blob: d14ecaee9ac36ca023a31fc7cb25257842aaa9e8 [file] [log] [blame]
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2000.
*/
/* ====================================================================
* Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/rsa.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../bytestring/internal.h"
static int parse_integer_buggy(CBS *cbs, BIGNUM **out, int buggy) {
assert(*out == NULL);
*out = BN_new();
if (*out == NULL) {
return 0;
}
if (buggy) {
return BN_parse_asn1_unsigned_buggy(cbs, *out);
}
return BN_parse_asn1_unsigned(cbs, *out);
}
static int parse_integer(CBS *cbs, BIGNUM **out) {
return parse_integer_buggy(cbs, out, 0 /* not buggy */);
}
static int marshal_integer(CBB *cbb, BIGNUM *bn) {
if (bn == NULL) {
/* An RSA object may be missing some components. */
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
return BN_marshal_asn1(cbb, bn);
}
static RSA *parse_public_key(CBS *cbs, int buggy) {
RSA *ret = RSA_new();
if (ret == NULL) {
return NULL;
}
CBS child;
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
!parse_integer_buggy(&child, &ret->n, buggy) ||
!parse_integer(&child, &ret->e) ||
CBS_len(&child) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
RSA_free(ret);
return NULL;
}
if (!BN_is_odd(ret->e) ||
BN_num_bits(ret->e) < 2) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
RSA_free(ret);
return NULL;
}
return ret;
}
RSA *RSA_parse_public_key(CBS *cbs) {
return parse_public_key(cbs, 0 /* not buggy */);
}
RSA *RSA_parse_public_key_buggy(CBS *cbs) {
/* Estonian IDs issued between September 2014 to September 2015 are
* broken. See https://crbug.com/532048 and https://crbug.com/534766.
*
* TODO(davidben): Remove this code and callers in March 2016. */
return parse_public_key(cbs, 1 /* buggy */);
}
RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) {
CBS cbs;
CBS_init(&cbs, in, in_len);
RSA *ret = RSA_parse_public_key(&cbs);
if (ret == NULL || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
RSA_free(ret);
return NULL;
}
return ret;
}
int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) {
CBB child;
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
!marshal_integer(&child, rsa->n) ||
!marshal_integer(&child, rsa->e) ||
!CBB_flush(cbb)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
return 0;
}
return 1;
}
int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
const RSA *rsa) {
CBB cbb;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
!RSA_marshal_public_key(&cbb, rsa) ||
!CBB_finish(&cbb, out_bytes, out_len)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
CBB_cleanup(&cbb);
return 0;
}
return 1;
}
/* kVersionTwoPrime and kVersionMulti are the supported values of the version
* field of an RSAPrivateKey structure (RFC 3447). */
static const uint64_t kVersionTwoPrime = 0;
static const uint64_t kVersionMulti = 1;
/* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and
* advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on
* success or NULL on error. The |r| and |mont| fields of the result are set to
* NULL. */
static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) {
RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime));
if (ret == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
return 0;
}
memset(ret, 0, sizeof(RSA_additional_prime));
CBS child;
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
!parse_integer(&child, &ret->prime) ||
!parse_integer(&child, &ret->exp) ||
!parse_integer(&child, &ret->coeff) ||
CBS_len(&child) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
RSA_additional_prime_free(ret);
return NULL;
}
return ret;
}
RSA *RSA_parse_private_key(CBS *cbs) {
BN_CTX *ctx = NULL;
BIGNUM *product_of_primes_so_far = NULL;
RSA *ret = RSA_new();
if (ret == NULL) {
return NULL;
}
CBS child;
uint64_t version;
if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1_uint64(&child, &version)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
goto err;
}
if (version != kVersionTwoPrime && version != kVersionMulti) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION);
goto err;
}
if (!parse_integer(&child, &ret->n) ||
!parse_integer(&child, &ret->e) ||
!parse_integer(&child, &ret->d) ||
!parse_integer(&child, &ret->p) ||
!parse_integer(&child, &ret->q) ||
!parse_integer(&child, &ret->dmp1) ||
!parse_integer(&child, &ret->dmq1) ||
!parse_integer(&child, &ret->iqmp)) {
goto err;
}
if (version == kVersionMulti) {
/* Although otherPrimeInfos is written as OPTIONAL in RFC 3447, it later
* says "[otherPrimeInfos] shall be omitted if version is 0 and shall
* contain at least one instance of OtherPrimeInfo if version is 1." The
* OPTIONAL is just so both versions share a single definition. */
CBS other_prime_infos;
if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) ||
CBS_len(&other_prime_infos) == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
goto err;
}
ret->additional_primes = sk_RSA_additional_prime_new_null();
if (ret->additional_primes == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
ctx = BN_CTX_new();
product_of_primes_so_far = BN_new();
if (ctx == NULL ||
product_of_primes_so_far == NULL ||
!BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) {
goto err;
}
while (CBS_len(&other_prime_infos) > 0) {
RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos);
if (ap == NULL) {
goto err;
}
if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
RSA_additional_prime_free(ap);
goto err;
}
ap->r = BN_dup(product_of_primes_so_far);
if (ap->r == NULL ||
!BN_mul(product_of_primes_so_far, product_of_primes_so_far,
ap->prime, ctx)) {
goto err;
}
}
}
if (CBS_len(&child) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
goto err;
}
BN_CTX_free(ctx);
BN_free(product_of_primes_so_far);
return ret;
err:
BN_CTX_free(ctx);
BN_free(product_of_primes_so_far);
RSA_free(ret);
return NULL;
}
RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) {
CBS cbs;
CBS_init(&cbs, in, in_len);
RSA *ret = RSA_parse_private_key(&cbs);
if (ret == NULL || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING);
RSA_free(ret);
return NULL;
}
return ret;
}
int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) {
const int is_multiprime =
sk_RSA_additional_prime_num(rsa->additional_primes) > 0;
CBB child;
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&child,
is_multiprime ? kVersionMulti : kVersionTwoPrime) ||
!marshal_integer(&child, rsa->n) ||
!marshal_integer(&child, rsa->e) ||
!marshal_integer(&child, rsa->d) ||
!marshal_integer(&child, rsa->p) ||
!marshal_integer(&child, rsa->q) ||
!marshal_integer(&child, rsa->dmp1) ||
!marshal_integer(&child, rsa->dmq1) ||
!marshal_integer(&child, rsa->iqmp)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
return 0;
}
if (is_multiprime) {
CBB other_prime_infos;
if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
return 0;
}
size_t i;
for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) {
RSA_additional_prime *ap =
sk_RSA_additional_prime_value(rsa->additional_primes, i);
CBB other_prime_info;
if (!CBB_add_asn1(&other_prime_infos, &other_prime_info,
CBS_ASN1_SEQUENCE) ||
!marshal_integer(&other_prime_info, ap->prime) ||
!marshal_integer(&other_prime_info, ap->exp) ||
!marshal_integer(&other_prime_info, ap->coeff)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
return 0;
}
}
}
if (!CBB_flush(cbb)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
return 0;
}
return 1;
}
int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
const RSA *rsa) {
CBB cbb;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
!RSA_marshal_private_key(&cbb, rsa) ||
!CBB_finish(&cbb, out_bytes, out_len)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR);
CBB_cleanup(&cbb);
return 0;
}
return 1;
}
RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) {
if (len < 0) {
return NULL;
}
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
RSA *ret = RSA_parse_public_key(&cbs);
if (ret == NULL) {
return NULL;
}
if (out != NULL) {
RSA_free(*out);
*out = ret;
}
*inp = CBS_data(&cbs);
return ret;
}
int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) {
CBB cbb;
if (!CBB_init(&cbb, 0) ||
!RSA_marshal_public_key(&cbb, in)) {
CBB_cleanup(&cbb);
return -1;
}
return CBB_finish_i2d(&cbb, outp);
}
RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) {
if (len < 0) {
return NULL;
}
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
RSA *ret = RSA_parse_private_key(&cbs);
if (ret == NULL) {
return NULL;
}
if (out != NULL) {
RSA_free(*out);
*out = ret;
}
*inp = CBS_data(&cbs);
return ret;
}
int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) {
CBB cbb;
if (!CBB_init(&cbb, 0) ||
!RSA_marshal_private_key(&cbb, in)) {
CBB_cleanup(&cbb);
return -1;
}
return CBB_finish_i2d(&cbb, outp);
}
RSA *RSAPublicKey_dup(const RSA *rsa) {
uint8_t *der;
size_t der_len;
if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) {
return NULL;
}
RSA *ret = RSA_public_key_from_bytes(der, der_len);
OPENSSL_free(der);
return ret;
}
RSA *RSAPrivateKey_dup(const RSA *rsa) {
uint8_t *der;
size_t der_len;
if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) {
return NULL;
}
RSA *ret = RSA_private_key_from_bytes(der, der_len);
OPENSSL_free(der);
return ret;
}