vertical_spin) { |
| &encvert($tbl,$s0,$s1,$s2,$s3); |
| } else { |
| &encstep(0,$tbl,$s0,$s1,$s2,$s3); |
| &encstep(1,$tbl,$s1,$s2,$s3,$s0); |
| &encstep(2,$tbl,$s2,$s3,$s0,$s1); |
| &encstep(3,$tbl,$s3,$s0,$s1,$s2); |
| } |
| &xor ($s0,&DWP(16*$i+0,$key)); |
| &xor ($s1,&DWP(16*$i+4,$key)); |
| &xor ($s2,&DWP(16*$i+8,$key)); |
| &xor ($s3,&DWP(16*$i+12,$key)); |
| } |
| &add ($key,32); |
| &mov ($__key,$key); # advance rd_key |
| &set_label("10rounds",4); |
| for ($i=1;$i<10;$i++) { |
| if ($vertical_spin) { |
| &encvert($tbl,$s0,$s1,$s2,$s3); |
| } else { |
| &encstep(0,$tbl,$s0,$s1,$s2,$s3); |
| &encstep(1,$tbl,$s1,$s2,$s3,$s0); |
| &encstep(2,$tbl,$s2,$s3,$s0,$s1); |
| &encstep(3,$tbl,$s3,$s0,$s1,$s2); |
| } |
| &xor ($s0,&DWP(16*$i+0,$key)); |
| &xor ($s1,&DWP(16*$i+4,$key)); |
| &xor ($s2,&DWP(16*$i+8,$key)); |
| &xor ($s3,&DWP(16*$i+12,$key)); |
| } |
| } |
| |
| if ($vertical_spin) { |
| # "reincarnate" some registers for "horizontal" spin... |
| &mov ($s1="ebx",$key="edi"); |
| &mov ($s2="ecx",$acc="esi"); |
| } |
| &enclast(0,$tbl,$s0,$s1,$s2,$s3); |
| &enclast(1,$tbl,$s1,$s2,$s3,$s0); |
| &enclast(2,$tbl,$s2,$s3,$s0,$s1); |
| &enclast(3,$tbl,$s3,$s0,$s1,$s2); |
| |
| &add ($key,$small_footprint?16:160); |
| &xor ($s0,&DWP(0,$key)); |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &ret (); |
| |
| &set_label("AES_Te",64); # Yes! I keep it in the code segment! |
| &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6); |
| &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591); |
| &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56); |
| &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec); |
| &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa); |
| &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb); |
| &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45); |
| &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b); |
| &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c); |
| &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83); |
| &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9); |
| &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a); |
| &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d); |
| &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f); |
| &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df); |
| &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea); |
| &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34); |
| &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b); |
| &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d); |
| &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413); |
| &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1); |
| &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6); |
| &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972); |
| &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85); |
| &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed); |
| &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511); |
| &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe); |
| &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b); |
| &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05); |
| &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1); |
| &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142); |
| &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf); |
| &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3); |
| &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e); |
| &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a); |
| &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6); |
| &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3); |
| &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b); |
| &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428); |
| &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad); |
| &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14); |
| &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8); |
| &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4); |
| &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2); |
| &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda); |
| &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949); |
| &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf); |
| &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810); |
| &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c); |
| &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697); |
| &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e); |
| &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f); |
| &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc); |
| &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c); |
| &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969); |
| &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27); |
| &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122); |
| &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433); |
| &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9); |
| &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5); |
| &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a); |
| &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0); |
| &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e); |
| &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c); |
| |
| #Te4 # four copies of Te4 to choose from to avoid L1 aliasing |
| &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); |
| &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); |
| &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); |
| &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); |
| &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); |
| &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); |
| &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); |
| &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); |
| &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); |
| &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); |
| &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); |
| &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); |
| &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); |
| &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); |
| &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); |
| &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); |
| &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); |
| &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); |
| &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); |
| &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); |
| &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); |
| &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); |
| &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); |
| &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); |
| &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); |
| &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); |
| &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); |
| &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); |
| &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); |
| &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); |
| &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); |
| &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); |
| |
| &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); |
| &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); |
| &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); |
| &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); |
| &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); |
| &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); |
| &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); |
| &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); |
| &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); |
| &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); |
| &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); |
| &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); |
| &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); |
| &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); |
| &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); |
| &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); |
| &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); |
| &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); |
| &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); |
| &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); |
| &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); |
| &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); |
| &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); |
| &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); |
| &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); |
| &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); |
| &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); |
| &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); |
| &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); |
| &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); |
| &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); |
| &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); |
| |
| &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); |
| &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); |
| &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); |
| &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); |
| &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); |
| &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); |
| &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); |
| &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); |
| &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); |
| &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); |
| &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); |
| &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); |
| &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); |
| &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); |
| &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); |
| &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); |
| &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); |
| &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); |
| &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); |
| &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); |
| &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); |
| &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); |
| &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); |
| &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); |
| &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); |
| &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); |
| &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); |
| &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); |
| &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); |
| &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); |
| &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); |
| &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); |
| |
| &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5); |
| &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76); |
| &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0); |
| &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0); |
| &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc); |
| &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15); |
| &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a); |
| &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75); |
| &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0); |
| &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84); |
| &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b); |
| &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf); |
| &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85); |
| &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8); |
| &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5); |
| &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2); |
| &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17); |
| &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73); |
| &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88); |
| &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb); |
| &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c); |
| &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79); |
| &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9); |
| &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08); |
| &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6); |
| &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a); |
| &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e); |
| &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e); |
| &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94); |
| &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf); |
| &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68); |
| &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); |
| #rcon: |
| &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008); |
| &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080); |
| &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000); |
| &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000); |
| &function_end_B("_x86_AES_encrypt"); |
| |
| # void asm_AES_encrypt (const void *inp,void *out,const AES_KEY *key); |
| &function_begin("asm_AES_encrypt"); |
| &mov ($acc,&wparam(0)); # load inp |
| &mov ($key,&wparam(2)); # load key |
| |
| &mov ($s0,"esp"); |
| &sub ("esp",36); |
| &and ("esp",-64); # align to cache-line |
| |
| # place stack frame just "above" the key schedule |
| &lea ($s1,&DWP(-64-63,$key)); |
| &sub ($s1,"esp"); |
| &neg ($s1); |
| &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line |
| &sub ("esp",$s1); |
| &add ("esp",4); # 4 is reserved for caller's return address |
| &mov ($_esp,$s0); # save stack pointer |
| |
| &call (&label("pic_point")); # make it PIC! |
| &set_label("pic_point"); |
| &blindpop($tbl); |
| &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only); |
| &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl)); |
| |
| # pick Te4 copy which can't "overlap" with stack frame or key schedule |
| &lea ($s1,&DWP(768-4,"esp")); |
| &sub ($s1,$tbl); |
| &and ($s1,0x300); |
| &lea ($tbl,&DWP(2048+128,$tbl,$s1)); |
| |
| if (!$x86only) { |
| &bt (&DWP(0,$s0),25); # check for SSE bit |
| &jnc (&label("x86")); |
| |
| &movq ("mm0",&QWP(0,$acc)); |
| &movq ("mm4",&QWP(8,$acc)); |
| &call ("_sse_AES_encrypt_compact"); |
| &mov ("esp",$_esp); # restore stack pointer |
| &mov ($acc,&wparam(1)); # load out |
| &movq (&QWP(0,$acc),"mm0"); # write output data |
| &movq (&QWP(8,$acc),"mm4"); |
| &emms (); |
| &function_end_A(); |
| } |
| &set_label("x86",16); |
| &mov ($_tbl,$tbl); |
| &mov ($s0,&DWP(0,$acc)); # load input data |
| &mov ($s1,&DWP(4,$acc)); |
| &mov ($s2,&DWP(8,$acc)); |
| &mov ($s3,&DWP(12,$acc)); |
| &call ("_x86_AES_encrypt_compact"); |
| &mov ("esp",$_esp); # restore stack pointer |
| &mov ($acc,&wparam(1)); # load out |
| &mov (&DWP(0,$acc),$s0); # write output data |
| &mov (&DWP(4,$acc),$s1); |
| &mov (&DWP(8,$acc),$s2); |
| &mov (&DWP(12,$acc),$s3); |
| &function_end("asm_AES_encrypt"); |
| |
| #--------------------------------------------------------------------# |
| |
| ###################################################################### |
| # "Compact" block function |
| ###################################################################### |
| |
| sub deccompact() |
| { my $Fn = \&mov; |
| while ($#_>5) { pop(@_); $Fn=sub{}; } |
| my ($i,$td,@s)=@_; |
| my $tmp = $key; |
| my $out = $i==3?$s[0]:$acc; |
| |
| # $Fn is used in first compact round and its purpose is to |
| # void restoration of some values from stack, so that after |
| # 4xdeccompact with extra argument $key, $s0 and $s1 values |
| # are left there... |
| if($i==3) { &$Fn ($key,$__key); } |
| else { &mov ($out,$s[0]); } |
| &and ($out,0xFF); |
| &movz ($out,&BP(-128,$td,$out,1)); |
| |
| if ($i==3) { $tmp=$s[1]; } |
| &movz ($tmp,&HB($s[1])); |
| &movz ($tmp,&BP(-128,$td,$tmp,1)); |
| &shl ($tmp,8); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } |
| else { mov ($tmp,$s[2]); } |
| &shr ($tmp,16); |
| &and ($tmp,0xFF); |
| &movz ($tmp,&BP(-128,$td,$tmp,1)); |
| &shl ($tmp,16); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); } |
| else { &mov ($tmp,$s[3]); } |
| &shr ($tmp,24); |
| &movz ($tmp,&BP(-128,$td,$tmp,1)); |
| &shl ($tmp,24); |
| &xor ($out,$tmp); |
| if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } |
| if ($i==3) { &$Fn ($s[3],$__s0); } |
| } |
| |
| # must be called with 2,3,0,1 as argument sequence!!! |
| sub dectransform() |
| { my @s = ($s0,$s1,$s2,$s3); |
| my $i = shift; |
| my $tmp = $key; |
| my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1); |
| my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1); |
| my $tp8 = $tbl; |
| |
| &mov ($tmp,0x80808080); |
| &and ($tmp,$s[$i]); |
| &mov ($acc,$tmp); |
| &shr ($tmp,7); |
| &lea ($tp2,&DWP(0,$s[$i],$s[$i])); |
| &sub ($acc,$tmp); |
| &and ($tp2,0xfefefefe); |
| &and ($acc,0x1b1b1b1b); |
| &xor ($tp2,$acc); |
| &mov ($tmp,0x80808080); |
| |
| &and ($tmp,$tp2); |
| &mov ($acc,$tmp); |
| &shr ($tmp,7); |
| &lea ($tp4,&DWP(0,$tp2,$tp2)); |
| &sub ($acc,$tmp); |
| &and ($tp4,0xfefefefe); |
| &and ($acc,0x1b1b1b1b); |
| &xor ($tp2,$s[$i]); # tp2^tp1 |
| &xor ($tp4,$acc); |
| &mov ($tmp,0x80808080); |
| |
| &and ($tmp,$tp4); |
| &mov ($acc,$tmp); |
| &shr ($tmp,7); |
| &lea ($tp8,&DWP(0,$tp4,$tp4)); |
| &sub ($acc,$tmp); |
| &and ($tp8,0xfefefefe); |
| &and ($acc,0x1b1b1b1b); |
| &xor ($tp4,$s[$i]); # tp4^tp1 |
| &rotl ($s[$i],8); # = ROTATE(tp1,8) |
| &xor ($tp8,$acc); |
| |
| &xor ($s[$i],$tp2); |
| &xor ($tp2,$tp8); |
| &xor ($s[$i],$tp4); |
| &xor ($tp4,$tp8); |
| &rotl ($tp2,24); |
| &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1) |
| &rotl ($tp4,16); |
| &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24) |
| &rotl ($tp8,8); |
| &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16) |
| &mov ($s[0],$__s0) if($i==2); #prefetch $s0 |
| &mov ($s[1],$__s1) if($i==3); #prefetch $s1 |
| &mov ($s[2],$__s2) if($i==1); |
| &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8) |
| |
| &mov ($s[3],$__s3) if($i==1); |
| &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2); |
| } |
| |
| &function_begin_B("_x86_AES_decrypt_compact"); |
| # note that caller is expected to allocate stack frame for me! |
| &mov ($__key,$key); # save key |
| |
| &xor ($s0,&DWP(0,$key)); # xor with key |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &mov ($acc,&DWP(240,$key)); # load key->rounds |
| |
| &lea ($acc,&DWP(-2,$acc,$acc)); |
| &lea ($acc,&DWP(0,$key,$acc,8)); |
| &mov ($__end,$acc); # end of key schedule |
| |
| # prefetch Td4 |
| &mov ($key,&DWP(0-128,$tbl)); |
| &mov ($acc,&DWP(32-128,$tbl)); |
| &mov ($key,&DWP(64-128,$tbl)); |
| &mov ($acc,&DWP(96-128,$tbl)); |
| &mov ($key,&DWP(128-128,$tbl)); |
| &mov ($acc,&DWP(160-128,$tbl)); |
| &mov ($key,&DWP(192-128,$tbl)); |
| &mov ($acc,&DWP(224-128,$tbl)); |
| |
| &set_label("loop",16); |
| |
| &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1); |
| &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1); |
| &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1); |
| &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1); |
| &dectransform(2); |
| &dectransform(3); |
| &dectransform(0); |
| &dectransform(1); |
| &mov ($key,$__key); |
| &mov ($tbl,$__tbl); |
| &add ($key,16); # advance rd_key |
| &xor ($s0,&DWP(0,$key)); |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &cmp ($key,$__end); |
| &mov ($__key,$key); |
| &jb (&label("loop")); |
| |
| &deccompact(0,$tbl,$s0,$s3,$s2,$s1); |
| &deccompact(1,$tbl,$s1,$s0,$s3,$s2); |
| &deccompact(2,$tbl,$s2,$s1,$s0,$s3); |
| &deccompact(3,$tbl,$s3,$s2,$s1,$s0); |
| |
| &xor ($s0,&DWP(16,$key)); |
| &xor ($s1,&DWP(20,$key)); |
| &xor ($s2,&DWP(24,$key)); |
| &xor ($s3,&DWP(28,$key)); |
| |
| &ret (); |
| &function_end_B("_x86_AES_decrypt_compact"); |
| |
| ###################################################################### |
| # "Compact" SSE block function. |
| ###################################################################### |
| |
| sub sse_deccompact() |
| { |
| &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0 |
| &pshufw ("mm5","mm4",0x09); # 13,12,11,10 |
| &movd ("eax","mm1"); # 7, 6, 1, 0 |
| &movd ("ebx","mm5"); # 13,12,11,10 |
| &mov ($__key,$key); |
| |
| &movz ($acc,&LB("eax")); # 0 |
| &movz ("edx",&HB("eax")); # 1 |
| &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4 |
| &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0 |
| &movz ($key,&LB("ebx")); # 10 |
| &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1 |
| &shr ("eax",16); # 7, 6 |
| &shl ("edx",8); # 1 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 10 |
| &movz ($key,&HB("ebx")); # 11 |
| &shl ($acc,16); # 10 |
| &pshufw ("mm6","mm4",0x03); # 9, 8,15,14 |
| &or ("ecx",$acc); # 10 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 11 |
| &movz ($key,&HB("eax")); # 7 |
| &shl ($acc,24); # 11 |
| &shr ("ebx",16); # 13,12 |
| &or ("edx",$acc); # 11 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 7 |
| &movz ($key,&HB("ebx")); # 13 |
| &shl ($acc,24); # 7 |
| &or ("ecx",$acc); # 7 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 13 |
| &movz ($key,&LB("eax")); # 6 |
| &shl ($acc,8); # 13 |
| &movd ("eax","mm2"); # 3, 2, 5, 4 |
| &or ("ecx",$acc); # 13 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 6 |
| &movz ($key,&LB("ebx")); # 12 |
| &shl ($acc,16); # 6 |
| &movd ("ebx","mm6"); # 9, 8,15,14 |
| &movd ("mm0","ecx"); # t[0] collected |
| &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12 |
| &movz ($key,&LB("eax")); # 4 |
| &or ("ecx",$acc); # 12 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 4 |
| &movz ($key,&LB("ebx")); # 14 |
| &or ("edx",$acc); # 4 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 14 |
| &movz ($key,&HB("eax")); # 5 |
| &shl ($acc,16); # 14 |
| &shr ("eax",16); # 3, 2 |
| &or ("edx",$acc); # 14 |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 5 |
| &movz ($key,&HB("ebx")); # 15 |
| &shr ("ebx",16); # 9, 8 |
| &shl ($acc,8); # 5 |
| &movd ("mm1","edx"); # t[1] collected |
| &movz ("edx",&BP(-128,$tbl,$key,1)); # 15 |
| &movz ($key,&HB("ebx")); # 9 |
| &shl ("edx",24); # 15 |
| &and ("ebx",0xff); # 8 |
| &or ("edx",$acc); # 15 |
| |
| &punpckldq ("mm0","mm1"); # t[0,1] collected |
| |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 9 |
| &movz ($key,&LB("eax")); # 2 |
| &shl ($acc,8); # 9 |
| &movz ("eax",&HB("eax")); # 3 |
| &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8 |
| &or ("ecx",$acc); # 9 |
| &movz ($acc,&BP(-128,$tbl,$key,1)); # 2 |
| &or ("edx","ebx"); # 8 |
| &shl ($acc,16); # 2 |
| &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3 |
| &or ("edx",$acc); # 2 |
| &shl ("eax",24); # 3 |
| &or ("ecx","eax"); # 3 |
| &mov ($key,$__key); |
| &movd ("mm4","edx"); # t[2] collected |
| &movd ("mm5","ecx"); # t[3] collected |
| |
| &punpckldq ("mm4","mm5"); # t[2,3] collected |
| } |
| |
| if (!$x86only) { |
| &function_begin_B("_sse_AES_decrypt_compact"); |
| &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0 |
| &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8 |
| |
| # note that caller is expected to allocate stack frame for me! |
| &mov ($acc,&DWP(240,$key)); # load key->rounds |
| &lea ($acc,&DWP(-2,$acc,$acc)); |
| &lea ($acc,&DWP(0,$key,$acc,8)); |
| &mov ($__end,$acc); # end of key schedule |
| |
| &mov ($s0,0x1b1b1b1b); # magic constant |
| &mov (&DWP(8,"esp"),$s0); |
| &mov (&DWP(12,"esp"),$s0); |
| |
| # prefetch Td4 |
| &mov ($s0,&DWP(0-128,$tbl)); |
| &mov ($s1,&DWP(32-128,$tbl)); |
| &mov ($s2,&DWP(64-128,$tbl)); |
| &mov ($s3,&DWP(96-128,$tbl)); |
| &mov ($s0,&DWP(128-128,$tbl)); |
| &mov ($s1,&DWP(160-128,$tbl)); |
| &mov ($s2,&DWP(192-128,$tbl)); |
| &mov ($s3,&DWP(224-128,$tbl)); |
| |
| &set_label("loop",16); |
| &sse_deccompact(); |
| &add ($key,16); |
| &cmp ($key,$__end); |
| &ja (&label("out")); |
| |
| # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N) |
| &movq ("mm3","mm0"); &movq ("mm7","mm4"); |
| &movq ("mm2","mm0",1); &movq ("mm6","mm4",1); |
| &movq ("mm1","mm0"); &movq ("mm5","mm4"); |
| &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16) |
| &pslld ("mm2",8); &pslld ("mm6",8); |
| &psrld ("mm3",8); &psrld ("mm7",8); |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8 |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8 |
| &pslld ("mm2",16); &pslld ("mm6",16); |
| &psrld ("mm3",16); &psrld ("mm7",16); |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24 |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24 |
| |
| &movq ("mm3",&QWP(8,"esp")); |
| &pxor ("mm2","mm2"); &pxor ("mm6","mm6"); |
| &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5"); |
| &pand ("mm2","mm3"); &pand ("mm6","mm3"); |
| &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); |
| &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2 |
| &movq ("mm3","mm1"); &movq ("mm7","mm5"); |
| &movq ("mm2","mm1"); &movq ("mm6","mm5"); |
| &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2 |
| &pslld ("mm3",24); &pslld ("mm7",24); |
| &psrld ("mm2",8); &psrld ("mm6",8); |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24 |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8 |
| |
| &movq ("mm2",&QWP(8,"esp")); |
| &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); |
| &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); |
| &pand ("mm3","mm2"); &pand ("mm7","mm2"); |
| &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); |
| &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4 |
| &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1); |
| &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4 |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16) |
| |
| &pxor ("mm3","mm3"); &pxor ("mm7","mm7"); |
| &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5"); |
| &pand ("mm3","mm2"); &pand ("mm7","mm2"); |
| &paddb ("mm1","mm1"); &paddb ("mm5","mm5"); |
| &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8 |
| &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 |
| &movq ("mm3","mm1"); &movq ("mm7","mm5"); |
| &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1); |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16) |
| &pslld ("mm1",8); &pslld ("mm5",8); |
| &psrld ("mm3",8); &psrld ("mm7",8); |
| &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key)); |
| &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8 |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8 |
| &mov ($s0,&DWP(0-128,$tbl)); |
| &pslld ("mm1",16); &pslld ("mm5",16); |
| &mov ($s1,&DWP(64-128,$tbl)); |
| &psrld ("mm3",16); &psrld ("mm7",16); |
| &mov ($s2,&DWP(128-128,$tbl)); |
| &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24 |
| &mov ($s3,&DWP(192-128,$tbl)); |
| &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24 |
| |
| &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); |
| &jmp (&label("loop")); |
| |
| &set_label("out",16); |
| &pxor ("mm0",&QWP(0,$key)); |
| &pxor ("mm4",&QWP(8,$key)); |
| |
| &ret (); |
| &function_end_B("_sse_AES_decrypt_compact"); |
| } |
| |
| ###################################################################### |
| # Vanilla block function. |
| ###################################################################### |
| |
| sub decstep() |
| { my ($i,$td,@s) = @_; |
| my $tmp = $key; |
| my $out = $i==3?$s[0]:$acc; |
| |
| # no instructions are reordered, as performance appears |
| # optimal... or rather that all attempts to reorder didn't |
| # result in better performance [which by the way is not a |
| # bit lower than ecryption]. |
| if($i==3) { &mov ($key,$__key); } |
| else { &mov ($out,$s[0]); } |
| &and ($out,0xFF); |
| &mov ($out,&DWP(0,$td,$out,8)); |
| |
| if ($i==3) { $tmp=$s[1]; } |
| &movz ($tmp,&HB($s[1])); |
| &xor ($out,&DWP(3,$td,$tmp,8)); |
| |
| if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } |
| else { &mov ($tmp,$s[2]); } |
| &shr ($tmp,16); |
| &and ($tmp,0xFF); |
| &xor ($out,&DWP(2,$td,$tmp,8)); |
| |
| if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } |
| else { &mov ($tmp,$s[3]); } |
| &shr ($tmp,24); |
| &xor ($out,&DWP(1,$td,$tmp,8)); |
| if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } |
| if ($i==3) { &mov ($s[3],$__s0); } |
| &comment(); |
| } |
| |
| sub declast() |
| { my ($i,$td,@s)=@_; |
| my $tmp = $key; |
| my $out = $i==3?$s[0]:$acc; |
| |
| if($i==0) { &lea ($td,&DWP(2048+128,$td)); |
| &mov ($tmp,&DWP(0-128,$td)); |
| &mov ($acc,&DWP(32-128,$td)); |
| &mov ($tmp,&DWP(64-128,$td)); |
| &mov ($acc,&DWP(96-128,$td)); |
| &mov ($tmp,&DWP(128-128,$td)); |
| &mov ($acc,&DWP(160-128,$td)); |
| &mov ($tmp,&DWP(192-128,$td)); |
| &mov ($acc,&DWP(224-128,$td)); |
| &lea ($td,&DWP(-128,$td)); } |
| if($i==3) { &mov ($key,$__key); } |
| else { &mov ($out,$s[0]); } |
| &and ($out,0xFF); |
| &movz ($out,&BP(0,$td,$out,1)); |
| |
| if ($i==3) { $tmp=$s[1]; } |
| &movz ($tmp,&HB($s[1])); |
| &movz ($tmp,&BP(0,$td,$tmp,1)); |
| &shl ($tmp,8); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); } |
| else { mov ($tmp,$s[2]); } |
| &shr ($tmp,16); |
| &and ($tmp,0xFF); |
| &movz ($tmp,&BP(0,$td,$tmp,1)); |
| &shl ($tmp,16); |
| &xor ($out,$tmp); |
| |
| if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); } |
| else { &mov ($tmp,$s[3]); } |
| &shr ($tmp,24); |
| &movz ($tmp,&BP(0,$td,$tmp,1)); |
| &shl ($tmp,24); |
| &xor ($out,$tmp); |
| if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); } |
| if ($i==3) { &mov ($s[3],$__s0); |
| &lea ($td,&DWP(-2048,$td)); } |
| } |
| |
| &function_begin_B("_x86_AES_decrypt"); |
| # note that caller is expected to allocate stack frame for me! |
| &mov ($__key,$key); # save key |
| |
| &xor ($s0,&DWP(0,$key)); # xor with key |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &mov ($acc,&DWP(240,$key)); # load key->rounds |
| |
| if ($small_footprint) { |
| &lea ($acc,&DWP(-2,$acc,$acc)); |
| &lea ($acc,&DWP(0,$key,$acc,8)); |
| &mov ($__end,$acc); # end of key schedule |
| &set_label("loop",16); |
| &decstep(0,$tbl,$s0,$s3,$s2,$s1); |
| &decstep(1,$tbl,$s1,$s0,$s3,$s2); |
| &decstep(2,$tbl,$s2,$s1,$s0,$s3); |
| &decstep(3,$tbl,$s3,$s2,$s1,$s0); |
| &add ($key,16); # advance rd_key |
| &xor ($s0,&DWP(0,$key)); |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| &cmp ($key,$__end); |
| &mov ($__key,$key); |
| &jb (&label("loop")); |
| } |
| else { |
| &cmp ($acc,10); |
| &jle (&label("10rounds")); |
| &cmp ($acc,12); |
| &jle (&label("12rounds")); |
| |
| &set_label("14rounds",4); |
| for ($i=1;$i<3;$i++) { |
| &decstep(0,$tbl,$s0,$s3,$s2,$s1); |
| &decstep(1,$tbl,$s1,$s0,$s3,$s2); |
| &decstep(2,$tbl,$s2,$s1,$s0,$s3); |
| &decstep(3,$tbl,$s3,$s2,$s1,$s0); |
| &xor ($s0,&DWP(16*$i+0,$key)); |
| &xor ($s1,&DWP(16*$i+4,$key)); |
| &xor ($s2,&DWP(16*$i+8,$key)); |
| &xor ($s3,&DWP(16*$i+12,$key)); |
| } |
| &add ($key,32); |
| &mov ($__key,$key); # advance rd_key |
| &set_label("12rounds",4); |
| for ($i=1;$i<3;$i++) { |
| &decstep(0,$tbl,$s0,$s3,$s2,$s1); |
| &decstep(1,$tbl,$s1,$s0,$s3,$s2); |
| &decstep(2,$tbl,$s2,$s1,$s0,$s3); |
| &decstep(3,$tbl,$s3,$s2,$s1,$s0); |
| &xor ($s0,&DWP(16*$i+0,$key)); |
| &xor ($s1,&DWP(16*$i+4,$key)); |
| &xor ($s2,&DWP(16*$i+8,$key)); |
| &xor ($s3,&DWP(16*$i+12,$key)); |
| } |
| &add ($key,32); |
| &mov ($__key,$key); # advance rd_key |
| &set_label("10rounds",4); |
| for ($i=1;$i<10;$i++) { |
| &decstep(0,$tbl,$s0,$s3,$s2,$s1); |
| &decstep(1,$tbl,$s1,$s0,$s3,$s2); |
| &decstep(2,$tbl,$s2,$s1,$s0,$s3); |
| &decstep(3,$tbl,$s3,$s2,$s1,$s0); |
| &xor ($s0,&DWP(16*$i+0,$key)); |
| &xor ($s1,&DWP(16*$i+4,$key)); |
| &xor ($s2,&DWP(16*$i+8,$key)); |
| &xor ($s3,&DWP(16*$i+12,$key)); |
| } |
| } |
| |
| &declast(0,$tbl,$s0,$s3,$s2,$s1); |
| &declast(1,$tbl,$s1,$s0,$s3,$s2); |
| &declast(2,$tbl,$s2,$s1,$s0,$s3); |
| &declast(3,$tbl,$s3,$s2,$s1,$s0); |
| |
| &add ($key,$small_footprint?16:160); |
| &xor ($s0,&DWP(0,$key)); |
| &xor ($s1,&DWP(4,$key)); |
| &xor ($s2,&DWP(8,$key)); |
| &xor ($s3,&DWP(12,$key)); |
| |
| &ret (); |
| |
| &set_label("AES_Td",64); # Yes! I keep it in the code segment! |
| &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a); |
| &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b); |
| &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5); |
| &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5); |
| &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d); |
| &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b); |
| &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295); |
| &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e); |
| &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927); |
| &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d); |
| &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362); |
| &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9); |
| &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52); |
| &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566); |
| &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3); |
| &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed); |
| &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e); |
| &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4); |
| &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4); |
| &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd); |
| &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d); |
| &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060); |
| &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967); |
| &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879); |
| &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000); |
| &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c); |
| &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36); |
| &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624); |
| &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b); |
| &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c); |
| &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12); |
| &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14); |
| &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3); |
| &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b); |
| &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8); |
| &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684); |
| &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7); |
| &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177); |
| &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947); |
| &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322); |
| &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498); |
| &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f); |
| &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54); |
| &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382); |
| &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf); |
| &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb); |
| &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83); |
| &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef); |
| &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029); |
| &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235); |
| &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733); |
| &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117); |
| &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4); |
| &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546); |
| &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb); |
| &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d); |
| &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb); |
| &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a); |
| &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773); |
| &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478); |
| &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2); |
| &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff); |
| &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664); |
| &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0); |
| |
| #Td4: # four copies of Td4 to choose from to avoid L1 aliasing |
| &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); |
| &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); |
| &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); |
| &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); |
| &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); |
| &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); |
| &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); |
| &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); |
| &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); |
| &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); |
| &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); |
| &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); |
| &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); |
| &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); |
| &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); |
| &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); |
| &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); |
| &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); |
| &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); |
| &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); |
| &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); |
| &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); |
| &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); |
| &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); |
| &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); |
| &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); |
| &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); |
| &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); |
| &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); |
| &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); |
| &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); |
| &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); |
| |
| &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); |
| &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); |
| &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); |
| &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); |
| &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); |
| &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); |
| &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); |
| &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); |
| &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); |
| &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); |
| &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); |
| &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); |
| &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); |
| &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); |
| &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); |
| &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); |
| &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); |
| &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); |
| &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); |
| &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); |
| &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); |
| &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); |
| &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); |
| &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); |
| &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); |
| &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); |
| &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); |
| &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); |
| &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); |
| &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); |
| &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); |
| &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); |
| |
| &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); |
| &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); |
| &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); |
| &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); |
| &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); |
| &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); |
| &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); |
| &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); |
| &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); |
| &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); |
| &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); |
| &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); |
| &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); |
| &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); |
| &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); |
| &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); |
| &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); |
| &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); |
| &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); |
| &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); |
| &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); |
| &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); |
| &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); |
| &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); |
| &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); |
| &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); |
| &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); |
| &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); |
| &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); |
| &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); |
| &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); |
| &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); |
| |
| &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38); |
| &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb); |
| &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87); |
| &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb); |
| &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d); |
| &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e); |
| &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2); |
| &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25); |
| &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16); |
| &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92); |
| &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda); |
| &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84); |
| &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a); |
| &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06); |
| &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02); |
| &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b); |
| &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea); |
| &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73); |
| &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85); |
| &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e); |
| &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89); |
| &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b); |
| &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20); |
| &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4); |
| &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31); |
| &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f); |
| &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d); |
| &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef); |
| &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0); |
| &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61); |
| &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26); |
| &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); |
| &function_end_B("_x86_AES_decrypt"); |
| |
| # void asm_AES_decrypt (const void *inp,void *out,const AES_KEY *key); |
| &function_begin("asm_AES_decrypt"); |
| &mov ($acc,&wparam(0)); # load inp |
| &mov ($key,&wparam(2)); # load key |
| |
| &mov ($s0,"esp"); |
| &sub ("esp",36); |
| &and ("esp",-64); # align to cache-line |
| |
| # place stack frame just "above" the key schedule |
| &lea ($s1,&DWP(-64-63,$key)); |
| &sub ($s1,"esp"); |
| &neg ($s1); |
| &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line |
| &sub ("esp",$s1); |
| &add ("esp",4); # 4 is reserved for caller's return address |
| &mov ($_esp,$s0); # save stack pointer |
| |
| &call (&label("pic_point")); # make it PIC! |
| &set_label("pic_point"); |
| &blindpop($tbl); |
| &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only); |
| &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl)); |
| |
| # pick Td4 copy which can't "overlap" with stack frame or key schedule |
| &lea ($s1,&DWP(768-4,"esp")); |
| &sub ($s1,$tbl); |
| &and ($s1,0x300); |
| &lea ($tbl,&DWP(2048+128,$tbl,$s1)); |
| |
| if (!$x86only) { |
| &bt (&DWP(0,$s0),25); # check for SSE bit |
| &jnc (&label("x86")); |
| |
| &movq ("mm0",&QWP(0,$acc)); |
| &movq ("mm4",&QWP(8,$acc)); |
| &call ("_sse_AES_decrypt_compact"); |
| &mov ("esp",$_esp); # restore stack pointer |
| &mov ($acc,&wparam(1)); # load out |
| &movq (&QWP(0,$acc),"mm0"); # write output data |
| &movq (&QWP(8,$acc),"mm4"); |
| &emms (); |
| &function_end_A(); |
| } |
| &set_label("x86",16); |
| &mov ($_tbl,$tbl); |
| &mov ($s0,&DWP(0,$acc)); # load input data |
| &mov ($s1,&DWP(4,$acc)); |
| &mov ($s2,&DWP(8,$acc)); |
| &mov ($s3,&DWP(12,$acc)); |
| &call ("_x86_AES_decrypt_compact"); |
| &mov ("esp",$_esp); # restore stack pointer |
| &mov ($acc,&wparam(1)); # load out |
| &mov (&DWP(0,
|